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10623 Berlin, Germany; e.willert@tu-berlin.de

Abstract: Based on a potential theoretical approach, the subsurface stress field is calculated for an
elastic half-space which is subject to normal and uniaxial tangential surface tractions that—in the case
of elastic decoupling—correspond to rigid normal and tangential translations of a circular surface
domain. The stress fields are obtained explicitly and in closed form as the imaginary parts of compact
complex-valued expressions. The stress state in the surface and on the central axis are considered
in detail. As, within specific approximations that have been discussed at length in the literature,
any tangential contact problem with friction can be understood as a certain incremental series of
such rigid translations, the solutions presented here can serve as the basis of very fast superposition
algorithms for the analysis of subsurface stress fields in general tangential contact problems with
friction. This idea is demonstrated by means of the frictional tangential contact between an elastic
half-space and a rigid cylindrical flat punch with rounded corners.
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1. Introduction

The solution to a contact mechanical problem is often only concerned with the relations
between macroscopic quantities (forces and global displacements), the size and shape of
the contact domain, and the traction vector therein. The subsurface stress field beneath
the contact is not often considered, at least in exact contact solutions. On the one hand,
this is due to the fact that for the analysis of contacts as contributors to the dynamics of a
multibody system, the knowledge about the relations between macroscopic quantities is
sufficient; on the other hand, the exact analysis of the subsurface stress field is generally
quite a complicated mathematical task. A fine example for actually both reasons is the
classical paper of Hertz [1]. Based only on his solution for the force and indentation depth
in the (“point”) contact of smooth elastic bodies, he considered a dynamic multibody
problem—the impact of elastic spheres (in the quasi-static limit); on the other hand, the
exact solution for the subsurface stresses he considered mathematically close to impossi-
ble although undoubtedly acknowledging their importance [2] in various circumstances,
e.g., for the analysis of subsurface yield.

Since the work of Hertz, of course, significant (although still quite limited) progress
has been made with respect to the exact determination of subsurface stress fields in me-
chanical contact problems. Theoretically speaking, at least for linearly elastic problems, the
knowledge about the traction vector in the contact domain (which commonly is a central
part of what is considered a “contact solution”) would be sufficient for the determination
of the complete stress field based on the superposition of the fundamental solutions (in-
cluding the corresponding stress fields) by Boussinesq [3] and Cerruti [4] for normal and
tangential point loading at the surface of an elastic half-space. However, the resulting
integrals are—with very few exceptions—intractable in exact form and computationally
costly if evaluated numerically (see, e.g., [5]).

A very powerful possibility lies in the application of potential theoretical methods.
By this means, the solutions for the subsurface stress fields have been obtained in closed
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analytical form for the axisymmetric [2] and elliptical [6] frictionless Hertzian contact, as
well as the axisymmetric [7,8] and elliptical [9] sliding Hertzian contact. Alternatively, at
least for the axisymmetric frictionless normal contact, one can apply Hankel transforms,
as pioneered by Sneddon [10]; based on this procedure, very recently the solution for the
stress field beneath an axisymmetric punch with a profile in the form of a power law has
been published [11], albeit in integral form.

To the author’s knowledge, no other exact and explicit solutions have been published
for the subsurface stress fields in elastic point contacts (for line contacts, the full stress field
can be obtained easily based on Muskhelishvili’s [12] potential). However, recently [13,14]
it was suggested to calculate the subsurface stress state for elastic contacts with arbitrary
axisymmetric convex profiles under normal and tangential load based on the superposition
of rigid incremental translations of circular contact domains—an ingenious idea to solve
axisymmetric contact problems, which stems from Mossakovski [15] and later Jäger [16],
and which is described comprehensively in the handbook by Popov et al. [17]. This su-
perposition, obviously, requires the full knowledge of the solution for a single (normal or
tangential) rigid translation of a circular contact domain (for elastically decoupled problems,
this corresponds to simple axisymmetric distributions of the normal or tangential contact
stress, respectively). While the authors in [13] argue that the respective subsurface stress
fields can be obtained as certain derivatives of the corresponding known solutions for a
parabolic (i.e., Hertzian) contact, they fail to give the explicit solutions for the full stress
fields they require for their superposition procedure (the aforementioned derivatives are
extremely lengthy and impractical). Therefore, in the present manuscript, these stress fields
shall be given in explicit closed form based on a potential theoretical approach.

The idea of superimposing incremental rigid translations of circular contact domains—and
thus the exact solutions for the corresponding subsurface stress states presented in this
manuscript—have a broad variety of numerical applications.

In numerical contact mechanics, there are methodically different approaches, which
can be arranged in a spectrum ranging from “flexible but computationally costly, requiring
little analytical preparatory work” to “specific but computationally simple, requiring much
analytical preparatory work”. Finite elements (FEs) [18] constitute the “flexible but compu-
tationally costly” end of that spectrum: an FE-based solution of a three-dimensional prob-
lem requires a three-dimensional discretization (with the respective demands of memory
space and computational power); on the other hand, FEs have generally very few restric-
tions regarding physical modeling and require almost no analytical preparatory work.

An approach that is very common in numerical contact mechanics—and which has
succesfully been applied for the calculation of subsurface stresses in frictional contacts
already 30 years ago [19]—are (half-space) boundary elements (BEs) [20], usually accel-
erated by the fast Fourier transform (FFT). FFT-BE-based methods are in the middle of
the aforementioned spectrum, as they only use a two-dimensional discretization (of the
half-space surface), but are restricted to constitutionally linear problems and require the
knowledge of the fundamental solutions for point loading on the surface.

With the superposition of incremental rigid translations of the contact domain, the
discretization dimension is reduced to one (and, even more importantly, the degrees of
freedom are decoupled)—characterizing the correct series of incremental translations to
solve the contact problem—which allows for the real-time analysis of tribological contacts.
However, it requires the knowledge of the analytical solution for a single such translation,
which only is available if the problem obeys specific geometrical restrictions, e.g., axial
symmetry. So, e.g., surface roughness cannot be considered. On the other hand, the
superposition of incremental rigid translations is the basis of the method of dimensionality
reduction (MDR, [17,21]), which has been succesfully applied to various frictional contact
problems in engineering, also including, e.g., viscoelasticity or adhesion.

The remainder of the manuscript is organized as follows: In Section 2, the considered
problem in linear elasticity is stated rigorously. Section 3 gives the solution for the stress
field under normal loading of a circular surface domain, while Section 4 considers the
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stress field under corresponding tangential loading. To illustrate how the obtained exact
solutions for the subsurface stress field can be used to rapidly calculate subsurface stresses
in general frictional contacts of axisymmetric, elastically similar bodies, in Section 5, the
stress field under the tangential contact between a rigid cylindrical flat punch with rounded
corners and an elastic half-space is considered in detail. Some conclusive remarks finish
the manuscript.

2. Problem Statement

Let us consider a linearly elastic body that obeys the restrictions of the half-space
approximation; the elastic material shall have the shear modulus G and Poisson’s ratio ν
and occupy the half-space z ≥ 0 in a Cartesian coordinate system {x, y, z}. Let there be
loading in the form of normal and tangential tractions on a circular region with radius
a of the boundary surface z = 0 of the half-space. We will consider the following two
loading scenarios: Firstly, there shall be loading in the form of a normal compressive stress
according to the boundary conditions

σyz(z = 0) = σxz(z = 0) = 0,

σzz(z = 0) = − p0a√
a2 − r2

, r < a. (1)

Here, σjk with j, k = {x, y, z} are the components of the stress tensor, r =
√

x2 + y2 is
the polar radius, and p0 is a constant. On the other hand, let us analyze the case of uniaxial
tangential tractions in the form

σyz(z = 0) = σzz(z = 0) = 0,

σxz(z = 0) = − τ0a√
a2 − r2

, r < a, (2)

with a constant τ0.
While that is not too relevant for the solution to the thus stated problem in linear

elasticity, to give some physical background, we shall briefly discuss, how the boundary
conditions (1) and (2) could be realized in a mechanical contact problem.

If the elastic half-space is incompressible (i.e., ν = 0.5), the boundary conditions are
easily implemented by rigid translations of the circular contact domain (z = 0 ∧ r ≤ a)
in the z- and x-direction, respectively; in other words, by normal and tangential loading
with a rigid cylindrical flat punch. However, for a compressible material, there will be
elastic coupling between the normal and tangential contact problems, and the physical
realization of the boundary conditions (1) and (2) will not be as straightforward as for the
incompressible case.

Nonetheless, a common framework of analytical contact mechanics to solve contact
problems with friction is the theory of Cattaneo [22] and Mindlin [23], which neglects
(among other details) elastic coupling contributions. In [24], the Cattaneo–Mindlin ap-
proximate theory was compared to a rigorous numerical contact solution for the frictional
Hertzian contact under shear load, and it was found, that the error of the approximation
(in terms of, e.g., contact tractions) is generally small. Accordingly, the elasticity problems
formulated in the above Equations (1) and (2) are a fundamental basis for the analysis of
any tangential contact problem with friction of axisymmetric elastic bodies, as has been
discussed in detail in the handbook [17] and as will be demonstrated briefly in Section 5.

3. Solution for the Normal Load

Let us start with the solution to the boundary value problem characterized by the
boundary conditions (1). As the corresponding potential theoretical problem has been
solved, and only the stress field needs to be computed from the known potential, this
section can be kept short.
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According to Barber ([25], pp. 64 f.), the stress and displacement fields in the elastic
half-space can be expressed in terms of the axisymmetric harmonic potential

φ(r, z) = −p0a Re

{∫ a

0
F(r, z; ξ)dξ

}
,

F(r, z; ξ) = ln
(√

r2 + [z + iξ]2 + z + iξ
)

, (3)

with the imaginary unit i =
√
−1.

The stress field in (axisymmetric) cylindrical coordinates {r, θ, z} can be calculated
from the potential based on the general relations ([25], p. 544)

σrr = z
∂3 φ

∂r2∂z
+

∂2 φ

∂r2 − 2ν

(
∂2 φ

∂r2 +
∂2 φ

∂z2

)
,

σθθ = −(1 − 2ν)
∂2 φ

∂r2 − ∂2 φ

∂z2 − z
∂3 φ

∂r2∂z
− z

∂3 φ

∂z3 ,

σrz = z
∂3 φ

∂r∂z2 , (4)

σzz = z
∂3 φ

∂z3 − ∂2 φ

∂z2 .

All other stress components vanish because of the problem’s symmetry.
Moreover, for the non-vanishing components of the displacement field, we have ([25],

p. 544)

2Gur = z
∂2 φ

∂r∂z
+ (1 − 2ν)

∂φ

∂r
,

2Guz = z
∂2 φ

∂z2 − 2(1 − ν)
∂φ

∂z
. (5)

Putting the solution for the elastic potential (3) into the general relations (4), and
executing the resulting derivatives and integrals does not pose mathematical difficulties.
The resulting stress field is given by the imaginary parts of the complex-valued field

σ̂rr(r, z)
p0a

= − z
r2

u
(
2r2 + u2)

(r2 + u2)
3/2 +

1√
r2 + u2

+
1 − 2ν

r2

(
u −

√
r2 + u2

)
,

σ̂rz(r, z)
p0a

=
rz

(r2 + u2)
3/2 ,

σ̂zz(r, z)
p0a

=
uz

(r2 + u2)
3/2 +

1√
r2 + u2

, (6)

σ̂θθ(r, z)
p0a

=
2ν√

r2 + u2
+

uz
r2
√

r2 + u2
− 1 − 2ν

r2

(
u −

√
r2 + u2

)
,

with the complex auxiliary variable

u = z + ia. (7)

In Figure 1, the radial and circumferential components of the physical stress field
are shown as contour line diagrams, in normalized variables, with ν = 0.3. It is visible
that the surface of the half-space, outside the contact circle, experiences tensile stresses in
the radial direction. On the other hand, the circumferential normal stresses are compres-
sive everywhere.

Figure 2 gives the corresponding contour line diagrams of the σzz stress component
and the Von Mises equivalent stress, in the same normalized variables.
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Figure 1. Contour line diagrams of the radial component σrr (A) and the circumferential component
σθθ (B) of the subsurface stress field due to the normal loading (1), normalized for p0, with ν = 0.3.
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Figure 2. Contour line diagrams of the vertical stress component σzz (A) and the Von Mises equivalent
stress (B) of the subsurface stress field due to the normal loading (1), normalized for p0, with ν = 0.3.

Similarly, we can use the potential (3) in the general relations (5) to obtain the displace-
ment field as the imaginary parts of the complex-valued field

2Gûr

p0a
=

z
r

u√
r2 + u2

+
1 − 2ν

r

(√
r2 + u2 − u

)
,

2Gûz

p0a
= − z√

r2 + u2
+ 2(1 − ν) ln

(√
r2 + u2 + u

a

)
(8)

In the surface z = 0, the corresponding imaginary parts of the complex-valued field (6)
can be explicitly evaluated easily. We obtain for the stress state in the surface inside the
contact domain

σrr(r < a, z = 0)
p0a

= − 1√
a2 − r2

+
1 − 2ν

r2

(
a −

√
a2 − r2

)
,

σzz(r < a, z = 0)
p0a

= − 1√
a2 − r2

, (9)

σθθ(r < a, z = 0)
p0a

= − 2ν√
a2 − r2

− 1 − 2ν

r2

(
a −

√
a2 − r2

)
,

and outside the contact domain

σrr(r > a, z = 0)
p0a

= −σθθ(r > a, z = 0)
p0a

=
(1 − 2ν)a

r2 . (10)

All other stress components vanish. The results (9) and (10) are in perfect agreement
with the ones reported in [13] for the same problem.
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On the axis of symmetry, r = 0, the stresses have to be reworked. For the non-vanishing
physical stresses one obtains

σrr(r = 0, z)
p0a

=
σθθ(r = 0, z)

p0a
= − a3

(a2 + z2)
2 + (1 − 2ν)

a
2(a2 + z2)

,

σzz(r = 0, z)
p0a

= − a3 + 3az2

(a2 + z2)
2 . (11)

While the above formulation of the stress field in axisymmetric cylindrical coordinates
is very compact, it sometimes may be preferable to have the field in the original Cartesian
coordinate system, especially if one is interested in stress states resulting from superim-
posed normal and tangential loading because the contact under tangential load looses its
rotational symmetry.

Based on the transformation rules for the stress tensor between cartesian and axisym-
metric cylindrical coordinates, we obtain the stress field as the imaginary parts of

σ̂xx

p0a
=

uz
r4

[
y2

√
r2 + u2

−
x2(2r2 + u2)
(r2 + u2)

3/2

]
+

x2 + 2νy2

r2
√

r2 + u2
+

x2 − y2

r4 (1 − 2ν)
(

u −
√

r2 + u2
)

,

σ̂yy

p0a
=

uz
r4

[
x2

√
r2 + u2

−
y2(2r2 + u2)
(r2 + u2)

3/2

]
+

y2 + 2νx2

r2
√

r2 + u2
+

y2 − x2

r4 (1 − 2ν)
(

u −
√

r2 + u2
)

,

σ̂xy

p0a
=

xy
r2

{
−uz

r2
3r2 + 2u2

(r2 + u2)
3/2 + (1 − 2ν)

[
1√

r2 + u2
+

2
r2

(
u −

√
r2 + u2

)]}
, (12)

σ̂xz

p0a
=

xz

(r2 + u2)
3/2 ,

σ̂yz

p0a
=

yz

(r2 + u2)
3/2 .

In the surface inside the contact domain, the physical stresses simplify to

σxx(r < a, z = 0)
p0a

= − x2 + 2νy2

r2
√

a2 − r2
+

x2 − y2

r4 (1 − 2ν)
(

a −
√

a2 − r2
)

,

σyy(r < a, z = 0)
p0a

= − y2 + 2νx2

r2
√

a2 − r2
+

y2 − x2

r4 (1 − 2ν)
(

a −
√

a2 − r2
)

, (13)

σxy(r < a, z = 0)
p0a

=
xy
r2 (1 − 2ν)

[
− 1√

a2 − r2
+

2
r2

(
a −

√
a2 − r2

)]
,

while in the surface, but outside the contact domain

σxx(r > a, z = 0)
p0a

=

(
x2 − y2)a

r4 (1 − 2ν),

σyy(r > a, z = 0)
p0a

=

(
y2 − x2)a

r4 (1 − 2ν), (14)

σxy(r > a, z = 0)
p0a

=
2xya

r4 (1 − 2ν).

On the axis of symmetry, we obtain from Equations (11)

σxx(r = 0, z)
p0a

=
σyy(r = 0, z)

p0a
= − a3

(a2 + z2)
2 + (1 − 2ν)

a
2(a2 + z2)

. (15)
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4. Solution for the Tangential Load

We now turn our attention to the boundary value problem characterized by the
boundary conditions (2).

For the solution of the potential theoretical problem, we will apply the procedure
suggested by Hamilton and Goodman [7] for the sliding circular Hertzian contact.

According to [7], the displacement field can be written in terms of a harmonic stress
function T as follows:

2Gux = 2ν
∂2T
∂x2 + 2

∂2T
∂z2 − z

∂3T
∂x2∂z

,

2Guy = 2ν
∂2T
∂x∂y

− z
∂3T

∂x∂y∂z
, (16)

2Guz = (1 − 2ν)
∂2T
∂x∂z

− z
∂3T

∂x∂z2 .

Applying Hooke’s law and accounting for the fact that T is harmonic, one obtains the
stresses in terms of the potential,

σxy = 2ν
∂3T

∂x2∂y
+

∂3T
∂y∂z2 − z

∂4T
∂x2∂y∂z

,

σxz =
∂3T
∂z3 − z

∂4T
∂x2∂z2 ,

σyz = −z
∂4T

∂x∂y∂z2 ,

σxx = 2ν
∂3T
∂x3 + 2(1 + ν)

∂3T
∂x∂z2 − z

∂4T
∂x3∂z

, (17)

σyy = −2ν
∂3T
∂x3 − z

∂4T
∂x∂y2∂z

,

σzz = −z
∂4T

∂x∂z3 .

The potential T is given by the imaginary part of [7]

T̂ =
∫ a

0
t(ξ)

[
1
2

(
z2

1 −
r2

2

)
ln
(

z1 +
√

r2 + z2
1

)
− 3

4
z1

√
r2 + z2

1 +
r2

4

]
dξ, (18)

with the complex auxiliary variable z1 = z + iξ, and a weight function t(ξ) that is yet
to be determined from the boundary conditions at the half-space surface. Putting the
potential (18) into the general relations (17) and comparing with the boundary conditions (2)
(there seems to be missing a minus sign in Equation (5) of [7]), one determines that the
correct weight function t(ξ) is actually the Dirac distribution, and the harmonic potential
which satisfies the boundary condition (2) is therefore given by

T(r, u) = τ0a Im

{
1
2

(
u2 − r2

2

)
ln
(

u +
√

r2 + u2
)
− 3

4
u
√

r2 + u2 +
r2

4

}
, (19)

with the complex auxiliary variable u as in Equation (7).
The derivatives in Equations (16) and (17) can be evaluated without severe difficulties.

The resulting stress field is given by the imaginary parts of the complex-valued field
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σ̂xy

τ0a
= 2ν

[
y
r2

(
u

ρ + u
− 1

2

)
+

x2y

ρ(ρ + u)3

]
+

y
ρ(ρ + u)

− z

[
y

ρ(ρ + u)2 − x2y(3ρ + u)
ρ3(ρ + u)3

]
,

σ̂xz

τ0a
=

1
ρ
− z

[
1

ρ(ρ + u)
− x2(2ρ + u)

ρ3(ρ + u)2

]
,

σ̂yz

τ0a
=

xyz(2ρ + u)
ρ3(ρ + u)2 ,

σ̂xx

τ0a
= 2ν

[
3x
r2

(
u

ρ + u
− 1

2

)
+

x3

ρ(ρ + u)3

]
+

2x(1 + ν)

ρ(ρ + u)
− z

[
3x

ρ(ρ + u)2 − x3(3ρ + u)
ρ3(ρ + u)3

]
, (20)

σ̂yy

τ0a
= −2ν

[
3x
r2

(
u

ρ + u
− 1

2

)
+

x3

ρ(ρ + u)3

]
− z

[
x

ρ(ρ + u)2 − xy2(3ρ + u)
ρ3(ρ + u)3

]
,

σ̂zz

τ0a
=

xz
ρ3 ,

with the complex auxiliary variable

ρ =
√

r2 + u2 =
√

r2 + z2 − a2 + 2iaz, (21)

and the displacement field is given by the imaginary parts of the complex-valued field

2Gûx

τ0a
=

ν

2
+ (2 − ν) ln

(
ρ + u

a

)
+ z
[

1
ρ + u

− x2

ρ(ρ + u)2

]
+ 2ν

[
u

2r2 (u − ρ) +
x2

r2

(
u

ρ + u
− 1

2

)]
,

2Gûy

τ0a
=

2νxy
r2

(
u

ρ + u
− 1

2

)
− xyz

ρ(ρ + u)2 , (22)

2Gûz

τ0a
= −x

[
1 − 2ν

ρ + u
+

z
ρ(ρ + u)

]
.

As the fields depend on all three cartesian coordinates, it is difficult to comprehensively
visualize all dependencies.

In Figure 3, contour line diagrams of the σxx and σxz stress components are shown in
the plane y = 0 and in normalized variables. Because of the problem’s symmetry, it is clear
that σxx is antisymmetric in x, while σxz is symmetric in x.
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Figure 3. Contour line diagrams of the normal stress component σxx (A) and the tangential stress
component σxz (B) of the subsurface stress field in the x-z plane (y = 0) due to the tangential
loading (2), normalized for τ0, with ν = 0.3.

Figure 4 gives the corresponding contour line diagrams of the σzz stress component
and the Von Mises equivalent stress, in the same normalized variables. The distribution of



Solids 2024, 5 22

the equivalent stress is very similar to the one of the σxz stress component. So, we conclude
that the Von Mises equivalent stress is dominated by this shear stress.
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To demonstrate the variation of the stress field in the y-direction, in Figures 5 and 6,
contour line diagrams are shown of all six stress components in the subsurface plane z = a,
as functions of x and y and in normalized variables.
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In the surface, inside the contact domain, the only non-vanishing physical stress
component is

σxz(r < a, z = 0)
τ0a

= − 1√
a2 − r2

. (23)

In the surface, but outside the contact domain, the non-vanishing physical stress
components are

σxy(r > a, z = 0)
τ0a

= −ya
r4

[
r2

√
r2 − a2

− 2ν

{(
1 − 4x2

r2

)√
r2 − a2 +

x2
√

r2 − a2

}]
,

σxx(r > a, z = 0)
τ0a

= − xa
r4

[
2r2

√
r2 − a2

− 2ν

{(
3 − 4x2

r2

)√
r2 − a2 − y2

√
r2 − a2

}]
, (24)

σyy(r > a, z = 0)
τ0a

= −2ν
xa
r4

[(
3 − 4x2

r2

)√
r2 − a2 +

x2
√

r2 − a2

]
,

which agrees with the results reported in [13] for the same problem.
On the z-axis, the only non-vanishing physical stress component is

σxz(r = 0, z)
τ0a

= − a3

(a2 + z2)
2 . (25)

5. Application: Subsurface Stress Field in Frictional Contacts of Elastically Similar
Axisymmetric Bodies

As was mentioned before, the exact solutions derived in the previous two sections can
be used to very rapidly compute the subsurface stress fields in general frictional contacts of
axisymmetric bodies in a semi-analytic fashion. Based on the obtained analytical results
for the subsurface elastic stress state under rigid translations of a circular surface domain,
the numerical effort for the determination of the subsurface stresses in general frictional
elastic contacts of (elastically similar) axisymmetric bodies is reduced to the evaluation
of elementary one-dimensional integrals. In the present section, the corresponding semi-
analytical procedure shall be described and illustrated.

5.1. General Procedure for Arbitrary Convex Profile Geometries

For this purpose, let us consider two linearly elastic, homogeneous, isotropic
bodies—which obey the restrictions of the half-space approximation—with the shear mod-
uli G1 and G2 and Poisson’s ratios ν1 and ν2. The materials shall be elastically similar to
avoid elastic coupling between the normal and tangential contact problems, i.e.,

1 − 2ν1

G1
=

1 − 2ν2

G2
. (26)

Moreover, let the gap between the contacting surfaces, at the moment of first contact,
be an axisymmetric smooth monotonous function f = f (r).

If the two bodies are in contact over a circular domain with radius ã, and two remote
points of the bodies on the axis of symmetry are moved to one another by an incremental
indentation depth dd, the bodies will experience incremental surface tractions ([17], p. 12)

σyz(z = 0) = σxz(z = 0) = 0,

dσzz(z = 0) = −E∗

π

dd√
ã2 − r2

, r < ã, (27)

with the effective Young’s modulus

1
E∗ =

1 − ν1

2G1
+

1 − ν2

2G2
. (28)
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Obviously, Equations (27) are of the same form as Equations (1).
Similarly, if two remote points on the axis of symmetry are moved relative to one

another in the tangential direction by an incremental displacement du0 (without slip and
without tilting), the bodies will experience incremental surface tractions ([17], p. 137)

σyz(z = 0) = σzz(z = 0) = 0,

dσxz(z = 0) = −G∗

π

du0√
ã2 − r2

, r < ã, (29)

with the effective shear modulus

1
G∗ =

2 − ν1

4G1
+

2 − ν2

4G2
. (30)

Once again, Equations (29) are of the same form as Equations (2).
Now, let us consider the full normal indentation procedure, i.e., from the indentation

depth d̃ = 0 to the final indentation depth d̃ = d. The indentation depth is a unique
function of the contact radius ([17], p. 10),

d̃ = g(ã) = ã
∫ ã

0

f ′(r) dr√
ã2 − r2

, (31)

with the prime denoting the first derivative, and accordingly,

dd̃ = g′(ã)dã. (32)

As Equations (1) and (27) have exactly the same form, the subsurface stress state for
the axisymmetric normal contact problem can be superimposed as

σnorm
jk (x, y, z; a) =

E∗

π

∫ a

0

σ
(1)
jk (x, y, z; ã)

p0 ã
g′(ã) dã, (33)

where σ
(1)
jk denotes the stress field due to the surface loading (1), which has been given

explicitly in Section 3.
When numerically evaluating the integral (33), a little care is necessary due to the

stress singularity of σ
(1)
jk at the edge of the contact domain. From Equation (9) it is clear that

the singular contributions to the field all have the form

σ
(1)
jk (z = 0, r → ã−) = −Kjk(x, y)

p0 ã√
ã2 − r2

, (34)

with different forms for Kjk(x, y) for the different stress components. All other stress
contributions are non-singular.

For the superposition integral (33), following Benad [26], we can then integrate
by parts, ∫ a

r

g′(ã)√
ã2 − r2

dã = cosh−1
( a

r

)
g′(a)−

∫ a

r
cosh−1

(
ã
r

)
g′′(ã) dã, (35)

with the area hyperbolic cosine, cosh−1, for optimal numerical performance.
Similarly, the subsurface stress field due to tangential loading can be sumperim-

posed as

σ
tang
jk (x, y, z; a) =

G∗

π

∫ a

0

σ
(2)
jk (x, y, z; ã)

τ0 ã
u′

0(ã)dã, (36)
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where σ
(2)
jk denotes the stress field due to the surface loading (2), which has been given

explicitly in Section 4. The singularities in the surface fields (24) outside the contact area,
can be avoided for the stress superposition (36) using again integration by parts,∫ r

0

ã√
r2 − ã2

u′
0(ã) dã = ru′

0(0) +
∫ r

0

√
r2 − ã2 u′′

0 (ã) dã. (37)

However, what is the tangential displacement “history” u0(ã), which generates the
correct contact configuration? Consider Cattaneo’s problem of a constant normal load and a
subsequently applied monotonously increasing tangential load: The contact domain (within
the approximation of Cattaneo and Mindlin, who neglect the lateral surface displacements
uy for the contact solution) generally consists of an inner stick area with radius c and an
annulus c < r ≤ a of local slip. In the stick region, the tangential surface displacements
must be constant, and in the slip annulus the surface tractions are connected by Amonton’s
law |σxz(z = 0, c < r ≤ a)| = µ|σzz(z = 0, c < r ≤ a)|, with the coefficient of friction µ.

Now consider the following series of incremental rigid translations. Up to a contact
radius ã = c no displacement u0 is imposed. After that, up to the final contact radius ã = a,
any incremental normal translation dd is accompanied by a tangential translation

du0 =
E∗

G∗ µdd. (38)

The resulting contact configuration satisfies all boundary conditions of the Cattaneo–
Mindlin problem ([17], p. 333). Hence, the function u0(ã) for Cattaneo’s problem reads

uCM
0 (ã) =

µE∗

G∗ [g(ã)− g(c)]H(ã − c), (39)

with the Heaviside step function H.
For more general loading histories, u0 can either be superimposed based on Jäger’s

algorithm [27] or via the method of dimensionality reduction (MDR) [21].
For contacts with superimposed normal and tangential loading, of course, the stress

states (33) and (36) can be simply added up. The procedure for the determination of the sub-
surface stress state in elastic frictional contacts of (elastically similar) convex, axisymmetric
bodies can thus be summarized as follows:

1. Determine the auxiliary function g from the gap function f , based on Equation (31).
2. Determine the subsurface stresses resulting from the normal loading, based on the

superposition integral (33).
3. Determine the series of rigid tangential translations which reproduces the tangen-

tial contact configuration. For the Cattaneo–Mindlin loading history, Equation (39)
can be used; for more general oblique loading, an MDR contact solver should be
implemented.

4. Determine the subsurface stresses resulting from the tangential loading, based on the
superposition integral (36).

5.2. Example: Contact with a Cylindrical Flat Punch with Rounded Corners

As an illustrative example, let us consider the axisymmetric profile

f (r) =
(r − b)2

2R
H(r − b), (40)

with two radii b and R. As the elastic bodies shall be elastically similar, the tangential
contact can be reduced to the one between an elastic half-space with the effective moduli
E∗ and G∗, and a rigid counterbody with the profile f ; the profile (40) corresponds to a
cylindrical flat punch with rounded corners, as shown in Figure 7. The radius of the flat
face of the punch is b, and the curvature radius of the rounded corners R.
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Figure 7. Tangential contact between an elastic half-space and a rigid cylindrical flat punch with
rounded corners; notations are explained in the text.

The procedure summarized at the end of the previous subsection can be executed
without problems. For the auxiliary function g, we have ([17], p. 41)

g(ã) =
ã
R

[√
ã2 − b2 − b arccos

(
b
ã

)]
H(ã − b). (41)

Figure 8 shows the equivalent Von Mises stress in the x-z plane (for y = 0) for the
frictionless normal contact and the sliding tangential contact (with µ = 0.3) in normalized
variables. As the coefficient of friction is still relatively small (compared to 1), the stress field
is only slightly altered by the sliding tractions. Notably, the maximum of the equivalent
stress moves to the surface.
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Figure 8. Contour line diagrams of the equivalent Von Mises stress in the x-z plane (y = 0) for the
frictionless normal contact (A) and sliding tangential contact with µ = 0.3 (B) for the contact problem
shown in Figure 7, normalized with the average contact pressure, with ν = 0.3 and b/a = 0.5.

It may be interesting to analyze, how, for the sliding contact, the maximum of the Von
Mises equivalent stress increases and moves towards the surface for increasing values of
the coefficient of friction µ. This is demonstrated in Figure 9, for the sliding contact with a
rounded cylindrical flat punch, with ν = 0.3 and b/a = 0.5 (the maximum of the equivalent
stress always is in the plane with y = 0). As is already clear from Figure 8, there are two
local maxima of the equivalent stress for the sliding contact: one below the surface at the
leading edge (with x > 0), and one actually exactly at the trailing contact edge (z = 0 and
x = −a); in Figure 9, for µ > 0.21, the second maximum overpowers the first one, and
for greater values of the coefficient of friction, the maximum equivalent stress increases
linearly with the friction coefficient.
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Figure 9. Maximum of the Von Mises equivalent stress, normalized for the average contact pressure,
and its normalized location (xc, zc), as a function of the coefficient of friction µ, for the sliding
tangential contact with a rounded cylindrical flat punch, with ν = 0.3 and b/a = 0.5.

6. Discussion and Conclusions

Based on known potential theoretical procedures, the subsurface stress fields have
been calculated exactly for an elastic half-space, which is subject to surface tractions that—in
the case of elastic decoupling—correspond to rigid normal and tangential translations of a
circular surface domain.

Within the framework of the Cattaneo–Mindlin approximation, any tangential fric-
tional contact problem of convex, axisymmetric elastic bodies can be solved as a specific
series of such (incremental) rigid translations [17]. In this sense, the presented solutions
allow for a very fast calculation of subsurface stress fields for arbitrary axisymmetric elastic
tangential contacts with friction. This can be used, e.g., for the real-time analysis of tribo-
logical contacts or for large parameter studies with respect to subsurface yield or fatigue
cracking under dynamic loads [28], like impacts or fretting oscillations.

It should be noted that the obtained solutions are mathematically exact within the re-
strictions of the physical modeling—static, linearly elastic deformation of a half-space—and
can thus also serve as benchmark solutions for different numerical contact algorithms.

On the other hand, it is clear that the underlying physical modeling of the problem
formulation poses restrictions that have to be kept in mind when applying the shown
solutions to real engineering contacts. Also, surface roughness is not considered.

For future work, it may be desirable to account for elastic coupling—at least, in
the framework of the Goodman approximation [29]—or for prestresses in the elastic half-
space ([25], p. 179) due to, e.g., external loading of the contacting bodies far from the contact.

Based on the correspondence between boundary values problems in linear elasticity
and linear viscoelasticity, the shown solutions and procedures can also be applied to
viscoelastic contacts [30].
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