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Abstract: Recent advances in the field of large language models (LLMs) underline their high potential
for applications in a variety of sectors. Their use in healthcare, in particular, holds out promising
prospects for improving medical practices. As we highlight in this paper, LLMs have demonstrated
remarkable capabilities in language understanding and generation that could indeed be put to good
use in the medical field. We also present the main architectures of these models, such as GPT, Bloom,
or LLaMA, composed of billions of parameters. We then examine recent trends in the medical datasets
used to train these models. We classify them according to different criteria, such as size, source, or
subject (patient records, scientific articles, etc.). We mention that LLMs could help improve patient
care, accelerate medical research, and optimize the efficiency of healthcare systems such as assisted
diagnosis. We also highlight several technical and ethical issues that need to be resolved before LLMs
can be used extensively in the medical field. Consequently, we propose a discussion of the capabilities
offered by new generations of linguistic models and their limitations when deployed in a domain
such as healthcare.
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1. Introduction

Recent advances in the field of artificial intelligence (AI) have enabled the devel-
opment of increasingly powerful linguistic models capable of generating text fluently
and coherently. Among these models, “large language models” (LLMs) stand out for
their imposing size and their ability to learn enormous amounts of textual data. Models
like GPT-3.5 [1] and GPT-4 [2] developed by OpenAI [3], or Bard, created by Google [4],
have billions of parameters and have demonstrated impressive comprehension skills and
language generation.

These fascinating advancements in natural language processing (NLP) have promis-
ing implications in many fields, including healthcare [5–7]. Indeed, they offer new per-
spectives for improving patient care [8,9], accelerating medical research [10,11], supporting
decision-making [12,13], accelerating diagnosis [14,15], and making health systems more
efficient [16,17].

These models could also provide valuable assistance to healthcare professionals
by helping them interpret complex patient records and develop personalized treatment
plans [18] as well as manage the increasing amount of medical literature.

In the clinical domain, these models could help make more accurate diagnoses by
analyzing patient medical records [19]. They could also serve as virtual assistants to provide
personalized health information or even simulate therapeutic conversations [20–22]. The
automatic generation of medical record summaries or examination reports is another
promising application [23–25].

For biomedical research, the use of extensive linguistic models paves the way for rapid
information extraction from huge databases of scientific publications [26,27]. They can
also generate new research hypotheses by making new connections in the literature. These
applications would significantly accelerate the discovery process in biomedicine [28,29].
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Additionally, these advanced language models could improve the administrative
efficiency of health systems [30]. They would be able to extract key information from
massive medical databases, automate the production of certain documents, or even help in
decision-making for the optimal allocation of resources [31–33].

LLMs such as GPT-3.5, GPT-4, Bard, LLaMA, and Bloom have shown impressive
results in various activities related to clinical language comprehension. Nevertheless, it
is essential to evaluate them in detail in the medical context, which is characterized by its
distinct nuances and complexities compared to common texts.

It is therefore essential to continue studies in order to verify the capacity of these inno-
vative linguistic models in real clinical situations, whether for decision-making, diagnostic
assistance, or the personalization of treatments. Rigorous evaluation is the key to taking
full advantage of this technology and transforming medicine through better mastery and
use of clinical language.

Although promising, the use of this AI in health also raises ethical and technological
challenges that must be addressed. However, their potential for accelerating medical
progress and improving the quality of care seems immense. The coming years will tell
us to what extent these revolutionary models are capable of transforming medicine and
health research.

The main contributions of this paper are the following:

• We analyze major large language model (LLM) architectures such as ChatGPT, Bloom,
and LLaMA, which are composed of billions of parameters and have demonstrated
impressive capabilities in natural language understanding and generation.

• We present recent trends in the medical datasets used to train such models. We classify
these datasets according to different criteria, such as their size, source (e.g., patient
files, scientific articles), and subject matter.

• We highlight the potential of LLMs to improve patient care through applications like
assisted diagnosis, accelerate medical research by analyzing literature at scale, and
optimize the efficiency of health systems through automation.

• We discuss key challenges for practically applying LLMs in medicine, particularly im-
portant ethical issues around privacy, confidentiality, and the risk of algorithmic biases
negatively impacting patient outcomes or exacerbating health inequities. Addressing
these challenges will be critical to ensuring that LLMs can safely and equitably benefit
public health.

As depicted in Figure 1, this study is deployed according to a well-defined architecture
that aims to enlighten the reader on the different facets of LLMs and their relevance in
medical diagnoses. We will begin, in Section 2, our exploration with a brief history of LLMs.
Section 3 serves as an introduction to the transformer architecture, laying the foundation
for understanding the following sections. Building on this foundation, in Section 4, we
will delve deeper into the specific architecture of LLMs. Section 5 illustrates the practical
applications of LLMs, with an emphasis on their use in medical diagnosis. Section 6
presents a comprehensive review of medical datasets, segmenting them into three key
categories. Section 7 focuses on the major innovation, which is the advent of foundation
models in the AI landscape, highlighting their relevance in the clinical domain. Before
concluding this article in the final Section 9, Section 8 offers critical reflections, assessing
both the benefits of LLMs and not neglecting the challenges inherent in them.
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Figure 1. Structural diagram presenting the topics covered in our paper.

2. Brief History of Large Language Models

The first language models were n-gram models [34], which estimate the probability of
a word based on previous n − 1 words. They began to be used in the 1980s and are still
used today. However, they do not capture the semantics of the language well.

During the 2000s, researchers introduced topic models like latent Dirichlet allocation
(LDA) [35]. These models have the ability to detect themes within large collections of text
and are particularly useful for analyzing large amounts of health-related textual data.

Language models based on neural networks, such as word2vec [36] and GloVe [37],
began to emerge in the 2010s. They learn vector representations of words that capture
semantic and syntactic relationships. They have been used for tasks such as extracting
information from clinical texts.

The introduction of the transformer architecture in 2017 brought a revolution in the
field of NLP, paving the way for the emergence of large-scale pre-trained models such
as BERT [4], ELMo [38], RoBERTa [39], and GPT-3 [3]. These models are trained on
massive amounts of general domain text and can then be fine-tuned for specific healthcare
applications. They have been used for tasks such as named entity recognition, sentiment
analysis, and question answering (QA) in clinical text. Indeed, domain-specific versions of
BERT such as BioBERT [40] and ClinicalBERT [41] have been developed to address clinical
language comprehension tasks.

More recently, LLMs have continued to evolve, demonstrating cutting-edge perfor-
mance in all fields, including healthcare. They are being applied in new ways in healthcare,
such as to facilitate clinical documentation, identify adverse drug reactions, and pre-
dict health outcomes from patient notes. However, the specialized clinical vocabularies,
acronyms, and abbreviations present in the text remain a challenge.

Over time, LLMs have steadily increased in size and performance, such as GPT-3.5
and GPT-4, as well as Bard. This opened the way to new use cases: more comprehensive
virtual assistants [42], integration with patient files [43], diagnostic/therapeutic recommen-
dations [44], etc.

Today, research is exploring many avenues: personalized medicine with Omics
data [45], medical image analysis [46], clinical decision support [47,48], comprehensive
healthcare assistants [49,50], and biomedical knowledge bases [51,52], etc.

While LLMs have tremendous potential, their development raises major ethical chal-
lenges: guaranteeing patient safety, combating bias, verifying and explaining recommenda-
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tions, respecting privacy, and ensuring complementarity with caregivers. Researchers are
working actively on these issues so that AI benefits the healthcare system responsibly.

3. Transformers and Their Architecture

Transformers, a category of deep learning (DL) models, are predominantly employed
for tasks related to NLP. These models were first introduced by Google in 2017 through a pa-
per titled “Attention is All You Need” [53]. The fundamental element of transformers is the
attention mechanism (see Section 3.1). This mechanism enables the model to comprehend
the contextual associations between words (or other elements) within a sentence.

Transformers use multi-head self-attention to analyze the relationship between words
in a sentence. Self-attention means that words attend to their relationship with other words
in the same sequence, without regard to their relative or absolute position.

The basic architecture of transformers consists of an encoder and a decoder. The
encoder helps process the input sequence, while the decoder generates the output sequence.
Common transformer architectures include BERT [4], GPT [54], T5 [55], etc. BERT (Bidi-
rectional Encoder Representations from Transformers) introduced bidirectional training,
which looks at the context from both left and right. GPT (Generative Pre-trained Trans-
former) models like GPT-2 [56], GPT-3 [3], and GPT-4 [2] are able to generate new text.
T5 (Text-To-Text Transfer Transformer) can perform a wide range of text-based tasks like
summarization, QA, and translation [57].

All transformer models follow the same basic structure—embedding, encoding, and
decoding. However, they differ in pre-training objectives, model size, number of en-
coder/decoder stacks, attention types, etc. Later models like T5, GPT-3, and GPT-4 have
billions of parameters to handle more complex tasks through transfer learning from massive
text corpora.

3.1. The Attention Mechanism

The attention mechanism aims to palliate the loss of information transmitted to the
decoder, as it is only the hidden state created during the last phase by the encoder that is
provided as input to the decoder.

The original work of Larochelle and Hinton [58] introduced this approach to the field
of computer vision. By analyzing several regions of an image separately, i.e., by considering
different extracts, it is possible for a learning algorithm to gradually accumulate knowledge
about the shapes and objects present. By analyzing each segment in turn, the model can
build up a global understanding of the image as a whole, which will ultimately enable it to
assign a relevant category to it. Authors initially proposed this method, which involves
examining the various parts of an image and, after assimilating the details of each, arriving
at a precise classification.

According to Equation (1), the attention mechanism, recommended by [59,60], has
played a crucial role in improving the performance of machine translation systems. This
approach offers the model the ability to focus on essential segments of the input sequence.

The main idea behind attention is to evaluate the relationship between parts of two
different sequences. In NLP, especially in a sequence-to-sequence framework, the attention
mechanism aims to signal to the model which word in sequence “B” should be privileged
in relation to a specific word in sequence “A”.

A model with attention differs from a classic seq2seq model in two major respects:
Firstly, instead of only transmitting the ultimate hidden state from the encoder to the
decoder, it transmits all the hidden states to the decoder, thus enriching the information
transmitted. Secondly, before producing its output, the decoder integrates an additional
step. It evaluates all the hidden states received from the encoder, assigning them a score
via multiplication by their softmax value, to better target the crucial elements of the input.

For each word in the input sequence, a contextualized attention layer (self-attention)
generates a vector representative of its importance (attention vector). Although expla-
nations are presented here as vectors for simplicity’s sake, calculations actually involve
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matrix representations (several vectors juxtaposed), with each word associated with a row
of a matrix. Thus, attention vectors actually describe the relative influence of each row
of a matrix representing the sequence as a whole, allowing contextual interactions to be
captured at all levels.

To calculate the attention vector for each encoded input, we need to consider three
types of vectors:

• The query vector, q, represents the encoded sequence up to that point.
• The key vector, noted k, corresponds to a projection of the encoded entry under

consideration.
• The value vector, v, contains the information relative to this same encoded entry.

Thus, to obtain the attention vector associated with a given encoder input, the mecha-
nism takes into account these three vectors: q, k, and v, respectively, the request vector, key
vector, and value vector.

These vectors q, k, and v are indexed by the position of the word in the processed
sequence. For example, for the first word, we will have the vectors q1, k1, and v1. They are
generated by projecting the x vector representation of each word using three matrices:

• The Q matrix produces the q query vectors.
• Matrix K produces key vectors k.
• Matrix V generates value vectors v.

These three matrices, Q, K, and V are learned during the training process of the
transformer model [53] so as to optimize the calculation of contextual attention. The vectors
q, k, and v for each word are thus derived by multiplying the vector representation x with
these matrices.

Attention(Q, V, K) = so f tmax(
QVT
√

dk
)V (1)

dk is the hidden dimensionality for keys. VT is the transpose of a V matrix.

3.2. Self-Attention

Self-attention aims to model the contextual relationships existing within a single
sequence thanks to the attention mechanism [53]. Within a self-attention layer, we seek to
determine the interdependence between different elements (words), in order to obtain a
vector representation enriched by the global context. Unlike traditional attention between
input and output sequences, here, we calculate attention scores between the elements of
the single sequence under consideration. This internal self-attention is an essential building
block in the transformer architecture, enabling words to be enriched by their linguistic
environment within the same sentence. Self-attention is also called intra-attention [61–63].

3.3. Multi-Head Attention

The multi-head attention architecture is a major advantage of the transformer model.
By dividing calculations between several “heads” carrying out their processing in parallel, it
considerably speeds up processing, since each head handles part of the data simultaneously.
Parallelization also gives the system greater modeling capacity.

Each head can then model contextual relationships from its own angle or scale, en-
riching the final representation with complementary perspectives. Multi-headed atten-
tion thus captures dependencies in a finer, more complex way between the various ele-
ments processed. Furthermore, integrating a variety of contexts enables each word to be
better represented.

This architecture significantly increases the flexibility and expressive capacity of the
transformer model without critically increasing the number of parameters. It also makes
the system more robust, as each head can compensate for any local errors of the others.
All in all, multi-headed attention makes the most of the possibilities offered by parallel
computing to enhance contextual modeling.
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3.4. Attention Hyperparameters

The dimensions of the data manipulated by the transformer model are configured
using three hyperparameters:

• The embedding size, which corresponds to the dimension of the vectors used to
represent the input elements (words and tokens). Present throughout the model, this
dimension also defines its capacity, called “model size”.

• The size of the queries (equal to that of the keys and values), i.e., the dimension of the
vectors produced by the three linear layers generating the matrices of queries, keys,
and values required for attentional calculations.

• The number of attentional heads, which determines the number of attentional process-
ing blocks operating in parallel.

These three hyperparameters determine the vector formats used at each stage of the
transformer, from input to output. They directly condition its expressive capabilities and
the volume of data it can process in a sophisticated way.

3.5. Positional Encoding

As the transformer model has neither recurrence nor convolution, it has no intrinsic
mechanisms for exploiting the order of elements within input sequences. This property
is essential for many tasks, such as translation or text comprehension. To remedy this,
positional embeddings are added to the initial token plunges.

In concrete terms, each position in the sequence is assigned a vector encoding its
relative or absolute place. These positional embeddings, which have the same dimensions
as the usual embeddings, can then simply be added to them. In this way, the model has
additional information on the position of each token within the sequence.

These positional embeddings can be learned during training as free parameters, or
fixed using mathematical functions such as sine/cosine. Placed at the input of the encoder
and decoder layers, they enable the latter to exploit the missing sequential dimension, signif-
icantly improving performance on many tasks. Their use has proved particularly beneficial
in initial transformer models whose design rejects recurrence and convolution [64].

3.6. Transformers

The development of the digital world would not have been possible without advance-
ments in automatic NLP. However, for a long time, NLP techniques remained limited due
to insufficient progress in AI.

Recurrent neural networks (RNN) [61,63,65], and convolutional neural networks
(CNN) [53], widely used in the past for NLP tasks, had the disadvantage of processing text
sequentially. This approach proved inefficient with massively parallel computing units
such as GPUs, which became essential with the advent of DL on large datasets.

It was against this backdrop that the transformer model emerged in 2017 by Vaswani
et al. [53] of Google Brain and Google Research. Based on attention as a basic primitive,
it enabled sequences to be processed in a truly parallel way for the first time, thanks to
multi-headed calculations.

In terms of performance, transformer proved superior to RNN and CNN on natural
language understanding and generation tasks. It was able to learn more efficiently and in
parallel, better capturing long-range dependencies. Its excellent evaluation results have
made the transformer an essential component of modern NLP.

It has revolutionized the field by enabling language processing on a very large scale,
paving the way for major advancements such as human-quality machine translation.

Encoders and decoders are the two essential components of the original transformer
model (see Figure 2). Each part is composed of a stack of N = 6 layers that are all iden-
tical. The output of one layer is the input of the next layer until the final representation
(prediction) is reached [53].
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Figure 2. The transformer model architecture.

Transformer models, as represented in Figure 2, are distinguished by the presence
of two fundamental elements: encoders and decoders. These two components form the
basis of the architecture. Each of these elements is designed around a set of six identical
layers, where the output of each layer feeds the input of the next, enabling a progressive
transformation of information until the final prediction is formulated.

The encoder, which forms the left-hand side of this architecture, is structured into two
main blocks, both of which are neural networks.

A self-attention layer works to preserve the dependencies between words in a sequence.
It analyzes each word in relation to the others, in order to identify its context. A feed-
forward neural network, which performs complex transformations on the data received
from the self-attention layer. Its main task is to transform an input sequence into a series of
continuous representations, which then serve as inputs for the decoder.

The decoder, located on the right-hand side of the architecture, is structured in a
similar way as the encoder but also incorporates an “Encoder-Decoder Attention” layer.
The latter plays a crucial role: it facilitates the attention mechanism between the input
sequence (once encoded) and the output sequence (during its decoding phase). The aim
is to ensure that each word in the output sequence takes account of all the words in the
input sequence.

The decoding process is based on the combination of the encoder output and the
output generated by the decoder during the previous time step, enabling the output
sequence to be built up progressively.

One of the main strengths of transformer architectures such as LLMs lies in their
ability to extract essential intermediate features, such as syntactic structures and semantic
integration of words. This ability enables LLMs to represent human language knowledge
accurately and richly, making them powerful in a variety of tasks such as QA, sentiment
classification, and machine translation. Moreover, LLMs are versatile, as they can be
adapted to new challenges by reusing the same pre-trained model, which often puts them
head and shoulders above previous methods. Their ability to extract and exploit relevant
linguistic information makes LLMs powerful and versatile tools in NLP.
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In the following section, we explain the architecture of LLMs in detail, highlighting
the key mechanisms that contribute to their interesting results in text understanding
and generation.

4. LLMs’ Architecture

LLMs have made significant advancements in recent years. First, the transformer
models introduced a novel attention-based neural architecture for NLP.

These advanced models, with their billions of parameters, have become feasible thanks
to recent advancements in computational capabilities and model architecture [66], as shown
in Figure 3. For example, GPT-3, which relies on extensive data, has around 175 billion
parameters [67]. Meanwhile, the open-source LLaMA model series ranges between 7 and
70 billion parameters [68,69]. Table 1 summarizes the main LLMs, giving their general
architecture as well as an indication of the number of parameters in some of the basic
versions used in research. This enables a quick comparison of the size and specific features
of each model.

Figure 3. The LLM architecture.

Table 1. LLM architectures and their characteristics.

Architectures Models Parameters

Autoencoders (Encoder Only) BERT 110 M
RoBERTa 125 M

Autoregressors (Decoder Only) GPT-3 175 B
GPT-4 1.76 T
Bloom 176 B
PaLM 540 B
LLaMA from 7 to 70 B
StableLM from 15 to 65 B

Sequence-to-Sequence (Encoder–Decoder) T5 220 M
BART 139 M

The initial phase of LLM training, called pre-training, uses a self-supervised method
using large amounts of unlabeled data, which include sources such as general web content,
Wikipedia, Github repositories, social media, and BooksCorpus [68,70]. The main goal of
training is to predict the next word in a series, which requires significant resources [71].
This involves converting the text into tokens before entering it into the template [72]. The
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outcome of this process is a base model designed primarily for basic language generation
but unable to perform complex tasks.

After initial pre-training, the model undergoes a fine-tuning phase to specialize it for
certain tasks [72]. Here, the model can be trained on narrower domain-specific datasets,
like medical records for healthcare applications.

This fine-tuning can be improved through various techniques. A constitutional AI
approach embeds predefined rules or principles directly into the model architecture [73].
Reward-based training involves human evaluators assessing the quality of multiple model
outputs to provide feedback [70,74]. Reinforcement learning based on human feedback uses
a comparison-based system to optimize responses through iterative human feedback [74].

This fine-tuning step requires less computational power but more human resources
compared to pre-training. It customizes the model to perform a specific task, like a chatbot,
with controlled, targeted results. The fine-tuned model resulting from this phase is then
deployed for flexible applications in its domain of specialization.

The goal is to leverage general pre-training and then fine-tune the model’s capabilities
for the nuances of its intended use case through various focused training approaches during
fine-tuning. The result is a model that is both adapted and versatile for its specialist field
of application.

LLMs have an impressive ability to adapt to unfamiliar tasks and demonstrate remark-
able reasoning skills [75,76]. However, to fully exploit their potential in specialized fields
such as medicine, more specific training strategies are essential. These strategies could
encompass direct prompting methods such as few-shot learning [3], in which a limited set
of task examples during testing guides the model’s results, and zero-shot learning [77], in
which the model operates without any prior specific examples. In addition, refined tech-
niques such as chain-of-thought prompting [78], which prompts the model to sequentially
decompose its reasoning, and self-consistency checks [79], which ask the model to confirm
the consistency of its responses, are also crucial.

Reinforcement learning (RL) is also a complementary technique in the fine-tuning
process of LLMs, aimed at improving and better aligning pre-trained models. To enhance
the performance of these LLMs, optimization methods inspired by RL or directly derived
from RL are implemented. Notable examples include RL from human feedback (RLHF),
direct preference optimization (DPO) and proximal policy optimization (PPO).

RLHF [2,69] integrates RF techniques with human feedback to refine the language
model. DPO, introduced by Rafailov et al. [80], focuses on direct preference optimization
for model-generated responses. PPO, initially conceived by Schulman et al. [81] and later
adapted by Tunstall et al. [82], employs proximal policy optimization for LLM fine-tuning.

These RL-based approaches have proven effective, particularly when combined with
instruction tuning, in improving the relevance and quality of responses generated by LLMs.
However, it is important to note that, like instruction tuning, these methods are primarily
aimed at improving the quality of responses and their behavioral appropriateness, without
necessarily increasing the breadth of knowledge that the model can demonstrate.

Instruction prompt tuning, developed by Lester et al. [83], is a promising technique for
efficiently updating model parameters, enhancing its performance on many downstream
medical tasks. This approach has advantages over prompt methods in a few examples.
In general, these methods enrich the initial model fine-tuning processes, enhancing their
suitability for medical problems. A recent example is the Flan-PaLM model [84]. Figure 4
compares classical fine-tuning and prompt tuning for adapting pre-trained language models
to specific tasks. In classical fine-tuning, each task requires the creation of a dedicated
model, leading to multiple versions of the model with different configurations for each task.
This approach is complex and requires significant resources. Prompt tuning, on the other
hand, simplifies the adaptation process. Instead of creating separate models, we simply
provide the original pre-trained model with a “prompt” specific to each task. This “prompt”
acts as an instruction that allows the model to handle different tasks without requiring
major modifications.
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Figure 4. Differences between classic fine-tuning and prompt tuning.

The major advantage of prompt tuning lies in its efficiency. For example, with a large
T5 model [55], traditional fine-tuning for each task can require around 11 billion parameters,
which is equivalent to creating new models for each task. In contrast, prompt tuning only
requires about 20,480 parameters per task “prompt”, representing a significant reduction
of five orders of magnitude. It is therefore possible to use a single adaptable model with
minimal modifications to accomplish various tasks.

Consequently, prompt tuning allows for the adaptation of a single pre-trained model
to a multitude of tasks, significantly reducing the computational resources required and
improving scalability compared to traditional fine-tuning. This breakthrough paves the
way for more widespread use of language models in various domains.

Understanding training methods and their ongoing evolution provides essential
insights for assessing the current capabilities of models and identifying their potential
future applications. In specialized fields such as healthcare, where precision and expertise
are essential, an in-depth analysis of model specialization techniques is crucial to assessing
their full potential.

Among these techniques, retrieval augmented generation (RAG) was introduced by
Lewis et al. [85]. This method aims to enhance the capabilities of LLMs, especially in
knowledge-intensive tasks, by integrating external sources of information. Originally, the
application of RAG required task-specific training. However, subsequent research [86]
revealed that a pre-trained model incorporating the RAG method could increase its perfor-
mance without the need for additional training.

The fundamental principle of RAG is based on the use of an auxiliary knowledge base
and an input query. The RAG architecture is then used to identify relevant documents
in this database that are close to the query. These retrieved documents are then merged
with the initial query, providing the model with an enriched, in-depth context on the
queried subject.

The success of LLMs is attributed to their ability to generalize from the massive
amounts of data that they are exposed to during training. This enables them to perform
a wide array of language-related tasks with impressive accuracy, including text comple-
tion, language translation, sentiment analysis, and more. LLMs have also demonstrated
proficiency in understanding context and generating contextually appropriate responses in
conversational settings. Among the instances of LLMs, notable examples include PaLM [87],
GPT-3 [3], LLaMA [68], PaLM2 [88] utilized in the BARD chatbot, Bloom [89], and GPT-4 [2].
These models are trained on billions of tokens sourced from datasets such as Common
Crawl, WebText2, Wikipedia, Stack Exchange, PUBMED, ArXiv, Github, and many other
diverse repositories.
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Additionally, researchers are exploring, using LLMs, the creation of systems capable of
understanding and applying complex instructions from text. In this context, models such
as Alpaca [90], StableLM [91], and Dolly [92] stand out. Alpaca, based on Meta’s LLaMA
7B model, showed that a lighter model can compete with heavier models like OpenAI’s
text-DaVinci-003. In addition, Alpaca is more economical and easy to reproduce thanks to
its open structure.

This indicates that it is entirely possible for less demanding models to compete in
performance while still being transparent and accessible, thanks to their free nature. Sta-
bleLM and Dolly are also working in this direction, seeking to better respond to requests
formulated in natural language.

LLMs now have trillions of learning data tokens and the number of their parameters
has grown rapidly [68]. Rather than improvements in architectural design, the amount
of data, parameters, and computational resources appear to be a driving factor in the
capabilities of LLMs [93].

While LLMs have opened up new possibilities for understanding and generating
natural language, they also pose challenges and ethical considerations. The risk of bias in
learning data, ethical concerns relating to content generation, and issues of data privacy
are some areas that researchers and practitioners continue to address.

4.1. ChatGPT

ChatGPT, developed by OpenAI and based on the GPT architecture [54], was officially
released in June 2020. This model, which has undergone several updates, has been trained
using a vast corpus of textual sources such as books, web content, and articles, giving it the
ability to capture the complexities of human language.

ChatGPT is able to produce texts that reflect human articulation in response to specific
prompts. This prowess makes it invaluable in a variety of NLP applications, from chatbots
to translation to text summarization. Furthermore, its adaptability means that it can be
fine-tuned for particular tasks using more concentrated datasets.

To explore its origins, the first GPT-1 [54] used a 40 GB text dataset for training. In
contrast, its successors—GPT-2 [56], GPT-3 [3], and GPT-4 [2]—benefited from much larger
datasets. This progressive increase in training data propelled ChatGPT’s effectiveness, with
GPT-4’s results becoming practically indistinguishable from human-written text. Table 2
illustrates the evolution of the different versions of GPT, specifically in the context of the
healthcare sector.

Table 2. Evolution of GPT versions in the healthcare sector.

Version Year Number of
Parameters

Healthcare Applications Advances/Particularities in Healthcare

GPT 2018 110 M Basic medical text generation. A leader in automatic NLP, but limited in its ability
to understand complex medical terminology.

GPT-2 2019 1.5 Bn Improvements in medical text generation,
first drafts of medical article summaries.

Improved consistency in text generation, but still
with limits in terms of precision and specific medi-
cal context.

GPT-3 2020 175 Bn Search summaries, assistance in interpret-
ing medical data, generation of medical QA.

Enhanced ability to understand and generate com-
plex medical texts, useful for literature analysis and
health consulting applications.

GPT-4 2023 Unknown In-depth analysis of clinical cases, integra-
tion into assisted diagnosis systems, person-
alized health advice.

Significant advancement in language understand-
ing and accuracy, and the ability to integrate textual
and visual data for more comprehensive analyses.

Each GPT version has marked a significant advancement over the previous one, with
improvements in terms of model complexity, language understanding, and polyvalence of
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application domains. GPT-4’s capability to manage multimodal inputs (text and images) is
a notable evolution over previous versions [2].

Researchers have conducted investigations to assess the usefulness of ChatGPT and
InstructGPT [74] for healthcare, as well as their suitability for specific medical tasks. For
example, Luo et al. [94] developed BioGPT, a model based on the GPT-2 framework pre-
trained on 15 million PUBMED abstracts. BioGPT outperformed other state-of-the-art
models in a range of tasks, including QA, relationship extraction, and document classifica-
tion. Likewise, BioMedLM 2.7B (formerly called PUBMEDGPT [95]), which is pre-trained
on both PUBMED abstracts and full text, illustrates ongoing progress in this area. In addi-
tion, researchers have used GPT-4 to create multimodal medical LLMs, and early results
are promising in this area.

Current research in the biomedical sector focuses mainly on the use of ChatGPT for
data assistance. These approaches train models of small size using ChatGPT’s distilled
or translated knowledge. A notable example is Chatdoctor [32], which marks the first
initiative to adapt language and machine learning (LLM) models to the biomedical domain.
They fine-tuned the LLaMa model through dialogue simulations generated via ChatGPT.

Another example is DoctorGLM [96], which uses ChatGLM-6B as a base model and
fine-tunes it using the Chinese translation of the ChatDoctor dataset, which was obtained
using ChatGPT. In addition, Chen et al. [97] developed an improved Chinese and medical
linguistic model in their LLM collection.

These works collectively demonstrate the potential of LLMs to be successfully ap-
plied in the biomedical domain. They highlight the adaptability of LLMs to meet the
specific needs of medical assistance and underline the importance of using synthesized and
translated data to form specialized models in this field.

4.2. PaLM

The Pathways Language Model (PaLM), introduced in 2019 [87], is a powerful archi-
tecture built upon the transformer decoder, a densely connected language model. PaLM
stands out from other models as it prioritizes text generation over input processing, result-
ing in exceptional efficiency for tasks like generating text. Google developed the Pathways
approach specifically for training large-scale machine learning models, and PaLM benefits
from this methodology. Pathways enables flexible and scalable model training, a critical
factor in handling the immense volumes of data necessary to train such models.

PaLM has been trained on a massive dataset consisting of 780 billion tokens. This
dataset includes a variety of textual sources, such as web pages, Wikipedia articles, source
code, conversations on social networks, press articles, and books. By incorporating these
different sources, PaLM is exposed to various languages, knowledge, and text styles. This
enables it to acquire a thorough understanding of language, ranging from structured and
specialized knowledge to informal expressions and literary narratives.

With 540 billion parameters, PaLM has a significant ability to model complex relation-
ships, which is advantageous for analyzing and synthesizing detailed medical information.
It can potentially be used to generate and summarize medical information, help interpret
health data, and answer general medical questions [98]. One of its technical innovations,
the “Chain-of-Thought Prompting” method [78], enables it to process complex queries
in several stages, which could prove beneficial for solving complex medical problems or
interpreting health data in several phases.

A standout feature of PaLM is its competence in addressing out-of-vocabulary (OOV)
words, which are terms not seen during its training phase. Rather than stumbling over these
unfamiliar words, PaLM can generate fitting contextual replacements, thereby elevating its
overall performance in text generation.

Researchers first adapted the PaLM model to medical QA, leading to the creation
of [84]. This model established state-of-the-art benchmarks for QA. Based on these results,
the Med-PaLM model was introduced using instruction tuning, proving its effectiveness in
areas such as clinical expertise, scientific consensus, and medical reasoning processes [99].
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This approach has been extended to develop a multimodal medical LLM. These PaLM-
centric models highlight the benefits of adapting basic models to the specific needs of
medical scenarios. Flan-PaLM is a specially designed version of PaLM for processing
instructions [84]. The latest version, called Med-PaLM2, was unveiled at Google Health’s
annual event [98]. This version was developed based on PaLM2, which is the fundamental
language model used by Google’s chatbot, Bard.

Recently, Google developed a multimodal model called Med-PaLM M [100], which fol-
lows on from its PaLM-E vision-language model [101], and has the ability to synthesize and
communicate information from medical images such as chest X-rays, dermatology images,
pathology slides, and other biomedical data to aid the diagnostic process by understanding
and discussing these visuals through a natural language dialogue with clinicians.

4.3. LLaMA

The LLaMA (Large Language Model Meta AI) collection, was unveiled in 2023 by
Touvron et al. [68]. It brings together a whole series of foundational models of imposing
size, varying from 7 to 70 billion parameters. These giant models could be trained on
a massive scale via unsupervised learning techniques such as word masking and next-
sentence prediction. The training was done on colossal public datasets, representing
trillions of tokens in total.

These resources included Wikipedia, Common Crawl, and OpenWebText. By using
only freely accessible data, the creators of LLaMA have shown that it is possible to achieve
a state-of-the-art level of performance without resorting to proprietary datasets. This
collection thus demonstrates the remarkable progress made in the field, now allowing the
deployment of giant linguistic models trained on a very large scale on public resources.

The LLaMA-1 model [68] was developed with efficient causal attention [102] by
avoiding storing and calculating masked attention weights and key/query scores. A
further optimization was achieved by reducing the number of activations recalculated
during backtracking, as described in [103]. As part of the work on LLaMA-2 [69], the
focus was on improving a specific model called LLaMA-2-Chat, making it safer and more
efficient for dialogue generation. The LLaMA-2 pre-trained model has been improved by
incorporating 40% more training data. In addition, the context length was extended and a
feature called Grouped Query Attention (GQA) was added [104]. The model was trained
on a massive dataset consisting of 2000 billion tokens.

Gema et al. [105] have introduced Clinical LLaMA-LoRA, a Parameter-Efficient Fine-
Tuning (PEFT) adaptation layer based on the LLaMA model. This specific adaptation
for the clinical domain is trained using clinical notes from the MIMIC-IV database. By
combining these data, a specialized adapter is created to improve the model’s performance
in the clinical domain. In addition, the authors propose a two-stage PEFT framework that
integrates both Clinical LLaMA-LoRA and Downstream LLaMA-LoRA. The latter PEFT
adapter is specifically designed for downstream tasks, enabling better adaptation of the
model to specific tasks in the clinical domain.

PMC-LLaMA [106] is an open-source language model specially designed for the
analysis of biomedical articles. It is fine-tuned from LLaMA on biomedical academic
articles, giving it increased specialization and understanding of biomedical language.

Visual Med-Alpaca [107] is a multimodal biomedical model based on the LLaMa-7B
architecture. It is specially designed to handle various biomedical tasks by integrating
both linguistic and visual data. Its training process involves a collaboration between
GPT-3.5-Turbo, a powerful language model, and human experts.

4.4. Bloom

Bloom is a massive multilingual LLM with 176 billion parameters, trained on the
NVIDIA AI platform using vast text data [89].

While referred to as an LLM, Bloom’s core functionality is in text generation through
continuation; it is prompted with an initial context and asked to complete and extend
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the text. The terms generation, continuation, and completion are thus used somewhat
interchangeably to describe Bloom’s text production abilities.

A key attribute of Bloom is its multilingualism; it can generate text in 46 different
human languages as well as 13 programming languages. By leveraging immense computa-
tional resources, Bloom was trained on an industrial scale with massive language datasets,
resulting in a highly capable generative model with a breadth of linguistic competencies
unprecedented for an openly available LLM.

As described in [89], BLOOM’s architecture and pre-training are based on the trans-
former approach, using a causal-only decoder model. BLOOM’s modeling details include
the use of ALiBi positional embeddings, which directly adjust attention scores according to
the distance between keys and queries. This facilitates training and improves performance.
In addition, an embedding normalization layer is added after the integration layer to
stabilize training, using float16 precision.

In addition to these architectural components, data pre-processing is crucial. This
includes steps such as de-duplication and privacy suppression, particularly for high-risk
sources. BLOOM also employs prompted fine-tuning with guest datasets, which enhances
its zero-shot generalization capabilities and improves performance.

4.5. StableLM

StableLM, an open-source LLM, has been launched by Stability AI [91]. It is available
in versions with 3 billion and 7 billion parameters, with larger versions on the horizon
(with 15 billion to 65 billion parameters). This follows the introduction in 2022 of Stable
Diffusion, a model for generating images from a sentence of text. StableLM, designed to
generate text and code, shows that smaller models can achieve high performance with
the right training. The model relies on a large dataset based on the Pile dataset, but three
times as large. This large dataset enables the model to excel in conversational and coding
tasks, even though its number of parameters is considerably lower than that of models
such as GPT-3.

StableLM comes in two main variants: StableLM-3B-4E1T, which focuses on studying
the impact of repeated tokens, and StableLM-Alpha v2, which improves on the initial
architecture of the Alpha models and uses larger, higher-quality datasets. In addition, ex-
perimental fine-tuning has been carried out to develop StableLM-Tuned-Alpha, combining
various datasets to enhance its capabilities as a conversational agent.

5. Applications of Transformer-Based LLMs in Healthcare

When a patient meets a clinician for the first time, it is essential to establish an accurate
diagnosis and create a relationship of trust. Unfortunately, time constraints often limit the
ability to thoroughly review medical histories and provide tailored care to each patient.
LLMs can improve this process by extracting relevant information from electronic health
records [108], allowing a concise overview of the patient’s medical history to be presented.
This helps optimize consultation productivity.

By highlighting past medical conditions, treatments, medications, and results of
previous visits, LLMs eliminate the need to review numerous records, allowing for more
targeted interactions to address specific patient issues. By focusing on key concerns,
LLMs ensure that diagnosis is personalized to each patient. Additionally, these models
are constantly improved as health data grow, ensuring their accuracy. By ensuring data
transparency and implementing continuous monitoring, the potential of LLMs can be
further improved, resulting in faster diagnoses and greater patient satisfaction.

Transformer-based language models, such as LLaMA, ChatGPT [109], and GPT-4 [2]
have shown great potential in a variety of fields, including medical practice. These models
are particularly efficient at understanding and producing texts that resemble those written
by humans, opening up possibilities for supporting healthcare professionals in the diagnos-
tic process, as shown in Figure 5. The rest of this section illustrates how these models can
be applied for this purpose.
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Figure 5. Applications of transformer-based LLMs in healthcare.

5.1. Text Analysis and Summarization

Electronic medical records (EMRs) have transformed the way healthcare professionals
access and use patient data [110], profoundly altering their approach to decision-making.
A major advantage of EMRs lies in their ability to summarize clinical observations [18],
giving doctors a clear view of potential health hazards and facilitating informed medical
choices. This data summarization not only minimizes diagnostic errors but also optimizes
therapeutic outcomes thanks to up-to-date, targeted patient information [111].

Nevertheless, manual summarization of clinical reports is laborious and error-prone [112].
The abundance and density of data mean that even seasoned professionals can miss crucial
details. It is therefore imperative to develop automated synthesis techniques to increase
the efficiency and reliability of medical care.

Relying on these automated summarization techniques, medical staff could rapidly
extract the essential elements from the clinical notes provided, thereby reducing the risk of
errors and enhancing the quality of the care provided.

The rise of LLMs in NLP has opened new possibilities for streamlining automated
clinical report summarization. These models, recognized for their capability to align with
input directions, benefit from the integration of text prompts [113,114].

Indeed, LLMs, like BERT, BART, LLAMA, Bloom, GPT-3.5, and GPT-4, have demon-
strated a remarkable ability to analyze, understand, and summarize large quantities of un-
structured text such as clinical notes, patient histories, scientific articles, etc. [115,116]. This
makes them helpful in extracting meaningful information from textual medical data [117].

Critical applications include automating the extraction of crucial information from
detailed medical records [118–121], creating customized summaries to assist healthcare pro-
fessionals [122,123], supporting report-based coding and billing [123,124], and semantically
grouping symptoms to facilitate diagnostic processes [125].

Large amounts of medical literature can also be filtered and analyzed by LLMs, which
can then dynamically summarize data from many sources for doctors [126,127]. Succinctly
synthesizing ideas saves crucial time.

LLMs can analyze clinical text and identify clinical concepts, entities, and their interre-
lationships. This enables them to generate differential diagnoses [128,129], predict specific
diagnoses [130,131], and provide answers to physicians’ queries [98,132]. Moreover, LLMs’
multilingual capabilities can facilitate global healthcare [133].

In capturing patient details and symptoms, LLMs offer a promising solution for the
extensive documentation that physicians and clinical experts face daily [134]. These models
can produce detailed clinical summaries and diagnostic reports, effectively alleviating the
time-intensive burden of these professionals [135]. A concrete example of their potential is
an LLM specially designed to condense the results of radiology reports, highlighting its
applicability in similar medical fields [136].
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To optimize time management during consultations, LLMs can be exploited to generate
concise summaries of each patient’s medical history. These summaries include information
on comorbidities, previous consultations or admissions, medication lists, as well as progress
and response to previous treatments [19,137]. These synthesized summaries draw the
doctor’s attention to relevant information about the patient, which is crucial for an accurate
diagnosis of the disease. By concisely providing this information, LLMs promote more
efficient and comprehensive consultations. This approach allows doctors to devote more
time to patient interaction, which in turn increases patient satisfaction.

Joseph et al. [138] recently introduced FACTPICO, an evidence-based reference for
plain-language summaries of medical texts describing randomized controlled trials (RCTs).
RCTs are essential in evidence-based medicine and play a direct role in patients’ treatment
decisions. FACTPICO consists of 345 plain-language abstracts generated by three LLMs
(GPT-4, Llama-2, and Alpaca). It includes fine-grained evaluation and natural language
justifications provided by experts.

As a result, using LLMs to generate concise summaries optimizes time management
during consultations, enables physicians to focus on patient interaction, and improves
patient care [139]. In this way, the summary process helps clinicians to efficiently review
patient histories, research studies, and guidelines [140].

5.2. Diagnostic Assistance

Using LLMs to aid medical professionals in making diagnoses has shown poten-
tial [141]. LLMs, trained on a massive medical corpus, have acquired important clinical
knowledge. This latent expertise gives them several assets that can support the diagnostic
process.

LLMs can synthesize information from a variety of sources, such as medical litera-
ture, clinical guidelines, and case histories, to guide decision-making. Using a patient’s
data, these models can automatically generate differential diagnosis hypotheses, ranked
according to their estimated probability, for consideration by the clinician [142–144].

Medical doctors (MDs) can quickly acquire pertinent decision assistance by using
natural language queries to interact with LLMs through conversational interfaces. In order
to identify patterns and create clinical syndromes, related indications and symptoms may
be semantically grouped [145,146].

LLMs can also assist in clinical decision-making by suggesting suitable medica-
tions [147], recommending relevant imaging services based on symptoms [148], or pin-
pointing disease causes from diverse clinical documents. When combined with tools like
medical imaging, these models can offer a holistic view, helping doctors diagnose and
define diseases [149]. Moreover, by evaluating cases of individuals with comparable symp-
toms, LLMs can forecast potential disease outcomes, empowering both doctors and patients
to make well-informed treatment choices.

By extracting the most important elements from narrative records, LLMs can simplify the
review process for healthcare professionals by creating structured record segments [150,151].
In addition, the synthesis of information from exchanges or expert research helps to improve
data assimilation.

Supplementary examinations often play a crucial role in medical diagnosis, helping
to reinforce clinical hypotheses and confirm diagnoses. In this context, LLMs can act as
clinical decision support tools, helping physicians choose the most relevant radiological
examinations for given clinical cases [8]. This approach has the potential to minimize
pressure on limited resources, particularly in public hospitals or resource-constrained areas
where imaging equipment and technical support are limited. Furthermore, LLMs can help
avoid unnecessary examinations, such as those involving radiation or contrast agents, for
patients who do not need them.

The increasing use of DL models to create computer-aided diagnosis (CAD) systems
has automated the interpretation of medical images, facilitating the detection and classifica-
tion of pathologies. However, their integration into clinical practice is sometimes hampered
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by a lack of transparency in the decisions made by these models. To remedy this, the
integration of LLMs into CAD systems can enable clinicians to ask questions about specific
images or patient cases, thereby clarifying the CAD system’s decision-making process. This
human–machine interaction can make models more interpretable and encourage their use
in routine diagnostic procedures. In addition, this approach may reveal new insights or
biomarkers in disease imaging.

A recent study [31] presents a new paradigm called generalist medical AI (GMAI),
in which models are trained on large, diversified medical datasets. This approach allows
models to perform a large range of tasks, such as diagnosis, prognosis, and treatment
planning. The paper evaluates the performance of GMAI models on different medical tasks
and finds that they perform better than conventional specialized medical AI models in
several areas, including diagnosis, prognosis, and treatment planning.

In the future, the integration of different data sources, such as images and laboratory
tests, could provide more comprehensive diagnostic information [152]. Throughout this
process, however, it is essential to maintain the interpretability of models and to assign
responsibility for results to human practitioners. The integration of multimodal data will
pave the way for in-depth diagnostic analysis [153].

Despite the significant progress made by LLMs, their use to assist medical diagnosis
has several important limitations. First, these models may lack the clinical precision neces-
sary for specific diagnoses, as they may fail to capture all essential details or misinterpret
complex medical information. Additionally, they generally struggle to fully understand the
clinical context of a patient, including crucial elements such as medical history or current
symptoms [154].

The data used to train these models can also contain biases or inaccuracies, which can
translate into erroneous recommendations. It is important to emphasize that LLMs can in
no way replace human clinical expertise, especially regarding physical examination and
interpretation of medical test results.

Data privacy and security issues are also a major concern, particularly when dealing
with sensitive patient information. Furthermore, LLMs are not always effective in interpret-
ing complex medical test results, such as radiological images or laboratory tests. Their use
in the medical field therefore requires rigorous clinical validation to ensure their safety and
efficacy before deployment in a healthcare setting.

Finally, given the rapidly evolving nature of the medical field, these models need to
be constantly updated to incorporate new discoveries and practices, which necessitates
continuous maintenance.

5.3. Answering Medical Queries

QA is a task that automatically provides an answer to a given question. Indeed, LLMs
have greatly progressed the field of QA in NLP, enabling machines to comprehend and
respond to natural language queries with precision. These extensive language models find
applications in virtual assistants and chatbots, delivering precise and pertinent responses to
user questions. Such systems leverage LLMs to grasp the context and meaning of inquiries
and formulate suitable replies. For instance, Google Assistant, underpinned by LLMs,
adeptly addresses an array of user queries spanning general knowledge, weather updates,
directions, and more [57].

Advancements in DL exemplified by “transformers” now open up new possibili-
ties [53]. Under their enhanced capacities, LLMs [4,55] have the potential to gain a finer-
grained understanding of complex relationships within enormous corpora. The recent
emergence of transformers and LLMs has breathed new life into research exploring AI’s
potential to tackle the great challenge [155,156] of medical QA.

Previously, most works relied on smaller linguistic models trained specifically on
domain-specific healthcare text corpora [94,157–159]. This has driven steady improvements
in benchmark performance on reference tests such as MedQA [160], MEDMCQA [161],
SentiMedQAer [162], and DATLMedQA [163].
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Answering medical queries using LLMs has shown significant advancements in recent
times. With the emergence of larger general-purpose LLMs like GPT-3 [3], GPT-Neo [164],
GPT-3.5 [1], OPT [165], LLaMA [68], and Flan-PaLM [84,87], trained on massive internet-
scale datasets using extensive computational resources, there has been a remarkable im-
provement in their performance on medical QA benchmarks.

For instance, GPT-3.5 achieved an accuracy of 60.2% on the MedQA (USMLE) dataset,
demonstrating its ability to provide accurate responses to medical queries [98,166]. Flan-
PaLM, another powerful LLM, achieved an even higher accuracy of 67.6% on the same
dataset. The performance of GPT-4-base [2] was even more impressive, achieving an
accuracy of 86.1% on medical QA tasks [167,168].

These advancements in LLMs have been observed within a relatively short time,
showcasing their rapid progress and potential for accurate and reliable medical QA. It is
important to note that these accuracy figures are specific to the mentioned datasets and
models, and the performance may vary depending on the specific task and dataset involved.

The critical question remains whether they can generate responses meeting the de-
mands of the clinical context—reliability, interpretability, and adherence to ethical stan-
dards, prerequisites for actual utility at the point of care [169–172].

One of the major challenges encountered in medical QA systems is the problem of
hallucinations leading to incorrect answers [173]. An approach commonly used to solve
this problem is retrieval augmentation. This approach consists of combining LLMs with a
search system such as New Bing for general domains, or Almanac for clinical domains [174].
It involves first retrieving relevant documents as support, and then using LLMs to answer
a specific question based on these retrieved documents. The underlying idea is that LLMs
are able to effectively summarize content, which can reduce hallucinations. It is important
to stress, however, that these systems are not error-free [175] and require thorough and
systematic evaluation to ensure their quality [176]. Further studies are needed to rigorously
evaluate the performance of these systems and identify possible sources of error.

A promising approach to solving the hallucination problem is to augment LLMs with
additional tools. For example, recent work has explored the use of LLM augmentation by
combining data from specific sources [177–180]. A concrete example is the GeneTuring
dataset, which contains search questions for information on specific single nucleotide
polymorphisms (SNPs). However, it is important to note that autoregressive LLMs do
not possess specific knowledge about these SNPs, and most commercial search engines
are unable to provide relevant results for such queries. Consequently, the approach of
increasing retrieval may prove ineffective in such cases.

In such situations, relevant information is often only accessible via specialized databases
such as NCBI dbSNP. For this reason, the approach of enriching LLMs using web database
utility APIs, such as those provided by NCBI, offers the potential for solving the problem
of hallucinations related to specific entities in biomedical databases [178].

While computational progress hints at promising avenues, rigorous validation in real-
world healthcare environments remains essential before these systems can meaningfully
impact patient outcomes [176]. Overall, advancements in NLP promise to improve the
ability of systems to answer medical questions. However, this is only possible if rigorous
evaluations are carried out to ensure the safety, transparency, and responsibility of such
solutions. Indeed, as healthcare is a crucial area where the smallest failure could have
serious consequences, it is essential to ensure through thorough testing that digital medical
assistance systems respect the highest standards in terms of ethics, protection of sensitive
data, and patient well-being.

5.4. Image Captioning

Developing precise and dependable automated report-generation systems for medical
images presents various obstacles. These include the analysis of limited medical image
datasets using machine learning techniques and the generation of informative captions for
images that involve multiple organs.
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The generation of image captions has been the subject of considerable work in com-
puter vision. Early models focused on characterizing the objects, attributes, and relations
present in the image via visual primitive extraction methods [181–184].

The emergence of DL enabled the development of end-to-end neural architectures
that encode an image as a vector representation and then generate the legend word by
word [185,186]. Since then, multiple improvements have been made to encoding [187–192]
and decoding [193–195] blocks, as well as to attention mechanisms [196–199].

It has been shown that encoding by object region instead of global image representation
increases performance [200]. These advancements in image encoders and decoders, together
with the development of attention networks, have led to significant improvements in the
quality of automatically generated captions.

Captioning medical images is an especially difficult task due to the complexity and
variability of images such as fetal ultrasound images. The latter are usually noisy, of low
resolution, and dependent on factors such as fetal position, gestational age, or imaging
plan. Furthermore, the availability of extensive annotated datasets is essential for tackling
this task effectively. In response to these challenges, researchers have put forward DL-
based approaches that seamlessly merge visual and textual data, enabling the creation of
informative captions for both images and videos.

Alsharid et al. [201] presented a model for image captioning specifically designed
for fetal ultrasound images. Alsharid et al. [202,203] have taken their studies further by
introducing a programmatic learning approach to train such image captioning models.
They have also proposed a captioning framework where an image is first classified, and then
one of the multiple-image captioning models is employed to generate the corresponding
caption. Each image captioning model is associated with an anatomical structure.

In a separate investigation [204], researchers addressed the difficulties encountered
in generating captions for medical images, particularly those involving multiple organs.
In response, they propose a solution that combines DL and transfer learning techniques,
specifically employing a Multilevel Transfer Learning Technique (MLTL) and LSTM frame-
work. The authors introduce a foundational MLTL framework consisting of three models
designed to detect and classify datasets with severe limitations. This is achieved by leverag-
ing knowledge gained from readily available datasets. The first model utilizes non-medical
images to acquire generalized features, which are subsequently transferred to the second
model, responsible for the intermediate and auxiliary domains related to the target domain.
The study concludes by discussing the potential applications of this approach in the medical
diagnosis field and its potential to enhance patient care.

A new model for automatic clinical image caption generation has been developed [205].
It combines radiological scan analysis with structured patient information to generate
comprehensive and detailed radiology reports. The model utilizes two language models,
Show-Attend-Tell [206] and GPT-3, to generate captions that contain important information
about identified pathologies, their locations, and 2D heatmaps highlighting the pathologies
on the scans. This approach improves the interpretation and communication of radiological
results, facilitating clinical decision-making.

The application of caption generation is not limited solely to images; it extends to
videos as well. As part of another research project [207], the authors introduced an inno-
vative method for generating captions for fetal ultrasound videos, which can be valuable
in aiding healthcare professionals in their diagnosis and treatment decision-making pro-
cesses. This approach leverages a three-way multimodal deep neural network that merges
gaze-tracking technology with NLP. The primary objective is to develop a comprehensive
understanding of ultrasound images, enabling the generation of detailed captions encom-
passing nouns, verbs, and adjectives. The potential applications of these DL models include
integration into systems designed to assist in the interpretation of ultrasound scan video
frames and clips. The article also explores previous studies in the field of image and video
captioning and presents quantitative assessment findings.
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Li et al. [208] developed a novel end-to-end video understanding system called
VideoChat, which focuses on chat interaction. The system incorporates video foundation
models and LLMs via a learnable neural interface. Its main feature is its ability to perform
spatiotemporal reasoning, locate events in the video, and infer causal relationships between
them. To fine-tune the system, the researchers developed a specific dataset focused on
video instructions. This comprehensive dataset includes thousands of videos with detailed
descriptions and associated conversations. It places particular emphasis on spatiotemporal
reasoning and captures the causal relationships between events in the videos.

Although important advancements have been made in the field of generating captions
for medical images and videos using LLMs, certain challenges still need to be tackled.
Firstly, the limited size of the datasets used in some studies represents one of the main
difficulties, as it may compromise the generalizability of the proposed approaches to more
expansive datasets. In addition, the evaluation measures used in some research studies
do not always provide a comprehensive understanding of the quality of the generated
captions. In the future, it would be interesting to explore more sophisticated measures
that would enable us to evaluate model performance more effectively. Improving the
representativity of the data used and refining the evaluation criteria would be promising
avenues for progress in this field.

Another challenge lies in the need for large quantities of annotated data for model
training, which can prove complicated in the field of medical imaging where annotation
requires expertise. In the future, research could explore new ways of reducing dependence
on massive quantities of pre-annotated data, for example by developing methods that
enable better generalization of the proposed approaches. The integration of additional
contextual information such as clinical metadata or patient medical history into the caption
generation process also represents a promising avenue for providing richer context and im-
proving both the relevance and accuracy of the captions produced. This type of multimodal
approach would go some way to overcoming the lack of massive annotated data.

Future research in medical image and video captioning can focus on two key areas:
advancing transformer-based word embedding models and spatiotemporal visual and tex-
tual feature extractors and utilizing larger and more diverse datasets. These advancements
aim to improve the accuracy, precision, and usefulness of generated captions in medical
applications. By developing more sophisticated models and incorporating richer datasets,
the goal is to overcome limitations such as dataset size and lack of diversity, ultimately
enhancing the performance of automatic report generation systems in the medical field.

6. Analysis of Massive Medical Datasets

In this section, as shown in Figure 6, we will present a range of datasets by classify-
ing them into three categories: general datasets, de-identification datasets, and medical
QA datasets.

Figure 6. Medical Datasets
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6.1. General Datasets

In this section, we present a non-exhaustive overview of several commonly used medical
datasets, with a synthetic summary of their main characteristics, as described in Table 3.

This table succinctly summarizes key information on various datasets representative
of clinical and biomedical fields, such as their theme, approximate size, and type of content,
as well as a brief description of some.

Although this list is not intended to be exhaustive, it does provide an overview of
the resources available and frequently exploited in current research in automatic medical
language processing.

Table 3. Summary of general medical datasets.

Dataset Domain Size Data Type

MIMIC-III Intensive care Over 58,000 patients Structured and unstructured clinical data

MIMIC-CXR Radiology Over 380,000 images Medical images (X-rays)

MEDLINE Biomedical Over 25 million abstracts Biomedical article abstracts

ABBREV Biomedical 6205 abbreviations Abbreviation list

PUBMED Biomedical Over 30 million abstracts Article abstracts

NUBES Spanish biomedical 30,000 phrases Phrases

NCBI Disease 11,223 documents Texts

CASI Terminology 6300 entries Abbreviation senses

MEDNLI Clinical reasoning 10,000 sentence pairs Sentence pairs

MEDICAT Clinical trials 30,000 trials Semi-structured clinical trial descriptions

OPEN-I Adverse drug reactions Over 1 million ADRs Doctor narratives about ADRs

MEDICAL ABSTRACTS Biomedical Over 400,000 abstracts Scientific paper abstracts

1. MIMIC-III, known as “Medical Information Mart for Intensive Care III”, is a publicly
accessible database focused on critical care [209]. It is an extensive and comprehen-
sive health database that includes de-identified health-related data from more than
40,000 patients who were admitted to Beth Israel Deaconess Medical Center (BIDMC)
in Boston between the years 2001 and 2012. The database encompasses a diverse array
of information, including clinical notes, physiological waveforms, laboratory test
results, medication details, procedures, diagnoses, and demographics. This extensive
dataset holds immense value for medical research and healthcare analytics, as well
as the creation and validation of machine learning models and clinical decision sup-
port systems. It provides a valuable resource for advancing medical knowledge and
enhancing patient care. MIMIC-III is widely utilized by researchers and healthcare
professionals for a range of studies, including predictive modeling [210,211], risk
stratification [212], treatment outcomes analysis [213], and other medical research in-
vestigations [214,215]. The database offers valuable insights into patient care [216,217],
facilitates the development of advanced healthcare technologies [218,219], and con-
tributes to the enhancement of clinical practices and patient outcomes [220,221]. It is
essential to emphasize the importance of ethical considerations and strict adherence
to data usage policies when accessing and utilizing the MIMIC-III database to ensure
proper handling and protection of patient information.

2. MIMIC-CXR, referred to as “Medical Information Mart for Intensive Care—Chest
X-ray”, is an expansion of the MIMIC-III database that specifically concentrates on
chest X-ray images and related clinical data [222]. This publicly available dataset
comprises de-identified chest X-ray images alongside their corresponding radiology
reports for a substantial number of patients. A total of 377,110 images are available in
the MIMIC-CXR dataset. These images are associated with 227,835 radiographic stud-
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ies conducted at the Beth Israel Deaconess Medical Center in Boston. The contributors
to the dataset utilized the ChexPert tool [223] to classify the free-text notes associated
with each image into 14 different labels. This process categorized the textual infor-
mation accompanying the images, providing additional context and information for
research and analysis. MIMIC-CXR is a valuable dataset that plays a crucial role in
training and evaluating machine learning models and algorithms focused on chest
X-ray image analysis, radiology report processing, NLP, and various medical imaging
tasks. Researchers and healthcare professionals rely on MIMIC-CXR to develop and
validate AI-driven systems designed for automated diagnosis [224,225], disease detec-
tion [226,227], and image-captioning applications specifically tailored to chest X-ray
images [205,228].

3. MEDLINE is an extensive and highly regarded bibliographic database that encom-
passes life sciences and biomedical literature. It is curated and maintained by the
National Library of Medicine (NLM) and is a component of the larger PUBMED
system. MEDLINE contains more than 29 million references sourced from numer-
ous academic journals, covering a wide range of disciplines including medicine,
nursing, dentistry, veterinary medicine, healthcare systems, and preclinical sciences.
MEDLINE is a widely utilized resource by researchers, healthcare professionals, and
scientists seeking access to an extensive collection of scholarly articles and abstracts.
It serves as a vital source of information for academic research, aiding in clinical
decision-making [229,230], and keeping individuals informed about the latest devel-
opments in the medical and life sciences [231–233]. The database plays a crucial role
in supporting evidence-based practice, enabling professionals to stay updated with
the most recent advancements and discoveries in their respective fields. MEDLINE’s
comprehensive coverage and wealth of information make it an essential tool for pro-
fessionals and researchers across the medical and life sciences domains. In MEDLINE,
the data commonly consist of bibliographic information such as article titles, author
names, abstracts, publication sources, publication dates, and other pertinent details.
This dataset is an essential and foundational resource for conducting research in the
fields of medicine and life sciences, supporting diverse applications like NLP [234],
information retrieval [235,236], data analysis [237], and more [238,239]. The wealth of
information contained within MEDLINE enables researchers to explore and extract
valuable insights, contributing to advancements in medical knowledge and facili-
tating a wide range of research endeavors within the healthcare and life sciences
domains [240–242].

4. ABBREV dataset, proposed by Stevenson et al. in 2009 [243], is a collection of acronyms
and their corresponding long forms extracted from MEDLINE abstracts. Originally
introduced by Liu et al. in 2001, this dataset has undergone automated reconstruction.
The reconstruction process involves identifying the long forms of acronyms in MED-
LINE and replacing them with their respective acronyms. The dataset is divided into
three subsets, with each subset containing 100, 200, and 300 instances, respectively.

5. The PUBMED dataset comprises over 36 million citations and abstracts of biomedical
literature; while it does not provide full-text journal articles, it typically includes links
to the complete texts when they are available from external sources. Maintained by
the National Center for Biotechnology Information (NCBI), PUBMED is an openly
accessible resource for the public. Serving as a comprehensive search engine, it
enables users to explore a vast collection of articles from diverse biomedical and life
science journals. PUBMED encompasses a wide range of subjects, spanning medicine,
nursing, dentistry, veterinary medicine, biology, biochemistry, and various other fields
within the biomedical domain. Within the PUBMED dataset, you can find a wealth
of information, such as article titles, author names, abstracts, publication sources,
publication dates, keywords, and MeSH terms (Medical Subject Headings). This
extensive dataset is extensively used by researchers, healthcare professionals, and
individuals within the academic and medical communities. PUBMED serves as a
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go-to platform for accessing the latest research and information in the vast field of
biomedicine. It provides a comprehensive search engine that enables users to explore
a diverse range of topics, including medicine, nursing, dentistry, veterinary medicine,
biology, biochemistry, and more. By utilizing PUBMED, researchers and professionals
can stay updated with the latest scientific literature, conduct literature reviews, and
make evidence-based decisions in their respective fields.

6. The NUBES dataset [244], short for “Negation and Uncertainty annotations in Biomedi-
cal texts in Spanish”, is a collection of sentences extracted from de-identified health
records. These sentences are annotated to identify and mark instances of negation and
uncertainty phenomena. To the best of our knowledge, the NUBES corpus is presently
the most extensive publicly accessible dataset for studying negation in the Spanish
language. It is notable for being the first corpus to include annotations for speculation
cues, scopes, and events alongside negation.

7. The NCBI disease corpus comprises a massive compilation of biomedical abstracts cu-
rated to facilitate NLP of literature concerning human pathologies [245]. Leveraging
Medical Subject Headings assigned to articles within PUBMED, the corpus was con-
structed by annotating over 1.5 million abstracts that discuss one or more diseases
according to controlled vocabulary terms. Spanning publications from 1953 to the
present day, the breadth of the included abstracts encapsulates a wide spectrum of
health conditions. Each is tagged with the relevant disease(s) addressed, permitting
focused retrieval. Beyond these annotations, access is also provided to the original
PUBMED records and associated metadata, such as publication dates. By manually
linking this substantial body of literature excerpts to standardized disease descriptors,
the corpus establishes an invaluable resource for information extraction, classification,
and QA applications centered around exploring and interpreting biomedical writings
covering an immense range of human ailments. The colossal scale and selection
of peer-reviewed reports ensure the corpus offers deep pools of content for natural
language models addressing real-world biomedical queries or aiding disease investi-
gations through text-based analysis. Overall, it presents a comprehensive, expertly
curated foundation for driving advancements in medical text mining.

8. The CASI (Clinical Abbreviation Sense Inventory) dataset aims to facilitate the disam-
biguation of medical terminology through the provision of contextual guidance for
commonly abbreviated terms. Specifically, it features 440 of the most prevalent ab-
breviations and acronyms uncovered among the 352,267 dictated clinical notes. For
each entry, potential intended definitions, or “senses”, are enumerated based on an
analysis of the medical contexts within which the shorthand appeared across the vast
note compilation. By aggregating examples of appropriate abbreviation implementa-
tion in genuine patient encounters, the inventory helps correlate ambiguous clinical
jargon with probable denotations. This aids in navigating the challenges inherent to
interpreting abbreviated nomenclature pervasive throughout medical documentation,
which is often polysemous. The dataset provides utility for natural language systems
seeking to map abbreviations to intended clinical senses when processing narratives
originating from authentic healthcare records.

9. The MEDNLI dataset was conceived with the goal of advancing natural language
inference (NLI) within clinical settings. As in NLI generally, the objective involves
predicting the evidential relationship between a hypothesis and premise as true, false,
or undetermined. To facilitate model progress, MEDNLI comprises a sizable corpus
of 14,049 manually annotated sentence pairs. The data originate from MIMIC-III,
necessitating initial access to extract the pairs, while retrieval is dependent on securing
permission to access the source’s protected patients, MEDNLI balances this ethically
with the availability of an extensive set. This supports valuable work on a key clinical
NLP challenge: determining the inferential relationship between ideas expressed.

10. The MEDICAT dataset comprises a vast repository of medical imaging data, matched
materials, and granular annotations [246]. It contains over 217,000 images extracted
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from 131,410 open-access articles in PUBMED Central. Each image is accompanied
by a caption and 7507 feature compound structures with delineated subfigures and
subcaptions. The reference text comes from the S2ORC database. The collection
also includes online citations for around 25,000 images in the ROCO subset. MEDI-
CAT introduces a new method for annotating the constituent elements of complex
images. It correlates over 2000 composite visualizations with their constituent sub-
figures and descriptive subcapitals. This refined partitioning at multiple intralimatic
scales within individual elements far surpasses previous collections based on unitary
image-caption couplings. MedICaT’s granular annotations lay the foundations for
modeling intra-element semantic congruence, an essential capability for tackling the
sophisticated challenges of visual language in biomedical imaging. With its vast
scale and careful delineation of image substructures, MEDICAT provides a cutting-
edge dataset to advance research at the intersection of vision, language, and clinical
media understanding.

11. The OPEN-I, the Indiana University Chest X-ray dataset, presents a sizable corpus of
7470 chest radiograph images paired with associated radiology reports [247]. Each
clinical dictation encompasses discrete segments for impression, findings, tags, com-
parison, and indication. Notably, rather than using full reports as captions, this
dataset strategically concatenates the impression and findings portions for each im-
age, while impressions convey overarching diagnoses, findings provide specifics on
visualized abnormalities and lesions. By combining these sections, the designated
captions offer concise and comprehensive clinical overviews. With a sample size
exceeding 7000 image–report duos, this collection equips researchers with ample
training and evaluation materials. Distinct from simpler descriptors, the report snip-
pets incorporated as captions encompass richer diagnostic particulars. This notation
format furnishes target descriptions well-suited to nurturing technologies aimed at
automating radiographic report generation directly from chest X-ray visuals.

12. The MEDICAL ABSTRACTS dataset presents a robust corpus of 14,438 clinical case
abstracts describing five categories of patient conditions, an integral resource for
the supervised classification of biomedical language [248]. Unlike many datasets,
each sample benefits from careful human annotation, providing researchers with a
fully labeled collection that avoids ambiguity. The abstracts also emanate from real
medical scenarios, imbuing the models with authentic representations. The collection
divides examples into standardized training and test scores, enabling a rigorous
and consistent evaluation of classification performance. At this scale, DL techniques
can derive profound meaning from the distribution of terminology across different
specialties. Automatic organization of vast quantities of documents according to
disease status should lead to improved indexing, keyword assignment, and file
routing. This fundamental resource enables investigators to cultivate methods that
intelligently classify and route written summaries, streamlining discovery and care.

6.2. De-Identification Dataset

I2B2 (Informatics for Integrating Biology and the Bedside) is a non-profit entity with
the primary goal of organizing NLP competitions and assembling datasets centered around
clinical language. These datasets are tailored for specific tasks like de-identification, ex-
tracting relationships, and selecting cohorts for clinical trials. Despite the management
transition to Harvard’s National Clinical Language Challenges (N2C2), academic research
predominantly continues to cite these datasets under the I2B2 name, acknowledging their
founding influence and enduring significance in the domain, as shown in Table 4. Hereafter,
we will detail all datasets associated with I2B2:
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Table 4. Summary of de-identification datasets.

Dataset Domain Size Data Type

I2B2 2006 De-identification 347 documents Medical records

I2B2 2008 Obesity Phenotyping 571 documents Medical records focused on
obesity

I2B2 2009 Medication Relation extraction 402 documents Medical records

I2B2 2010 Relations Relation extraction 947 documents Medical records

I2B2 2011 coreference Coreference resolution 970 documents Medical records

I2B2 2012 Temporal Temporal relation extraction 2000 medical encounters Medical records

I2B2 2014 Deidentification Heart Disease dataset Focused on cardiovascular diseases Medical records

I2B2 2018 Benchmarking Hierarchical clinical document clas-
sification

Clinical case notes

1. The I2B2 2006 dataset serves two main objectives—deidentification of protected health
information from medical records [249], and extraction of smoking-related data [250].
Regarding privacy, it focuses on removing personally identifiable information (PII)
from clinical documents. This is important for enabling the ethical and lawful use
of such records for research purposes by preserving patient anonymity. At the same
time, the dataset facilitates the extraction of key smoking-related details from these
records. This aspect is crucial for understanding impactful health behavior and risk
factors. Researchers leverage this dual-purpose dataset to develop automated systems
capable of both tasks through NLP. This significantly advances the application of
NLP within healthcare to tackle real-world issues surrounding privacy and extracting
meaningful insights from unstructured notes. The dataset is freely available to the
research community. Overall, it serves an important role in propelling research at the
intersection of privacy, smoking cessation, and NLP technologies for EMR.

2. The I2B2 2008 Obesity dataset is a specialized collection aimed at facilitating the recog-
nition and extraction of obesity-related information from medical records [251]. The
dataset challenge centered on identifying various aspects of obesity within clinical
notes, such as body mass index, weight, diet, physical activity levels, and related
conditions. Researchers leverage this curated corpus to build models and algorithms
capable of accurately detecting and extracting obesity-related data from unstructured
notes. Key elements identified include BMI, weight measurements, dietary patterns,
exercise habits, and associated medical conditions. By developing technologies to
systematically organize this clinical information, researchers can gain deeper insights
into obesity trends, risk factors, and outcomes. This contribution ultimately advances
healthcare research and strategies for obesity treatment and prevention [252–254].
The specificity of the I2B2 2008 Obesity dataset in regards to this important public
health issue has made it a valuable resource for the medical informatics community
to progress solutions.

3. The I2B2 2009 Medication dataset is a specialized corpus focused on extracting granu-
lar medication-related information from clinical notes [255]. The dataset challenge
centered on precisely identifying and categorizing various facets of medications doc-
umented within notes, such as names, dosages, frequencies, administration routes,
and intended uses. The corpus is meticulously annotated to demarcate and clas-
sify mentions of medications and associated attributes in the unstructured text [256].
Researchers leverage this resource to develop sophisticated NLP models tuned to
accurately recognize and extract intricate medication details. Key elements identified
and disambiguated include drug names, dosage amounts, dosing schedules, adminis-
tration methods, and therapeutic purposes. By automatically organizing these clinical
aspects at scale, the resulting NLP systems enable vital insights to support health-
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care decision-making and research [257]. The specificity and detailed annotation of
the dataset in mining this significant clinical domain has made it instrumental for
advancing automatic extraction of medication information [258,259].

4. The I2B2 2010 Relations dataset was specially curated to facilitate extracting and compre-
hending associations between medical entities in clinical texts. The dataset challenge
centered on accurately identifying and categorizing relationship types expressed in
clinical narratives, such as drug–drug interactions or dosage frequency links [260].
Annotations clearly define and classify the annotated relations, supporting the devel-
opment of models precisely capable of recognizing and categorizing diverse medical
connections. Advancements ultimately aim to bolster comprehension of treatment
considerations and implications to elevate standards of care based on a complete view
of patient context and interconnectivity [261,262].

5. The I2B2 2011 coreference dataset has been specially designed to facilitate the resolution
of coreferences in clinical notes [263]. The challenge of I2B2 2011 was to identify and
resolve coreferences expressed in narratives, where different terms refer to the same
real-world entity. Coreference annotations meticulously indicate these relationships
in order to train models to discern and accurately link references to a common entity.
Automatic identification of coreferential links improves understanding of complex
clinical relationships. Further development of these technologies should enable
the medical community to better understand patient histories, presentations, and
treatments through the complete resolution of entities in clinical discussions.

6. The I2B2 2012 Temporal Relations dataset was curated with a specific focus on aiding in
the identification and understanding of temporally related elements present in clinical
notes [264]. The dataset challenge centered on precisely identifying and categorizing
the temporal relationships conveyed in narratives, with the goal of understanding
when events or actions occurred relative to one another. The notes are meticulously
annotated to delineate and classify these time-related connections, supporting the
development of models that can accurately discern and organize temporal aspects.
Key targets involve discerning whether certain phenomena preceded, followed, or
co-occurred based on the documentation. The precise annotations of the dataset and
the focus on this significant dimension continue to enable valuable progress on a
fundamental but complex clinical modeling task [265].

7. The I2B2 2014 Deidentification & Heart Disease dataset: This specialized collection ad-
dresses two primary objectives: privacy protection through de-identification and the
extraction of heart disease information [266]. For de-identification, the task involves
removing personally identifiable information (PII) from medical records while pre-
serving anonymity. The datasets are annotated to highlight sensitive PII to remove.
Researchers utilize this resource to develop and assess de-identification systems, en-
suring ethical use of data for research by maintaining privacy [267] regarding heart
disease extraction, annotations tag mentions, diagnostic details, treatments, and re-
lated clinical aspects within notes. Leveraging these guidelines supports building
models accurately deriving insights into cardiovascular presentations and manage-
ment [268].

8. The I2B2 2018 dataset is divided into two pivotal tracks: Track 1, focusing on clinical
trial cohort selection [269], and Track 2, centered around adverse drug events and
medication [270]. Track 1 aims to accurately identify eligible patients for clinical trials
using EMR data. The annotations mark records matching various eligibility criteria.
Researchers use this resource to develop and evaluate ML models that can efficiently
pinpoint suitable trial candidates, expediting the enrollment process. Regarding Track
2, the goal here is to detect and classify mentions of adverse drug reactions and
medication information in notes. The annotations highlight such instances in clinical
narratives. Researchers apply this dataset to advance NLP techniques specifically
for precisely extracting and categorizing adverse events and medication details. This
contributes to pharmacovigilance and patient safety.
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6.3. Medical QA Datasets

In this section, we present an overview of different medical datasets dedicated to the
QA task. Table 5 summarizes some of the key features of several of these datasets which,
without claiming to be exhaustive, cover the most frequently studied clinical domains.

Table 5. Summary of medical QA datasets.

Dataset Domain Size Data Type

MEDQUAD QA 11,230 questions Clinical questions and answers

MEDMCQA QA 1310 question–answer pairs Clinical questions and answers

MEDQA-USMLE QA 500+ question–answer pairs Clinical vignettes and questions

MQP QA 1000 question pairs Clinical question pairs

CLINIQA-PARA Paraphrasing 8130 paraphrase pairs Clinical texts

VQA-RAD Image QA 6000 question–image pairs Radiological images and questions

PATHVQA Pathology image QA Over 14,000 image–question pairs Pathology images and questions

PUBMEDQA Abstract QA Over 13,000 question–abstract pairs Biomedical abstracts and questions

VQA-MED-2018, 2019,
2020

Visual QA Over 8000 image–question–answer
triples each year

Medical images, questions, and
answers

RADVISDIAL Conversational agent for
radiology

Over 1500 dialogues Text-based dialogues in radiology
domain

1. MEDQUAD dataset consolidates authoritative medical knowledge from across the NIH
into a substantial question–answer resource. It contains 47,457 pairs compiled from
12 respected NIH websites focused on health topics (e.g., cancer.gov, niddk.nih.gov,
GARD, and MEDLINEPlus Health Topics). These sources include the National Can-
cer Institute, the National Institute of Diabetes and Digestive and Kidney Diseases,
and the Genetic and Rare Diseases Information Center databases. Questions fall
under 37 predefined categories linked to diseases, drugs, diagnostic tests, and other
clinical entities. Examples encompass queries about treatment, diagnosis, and side
effects. By synthesizing verified content already maintained by leading NIH orga-
nizations, MEDQUAD constructs a rich collection of clinically important questions
paired with validated responses. These address a diverse range of issues encountered
in biomedical research and practice.

2. MEDMCQA dataset contains over 194,000 authentic medical entrance exam multiple-
choice questions designed to rigorously evaluate language understanding and reason-
ing abilities [161]. Sourced from the All India Institute of Medical Sciences (AIIMS)
and National Eligibility cum Entrance Test (NEET) PG exams in India, the questions
cover 2400 diverse healthcare topics across 21 medical subjects, with an average
complexity mirrored in clinical practice. Each sample presents a question stem along-
side the correct answer and plausible distractors, requiring models to comprehend
language at a depth beyond simple retrieval. Correct selection demonstrates an un-
derstanding of semantics, concepts, and logical reasoning across topics. By spanning
more than 10 specific reasoning skills, MEDMCQA comprehensively tests a model’s
language and thought processes in a manner analogous to how human exam takers
must demonstrate their clinical knowledge and judgment in order to gain entrance
to postgraduate medical programs in India. The large scale, intricacy, and realism of
these authentic medical testing scenarios establish MEDMCQA as a leading bench-
mark for developing assistive technologies with human-level reading comprehension,
critical thinking, and decision-making skills. The dataset poses a major challenge that
pushes the boundaries of language model abilities.

3. The MEDQA-USMILE dataset, introduced by [161], provides 2801 question–answer
pairs taken directly from the United States Medical Licensing Examination (USMLE).

cancer.gov
niddk.nih.gov
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As the certification exam required to practice medicine in the United States, the
USMLE assesses candidates on an extraordinarily broad and in-depth range of clinical
skills. As such, it sets the bar for the level of medical acumen expected of MDs within
the U.S. healthcare system. Using authentic samples from this rigorous assessment,
MedQA USMILE offers insight into the comprehensive knowledge requirements
and analytical abilities assessed. It reflects the extremely high standards of medical
training and licensure in the USA. Although it is a preliminary size at present, the use
of actual USMLE content gives the dataset validity as a test for medical QA systems
looking for capabilities equivalent to those of junior doctors. These capabilities are
essential for applications designed to help medical students in the USA. Thanks to its
authentic test format and its link to the standards applicable to U.S. doctors, MedQA
USMILE provides an important first benchmark, focused solely on the requirements
of the U.S. system, and paves the way for more powerful aids for clinical training in
the country.

4. The MQP (Medical Question Pairs) dataset was compiled manually by MDs to provide
examples of medical question pairs, whether similar or not [271]. From a random
sample of 1524 authentic patient questions, MDs performed two labeling tasks. First,
for each original question, they composed a reworded version retaining an equivalent
underlying intention in order to generate a “similar pair”. At the same time, using
overlapping terminology, they devised a “dissimilar pair” on a related but ultimately
inapparent topic. This double-matching process produced, for each initial question,
both a semantically coherent reworking and a variant that was superficially related
but whose answer was not congruent. Only similar pairs are then used in MQP. By
asking doctors to rewrite queries in different styles while retaining consistent meaning,
the selected similar question instances give the models the ability to discern medical
semantic substance beyond superficial correspondence. Their inclusion enables more
rigorous evaluation and enhancement of a system’s comprehension capabilities at a
deeper level.

5. The CLINIQPARA dataset comprises a compendium of patient queries crafted with
paraphrasing to progress medical QA from Electronic Health Records [272]. It presents
10,578 uniquely reworded questions sorted into 946 semantically distinct clusters an-
chored to shared clinical intent. Initially harvested from EMRs, the questions were
aggregated to cultivate systems that generalize beyond surface forms to grasp the
crux of related inquiries couched in diverse linguistic guises. By merging paraphrased
variations tied to an identical underlying semantic substance, the inventory arm mod-
els have the prowess to discern core significance notwithstanding syntax. Equipped
via CLINIQPARA, AI can learn how a single medical consultation may morph in
phrasing while retaining essential import, empowering robust interrogation of noisily
documented EMR contents. Its expansive scale and clustering by meaning establish it
as paramount for advancing healthcare AI’s acuity in apprehending intent beneath
variances in how patients may pose an identical essential query.

6. The VQA-RAD dataset comprises 3515 manually crafted question–response pairs per-
taining to 315 distinctive radiological images [273]. On average, approximately 11 in-
quiries are posed regarding each individual examination. The questions encapsulate
a wide spectrum of clinical constructs and findings that a diagnosing radiologist may
want to interrogate or validate within an imaging study. Example themes incorpo-
rate anatomical components, anomalies, measurements, diagnoses, and more. By
aggregating thousands of question–answer annotations across hundreds of studies,
VQA-RAD amasses a sizeable compendium to nurture visual QA (VQA) models. Its
scale and granularity lend the resource considerable value to cultivating AI capa-
ble of helping radiologists unravel the semantics within medical visuals through an
interactive query interface.

7. PATHVQA is a seminal resource, representing the first VQA dataset curated specifi-
cally for pathology [274]. It contains 32,799 manually formulated questions broadly
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covering clinical and morphological issues pertinent to the specialty. These questions
correlate to 4998 unique digitized tissue slides, averaging approximately 6–7 inquiries
per image. PATHVQA aims to mirror the analytical and diagnostic cognition of
pathologists when interpreting whole slide images.

8. PUBMEDQA is an essential resource for advancing evidence-based QA in the biomed-
ical field [275]. Its objective is to evaluate the ability of models to extract answers from
PUBMED abstracts for clinical questions expressed in a yes/no/medium format. The
dataset includes 1000 carefully selected questions, associated with expert annotations,
which define the correct answer inferred from the literature for questions such as
“Do preoperative statins reduce atrial fibrillation after coronary artery bypass graft-
ing?”. In addition, 61,200 real-life but unlabeled questions enable semi-supervised
techniques to develop learning. Over 211,000 artificially generated question–answer
summaries are incorporated to deepen the learning pool.

9. The VQA-MED-2018 dataset was the first of its kind created specifically for visual QA
(VQA) using medical images [276]. It was introduced as part of the ImageCLEF 2018
challenge to allow the testing of VQA models in this new healthcare domain. An auto-
matic rule-driven system first extracted captions from images, simplifying sentences
and pinpointing response phrases to seed question formulation and candidate rank-
ing. However, purely algorithmic derivation risks semantic inconsistencies or clinical
irrelevance. Two annotators with medical experience thoroughly cross-checked each
query and response twice. One round ensured semantic logic, while another judged
clinical pertinence to associated visuals. This two-step validation by experienced
clinicians guaranteed queries and answers not just made sense logically but genuinely
applied to practice. As the pioneering dataset for medical VQA, it thus permits explor-
ing how AI can interpret images and language in healthcare contexts. Thanks to its
meticulously verified question–response sets grounded in actual medical images and
language, VQA-MED-2018 laid the groundwork for advancing and benchmarking
systems to help practitioners through image-based insights.

10. The VQA-MED-2019 dataset represented the second iteration of questions and answers
related to medical images as part of the ImageCLEF 2019 challenge [277]. Its design
aimed to further the investigation started by its predecessor. Drawing inspiration from
the question patterns observed in radiology contexts within VQA-RAD, it concen-
trated on the top four classes of inquiries typically encountered: imaging modalities,
anatomical orientations, affected organs, and abnormalities. Some question types,
like modality or plane, allowed for categorized responses and could thus be mod-
eled as classification tasks. However, specifying abnormalities required generative
models since possibilities were not fixed. This evaluation of different AI problem
types paralleled the diverse thinking involved in analyzing scans. Questions also
emulated natural consultations. By targeting the most common radiology question
categories and building on lessons from previous work, VQA-MED-2019 enhanced
the foundation for assessing and advancing systems meant to expedite diagnostic
comprehension through combined vision and language processing.

11. The VQA-MED-2020 dataset represented the third iteration of this influential initia-
tive, presented as part of ImageCLEF 2020 to advance the answer to medical visual
questions [278]. The core corpus consisted of diagnostically relevant images, whose
diagnosis was derived directly from visual elements. The questions focused on ab-
normalities, with 330 frequent conditions selected to ensure minimum prevalence
in systematically organized search patterns. This guided combination of visual and
linguistic elements established the characteristic VQA assessment framework. In ad-
dition, VQA-MED-2020 enriched the landscape by introducing visual question gener-
ation, eliciting queries endogenously from radiographic content. Over 1001 associated
images provided a basis for 2400 carefully constructed questions, first algorithmically
designed and then manually refined. These interdependent tasks aimed to foster more
nuanced understanding through contextual synergies between vision and language.
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By developing both explanatory and generative faculties, VQA-MED-2020 helped
characterize key imaging subtleties while cultivating technologies better prepared to
participate in clinical workflows. Its balanced approach to both established and emerg-
ing problem spaces iteratively honed assessment of progress towards diagnostically
adroit interrogative and descriptive proficiencies—skills paramount to intuitively
aiding radiographic decision-making.

12. The RADVISDIAL dataset has led the way in the emerging field of visual dialog in
medical imaging by introducing the first radiology dialog collection for iterative QA
modeling [279]. Drawing on annotated cases from the MIMIC-CXR database accom-
panied by comprehensive reports, the dataset offered both simulated and authentic
consultations. A silver set algorithmically generated multi-round interactions from
plain text, while a gold standard captured 100 image-based discussions between
expert radiologists under rigorous guidelines. Beyond simple question–answer pairs,
this sequential format mimicked the richness of clinical dialogue, posing a more
ecologically valid test of the systems’ contextual capabilities. The comparisons also re-
vealed the importance of historical context for accuracy—an insight with implications
for the development of conversational AI assistants. By establishing visual dialogue
as a framework for evaluating the progress of models over a succession of queries,
RADVISDIAL laid the foundation for the development of technologies that facilitate
nuanced diagnostic reasoning through combined visual and linguistic questions and
answers. Its dual-level design also provided a benchmark of synthetic and real-world
performance as the field continues to advance. RADVISDIAL therefore opened the
way to promising work on sequential and contextual modeling for visual dialogue
tasks, such as doctor–patient or radiologist discussions.

7. Foundation Models for Healthcare

Foundation models (FMs) marked a revolution in the world of AI. They are machine
learning structures formed from large, often unlabeled datasets [66]. They offer a diverse
range of applications, extending from text generation to video editing [280] and including
such complex fields as protein folding [281] and robotics [282].

One of the leading models to emerge in this area is ChatGPT from OpenAI. Initially
conceived as a linguistic model for predicting the next word in a sequence, it has surprised
the scientific community with its multifunctional skills. In particular, its applications in the
medical field are remarkable, ranging from assisting doctors with licensing examinations
to simplifying radiology reports [132,283].

Rapid progress in this field has attracted the attention of healthcare professionals.
However, it is difficult to assess the potential benefits and drawbacks of these advance-
ments in a clinical context. To address this, a recent study of 80 distinct clinical FMs
developed from EMR data was undertaken with the aim of understanding and addressing
these challenges.

7.1. Concept of FM

Foundation models are based on three key concepts. The first is pre-training, which
involves training the model on large datasets. For example, a corpus consists of anonymized
patient records, scientific articles, and clinical trial reports. The transformation model is
trained on this corpus to acquire a general understanding of the syntax and semantics of a
medical language. Its level of understanding is assessed on language comprehension tasks,
such as named entity recognition.

Once pre-trained, the model can be fine-tuned to domain- or task-specific data. This
is known as the fine-tuning stage. Let us take the example of a model pre-trained on
general medical data. It could be fine-tuned based on the analysis of symptoms reported
by patients to suggest possible diagnoses. This fine-tuning would be carried out using a
dataset corresponding to the symptoms and diagnoses of anonymous patients.
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The concept of learning transfer is also essential. It enables the knowledge already
acquired by the model to be used to adapt it to related tasks. For example, the patient
symptom analysis model could be retrained on data linking symptoms, diagnoses, and
effective treatments. The aim would be to automatically associate the right treatments with
the proposed diagnoses.

7.2. Clinical FMs

EMR data can be utilized to construct foundation models, which primarily fall into
two categories: Clinical Language Models (CLaMs) and Models for EMR (FEMRs).

7.2.1. Clinical Language Models (CLaMs)

CLaMs are a subcategory of large-scale linguistic models specialized in clinical and
biomedical texts [284]. They are mainly trained to process and generate this type of medical
content, such as extracting drug names from notes or summarizing clinical dialogues [99].

By training them on large quantities of internet text, general-purpose LLMs such as
ChatGPT, Bloom, and GPT-4 may offer some utility in clinical settings. However, when it
comes to specialized tasks, CLaMs generally demonstrate superior performance.

7.2.2. Foundation Models for EMR (FEMRs)

Another important category of clinical FMs is EMR record integration models, called
FMs for Electronic Medical Records (FEMRs) [284]. Unlike the language models previously
described, FEMRs can process the structured set of events and clinical data contained in a
patient’s medical record.

When trained on EMR data, FEMRs generate a vector representation densely encapsu-
lating information relating to the care pathway of each patient. This representation in the
form of a high-dimensional vector, often termed “patient embedding”, has the property
of compactly encapsulating all the information relating to the patient and can then serve
as input to various predictive models dedicated to tasks such as anticipating the risk of
hospital readmission.

Remarkably, the performances of these secondary predictive models are often superior
to those of traditional learning models that do not benefit from the overview provided by
the patient embedding. By holistically integrating the multiple dimensions of the medical
record, these FEMRs therefore seem to capture the overall health status of patients in a
richer way than traditional approaches. Their ability to synthesize the complete clinical
history into a dense representation opens promising perspectives for the development of
new predictive clinical applications.

8. Discussion

LLMs, such as GPT-4 or LLaMA, have demonstrated significant potential in advancing
NLP, and their application in medical diagnosis promises to transform this field.

One of the main strengths of LLMs is their ability to quickly analyze clinical data. A
doctor could, for example, provide a model like GPT-4 with a complex set of symptoms
and, in return, receive suggestions for possible differential diagnoses. This is even more im-
portant when considering that these models can access large, up-to-date medical databases,
providing valuable information, especially for rare diseases or complex cases.

The potential of LLMs does not stop at large medical institutions. In remote or
underserved areas where access to a specialist may be difficult, an LLM-based tool could
serve as a first line of diagnostic advice. Of course, this could never replace real medical
advice, but it could effectively guide initial care.

Furthermore, the information burden is a constant challenge in medicine. MDs are
inundated with data, and LLMs could play a critical role in filtering and prioritizing
this information. At the same time, medical students could benefit from these models as
interactive learning tools, allowing them to ask questions and receive detailed answers
about various medical conditions.
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What is also interesting is the ability of LLMs to process natural language. Patients
can simply describe their symptoms, and models like BERT could translate those verbal
descriptions into precise medical terms. Going further, by combining LLMs with computer
vision technologies, we could envision these models in helping interpret medical images.

However, it is essential to remember that although LLMs offer impressive benefits, they
should not be used as the final word in diagnosis. They can serve as valuable assistants, but
human clinical judgment is important. Additionally, these models would require extensive
validation before widespread adoption to ensure their accuracy in a clinical setting.

Although they offer advantages, the use of LLMs in medical diagnosis also presents
serious challenges. First, reliability is a major concern. Although an LLM like GPT-4 can
provide insights based on a vast amount of data, it is not immune to errors. For example,
a model could misinterpret symptoms described by a patient and suggest an incorrect
diagnosis, with potentially serious consequences for the patient’s health. Additionally,
LLMs’ ability to generalize from the data they were trained on can sometimes lead them to
make mistakes in situations they did not explicitly “see” during their training.

Then, there is the challenge of overlinking. Although LLMs can be useful as support
tools, there is a risk that healthcare professionals will begin to rely too heavily on them
to the detriment of their clinical judgment. For example, if an LLM suggests a particular
diagnosis based on the information provided, an MD might be tempted to follow that
suggestion without questioning it, even if their clinical expertise suggests otherwise.

The issue of data privacy is also crucial. LLMs require huge amounts of data to train.
If these data come from actual medical records, this could pose privacy concerns, even
if the data are anonymized. It is essential to ensure that sensitive patient information
remains protected.

Another challenge is that of transparency and interpretability. Decisions made by
LLMs can often appear to be a “black box”, meaning that doctors and patients may struggle
to understand how a particular diagnosis was suggested. Without a clear explanation, it
can be difficult to trust the model’s recommendations.

Finally, medical ethics are another area of concern. If an incorrect diagnosis is made
based on an LLM’s suggestions, who is responsible? The doctor, the hospital, or the
creator of the model? These questions require careful consideration before the widespread
adoption of LLMs in medical diagnosis.

However, although LLMs have the potential to transform medical diagnosis, it is
crucial to approach these challenges with caution and diligence to ensure patient safety
and well-being.

8.1. Techniques for Mitigating Ethical Risks

The ethical analysis of LLM models in healthcare is crucial, given their potential impact
on various aspects of healthcare. To attenuate the ethical risks associated with these models,
several techniques can be employed.

In this field, differentially private learning is an important technique for protecting
the privacy of the data used in LLM training [285,286]. It ensures that adding or deleting a
single data point in the training dataset does not significantly affect the model’s output.
This reduces the risk of the model revealing sensitive information about the patients from
whom the data were collected. A key challenge of differentially private learning is to find
a balance between privacy and model accuracy. As the level of confidentiality (i.e., the
quantity of noise added) increases, the accuracy of the model tends to decrease.

Improving the interpretability of LLMs in healthcare is fundamental to enabling
professionals to understand the decision-making process [287,288]. In a sector where de-
cisions have far-reaching consequences, such as healthcare, it is essential to understand
the basis of a model’s recommendations or predictions. This contributes to the confidence
and adoption of these technologies by healthcare professionals. Interpretability techniques
aim to explain why and how a model has reached a specific conclusion [289]. This can be
done by identifying the characteristics or data that were decisive in the model’s decision.
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For example, in the case of a diagnosis, the model might indicate which symptoms or
test results were most influential in its conclusion. Visual tools such as heat maps make
explanations accessible. Improved interpretability contributes to the transparency and relia-
bility of recommendations, encouraging their informed integration without substituting for
human judgment [290]. It complements expertise for enriched decision-making. Ultimately,
this approach ensures that they not only perform well, but are also understandable and
trustworthy by professionals, enabling safer use of AI in healthcare.

LLMs in the healthcare field can involuntarily learn from and propagate biases in
training data. To overcome this risk, it is crucial to make regular audits to detect and
rectify these biases [291]. These audits should include performance analyses on a variety of
datasets, and focus on identifying any results that may be unfair or discriminatory.

To ensure that these audits are exhaustive and unbiased, they should be carried out by
teams made up of members with diverse profiles and from a variety of disciplines. These
teams should include not only medical experts, who have an in-depth understanding of
the healthcare field but also researchers specializing in ethics, who can provide a critical
perspective on the moral implications of model results. This diversity ensures that different
points of view and expertise are taken into account when evaluating models. Such an
interdisciplinary approach is essential to ensure that LLMs in healthcare are not only
technically competent but also fair and unbiased in their applications. This helps to build
confidence in the use of AI in medicine and to ensure that the benefits of these technologies
accrue to all individuals in an equitable manner.

Fair learning techniques play a vital role in ensuring that LLM models are fair,
unbiased, and representative in healthcare. To achieve this objective, several key strategies
can be put in place [292]. First, it is important to perform a preliminary assessment of the
data to detect any potential bias and assess the representativity of demographic groups,
medical conditions and socio-economic contexts. Next, datasets should be diversified
by integrating information from diverse sources and populations, ensuring that data are
collected from underrepresented or marginalized groups to ensure balanced representation.
Data rebalancing techniques, such as oversampling minorities or undersampling majority
groups, can also be used to balance datasets [293,294]. Regularization models can be
integrated into the learning process to minimize bias, for example by penalizing predictions
that reinforce stereotypes or inequalities [295,296]. Multi-task learning, which involves
training models on multiple tasks simultaneously, can improve their ability to generalize
and reduce single-task-specific biases [297–299]. It is also essential to make rigorous tests
on various samples in order to evaluate performance and detect biases in the model’s
predictions. Finally, it is important to train users on the strengths and limitations of
LLMs, emphasizing the importance of their clinical expertise in interpreting the results.
Interdisciplinary collaboration, involving ethics experts, health professionals, lawyers, and
representatives of diverse communities, can also contribute to the balanced design and
evaluation of models in health care.

8.2. Challenges and Future Perspectives

The first major challenge lies in the rigorous management of potential biases contained
in the vast medical databases used for training AI algorithms. These data may present
biases linked to the gender, age, or ethnic origin of patients; therefore, it is essential to collect
information that is diverse and representative of the entire population. Thorough controls
must also be put in place to detect any abuse that could unfairly impact certain groups.

The challenge of transparency and interpretability in diagnostic support systems is
also crucial. Unlike traditional medical diagnoses requiring a detailed understanding of the
reasons leading to conclusions, many current AI algorithms still operate as “black boxes”,
without the ability to clearly explain their reasoning. However, traceability and complete
explainability of the analyses produced are essential in medicine. Significant progress
remains to be made in explanatory AI.



BioMedInformatics 2024, 4 1130

The security and safety of AI systems and the highly sensitive medical data they
analyze and store are also critical issues. The risks of leaks or malicious attacks aimed at
compromising the confidentiality or integrity of this highly private information must be
anticipated by deploying solid technical protection measures.

Robust validation of algorithm performance on large and varied populations, as well
as their ability to maintain a high level of reliability over time, constitute other important
challenges. It will also be necessary to adequately train health professionals in the relevant
and safe use of these decision-making tools.

While medical AI shows strong potential, its responsible development requires sus-
tained efforts on these different levels to ensure the trust of patients and practitioners in
these technologies.

9. Conclusions

In this paper, we have provided an analysis of the potential impacts of major LLMs
on the healthcare sector. We started by introducing LLM architectures like ChatGPT,
Bloom, and LLaMA, which are composed of billions of parameters and have demonstrated
impressive capabilities in language understanding and generation. These models have the
potential to process and generate natural language, which can be used to improve medical
diagnosis and patient care as well as accelerate medical research.

We then reviewed recent trends in medical datasets used to train such models, classi-
fying them according to different criteria such as their size, their source, or their subject
(patient files, scientific articles, etc.). Using these datasets can help train large language mod-
els to better understand the nuances and complexities of clinical language, which can be
used to improve decision-making, diagnostic support, or the personalization of treatments.

However, we also highlighted the challenges related to the practical use of large
linguistic models in the medical field. One of the main concerns is the ethical implications
of using these models, as training them requires large amounts of sensitive medical data.
There are concerns about data privacy and security, as well as the potential for these models
to perpetuate bias and inaccuracies in medical data, which can have serious consequences
for patient care.

Despite these challenges, significant progress is being made in the area of LLMs. With
the deployment of LLMs trained on a very large scale with public resources, these models
could revolutionize the way we approach patient care and medical research. However, it is
important to carefully consider the ethical implications of using these models and work to
address these concerns to ensure they are used responsibly and effectively.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
DL Deep Learning
LLM Large Language Model
GPT Generative Pre-trained Transformer
LLaMA Large Language Model Meta AI
BLOOM BigScience Large Open-science Open-access Multilingual Language Model
NLP Natural Language Processing
RAG Retrieval Augmented Generation
RL Reinforcement Learning
RLHF RL from Human Feedback
DPO Direct Preference Optimization
PPO Proximal Policy Optimization
GMAI Generalist medical AI
RCT Tandomized controlled trial
LDA Latent Dirichlet allocation
GloVe Global Vectors for Word Representation
BERT Bidirectional Encoder Representations from Transformers
RoBERTa Robustly Optimized BERT Approach
ELMo Embeddings from Language Models
QA Question Answering
T5 Text-To-Text Transfer Transformer
RNN Recurrent Neural Network
CNN Convolutional Neural Network
BART Bidirectional and Auto-Regressive Transformer
PaLM Pathways Language Model
Flan-PaLM Scaling Instruction-Fine-Tuned Language Models
EMRs Electronic medical records
MD Medical doctor
MLTL Multilevel Transfer Learning Technique
LSTM Long Short Term Memory
MIMIC Medical Information Mart for Intensive Car
NLM National Library of Medicine
NCBI National Center for Biotechnology Information
MeSH Medical Subject Headings
BIDMC Beth Israel Deaconess Medical Center
NUBES Negation and Uncertainty annotations in Biomedical texts in Spanish
CASI Clinical Abbreviation Sense Inventory
NLI Natural Language Inference
SNP Single Nucleotide Polymorphism
I2B2 Informatics for Integrating Biology and the Bedside
N2C2 National Clinical Language Challenges
PII Personally Identifiable Information
AIIMS India Institute of Medical Sciences
NEET National Eligibility cum Entrance Text
USMLE United States Medical Licensing Examination
VQA Visual Questions Answering
MQP Medical Question Pairs
FM Foundation model
CLaMs Clinical Language Models
FEMRs Foundation Models for EMRs
S2ORC The Semantic Scholar Open Research Corpus
OPT Open Pre-trained transformer Language Models
CLEF Conference and Lab of the Evaluation Forum
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