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Abstract: With growing concern over environmental sustainability and dwindling fossil resources, it is
crucial to prioritise the development of alternative feedstocks to replace fossil resources. Spent coffee
grounds (SCGs) are an environmental burden with an estimated six million tons being generated
on a wet basis annually, globally. SCGs are rich in cellulose, lignin, protein, lipids, polyphenols
and other bioactive compounds which are important raw materials for use in industries including
pharmaceuticals and cosmetics. Furthermore, the energy sector has the potential to capitalize on
the high calorific value of SCGs for biofuel and biogas production, offering a sustainable alternative
to fossil fuels. SCGs are readily available, abundant, and cheap, however, SCGs are currently
underutilized, and a significant amount are dumped into landfills. This review explores the potential
of SCGs as a source of a value-added compound through various conversion technologies employed
in the valorisation of SCGs into biochar, biofuel, and important chemical building blocks. The state-
of-the-art, current knowledge, future research to stimulate the creation of sustainable products, and
the challenges and economic feasibility of exploring SCGs in a biorefinery context are presented.

Keywords: spent coffee grounds; biorefinery; biochar; cellulose; lignin; polyphenols; biodiesel;
bioethanol; circular economy

1. Introduction

Spent coffee grounds (SCGs) are the residue obtained after brewing coffee using
various coffee-brewing methods such as hot water extraction (drip brewing, a French press)
or steam extraction (espresso). A considerable volume of SCGs is generated globally each
year. Although data on the exact volume of SCGs generated is limited due to the ways the
waste is generated and inadequate inventory studies [1]. However, it is estimated that about
six million tons of SCGs are generated each year worldwide on a wet basis [2]. For example,
in the United States, Starbucks alone generates about 91,000 tonnes of coffee grounds
annually [3]. About 50% of the SCGs that are produced globally are generated from small-
scale coffee shops, restaurants, cafeterias, or individuals [4]. They are usually discarded
and end up in landfills, which poses significant environmental challenges. However, recent
developments have seen a rise in technologies and policies aimed at changing this practice
and developing SCGs as a viable feedstock for the synthesis of bioproducts, platform
chemicals, and value-added energy materials [5]. SCGs are a rich source of lignin, cellulose,
hemicellulose, proteins, lipids, and other bioactive substances [6] making them a valuable
and cheap feedstock using various technologies for the extraction and refining of these
valuable components of SCGs.

The cellulose and hemicellulose fractions, for example, can be hydrolysed to produce
sugars, which can be fermented to produce second generation bioethanol. Furthermore,
the pharmaceutical, nutraceutical, and cosmetics sectors can also explore the extraction
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of bioactive components, such as antioxidants and polyphenols from SCGs for potential
commercial application [7]. Some of the other ways to reuse SCGs include as biochar
for pollutant removal, as fuel products, and fractionating SCGs into their components in
a biorefinery process operation. SCGs can also be repurposed as a natural fertilizer for
plants [8], a cleaning agent [9], and their oil can be transformed into biodiesel [10]. By
diverting coffee grounds from landfills or incineration, there will be a reduction in the
pressure on landfill space and mitigate the associated environmental issues. Therefore,
the valorisation of SCGs represents a sustainable and economically viable strategy for
reducing waste and harnessing their latent value. SCG upcycle efforts also align with the
UN Sustainable Development Goals #6, #7, and #12.

SCG valorisation is also consistent with the concept of a biorefinery, which minimizes
waste and reduces the environmental impact by utilizing integrated processes to produce
a broad range of goods and energy from a single biomass source [11]. Transforming a
cheap waste feedstock such as SCGs into biobased products adds value to this waste
and reduces the production costs for biobased chemicals and materials [12]. This review
aims to assess the potential of SCGs in biobased material and chemical production with a
focus on the lipids, cellulose, lignin, and polyphenol components of SCGs as well as the
transformation of these components into value-added products such as bioethanol and
biodiesel. Further, the application of SCGs as a feedstock in the production of biopolymer,
biochar, and activated carbon is also presented.

Composition and Characteristics of SCG

SCGs typically contain cellulose, hemicellulose, lignin, ash, minerals, fat, phenolic
compounds, and protein [13]. Extensive analyses of the proximate composition of SCGs
are abundant in the literature. Studies reveal that SCGs are rich in organic matter, with
a typical composition comprising approximately 40–50% carbohydrates, 20–25% lipids,
15–20% proteins, and 5–10% moisture content [14]. The chemical composition of SCGs
can vary slightly depending on factors such as the type of coffee beans used, the brewing
method, and the degree of the roast [15–17]. Research is continuously active in utilizing
SCG components as essential building blocks for a variety of value-added products.

Cellulose in SCGs can be found in varying quantities, typically between 10–20%, with
Lina et al. reporting a 12.4% cellulose content in SCGs [18]. Other SCG types can be
dominant in cellulose over hemicellulose as Marina et al. reported an approximately 23%
cellulose and 24% hemicellulose content in their study [19]. Lignin is another important
component found in abundance in SCGs. Lignin is a heterogeneous, amorphous polymer
made up of phenolic compounds, primarily coniferyl, sinapyl, and p-coumaryl alcohol
units, connected by various types of chemical linkages [20]. Lignin content in SCGs [21]
is slightly lower when compared to other biomass forms such as wood, which is known
for its high lignin content [22]. Nevertheless, SCGs can be a promising feedstock for lignin
extraction and transformation into high-valued products and fuels

Hemicellulose is a prominent and diverse polysaccharide component found in large
quantities within SCGs, playing a crucial role in their overall chemical composition and
physical properties. Hemicellulose monomers in SCGs consist primarily of mannose,
galactose, and arabinose [23,24]. SCGs typically contains approximately 37% mannose, 32%
galactose and 7% arabinose [18]. When compared to other biomasses such as spent brewer
grains that also contain hemicelluloses, SCGs possess a higher content of mannose and no
xylose content, while BSG levels contain xylose and arabinose, but no mannose [25]. The
presence of arabinoxylans in SCGs adds complexity to the matrix, influencing their texture
and overall properties [26].

SCGs have a high lipid content, which can be used as a feedstock for biodiesel pro-
duction [27]. The diversity of lipids in SCGs makes them a potential resource for various
applications, including that of biofuel production and the extraction of valuable bioactive
materials. These lipids contain tocopherols that can improve the oxidation stability of the
biodiesel. Triglycerides are the predominant lipids and consist of three fatty acid chains
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esterified to a glycerol backbone [28]. The nature of the fatty acids, including their length
and degree of saturation, contributes to the diversity of triglyceride species present in
SCGs. Phospholipids, a crucial component of biological membranes, are also found in
SCGs. These molecules contain a phosphate group, which imparts amphiphilic properties,
allowing them to interact with both hydrophilic and hydrophobic substances [28]. The
phospholipids in SCGs may play a role in encapsulating lipophilic compounds, influencing
the aroma and flavour of coffee. Additionally, free fatty acids resulting from triglyceride
hydrolysis are present, contributing to the overall lipid content [29]. The specific chemical
composition of these lipids can vary depending on the coffee bean type, roasting process,
and extraction method.

Coffee beans contain storage proteins like globulins and albumins, which serve as a
source of amino acids for the developing coffee plant [30]. These proteins may be present
in SCGs to some extent. SCGs may contain insoluble proteins that were not extracted
during the brewing process [31]. These unextracted proteins can contribute to the overall
protein content of spent grounds. SCGs typically contain between a 13 and 17% protein
content and this plays a vital role in their structural composition [32]. Various techniques of
extracting this protein from SCGs have been reported, such as alkaline-mediated treatment
and isoelectric precipitation, where high levels of polyphenols and antioxidant activity
were found in the protein obtained [33]. During the roasting process, the enzymes in the
coffee beans play a role in the development of flavour and aroma compounds [34]. Some of
these enzymes may remain in the SCGs, although they are likely to be denatured by heat.
The Maillard reaction is a chemical reaction that occurs during the roasting of coffee beans,
leading to the formation of various compounds, including proteins and amino acids [35].
Some of these products may remain in the spent grounds.

SCGs also contain various phenolic compounds such as chlorogenic acid and caffeine
which are also abundant in the coffee grounds. The composition of phenolic compounds in
SCGs may vary due to the methods of brewing coffee which influence the overall SCGs’
composition. Caffeine and chlorogenic acid are the most extensively studied phenolic
components in SCGs due to their antioxidant properties [36]. These phenolic compounds
have antioxidant and metal-chelating properties, which can protect against free radical
damage and reduce the risk of degenerative diseases [37]. For example, chlorogenic acids
(CGAs) are the main phenolic components in green coffee seeds and are associated with
the reduced incidence of atherosclerosis, diabetes, and cancer. The CGA in SCGs is highly
bioavailable and can be easily absorbed throughout the gastrointestinal tract. Table 1
demonstrates the typical chemical composition of SCGs based on peer-reviewed studies
while Table 2 demonstrates their typical chemical composition when compared to other
waste biomass types.
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Table 1. Typical Composition of some SCGs studies (w/w% dry basis).

Components Cellulose Hemicellulose Lignin Total Extractives Ash Protein Lipids Total Phenolics Caffeine Chlorogenic Acid Dietary Fibre References

SCGs - - - - 6.2 11.5–16.5 15.3–15.9 - - - [38]

SCGs - 37.06–40.80 19.84–26.51 51.43–55.78 - - - 0.17–4.54 - - - [39]

SCGs - - - - - - - - 1.41 1.50 - [40]

SCGs 12.40 ± 0.79 39.10 ± 1.94 23.90 ± 1.70 - 1–21 17.44 ± 0.10 2.29 ± 0.30 - - - 60.46 ± 2.19 [18]

Table 2. SCGs’ typical chemical composition range in comparison to the chemical composition range of other agricultural waste biomass types from peer-reviewed
literature studies (w/w% dry basis, unless otherwise stated) (N/D = Not Determined, mg GAE/g = milligram of gallic acid equivalent per gram of sample).

Biomass Type Cellulose % Hemicellulose % Lignin % Protein % Lipids % Ash % Total Phenolic
Compounds (mg GAE/g) References

Spent Coffee
Grounds (SCGs) 12.40 ± 0.79 37.06–40.80 19.84–26.51 11.5–16.5 15.3–15.9 1.5 0.17–4.54 [18,38–40]

Coffee Husk 39.2 12.6 26.2 8.77 1.06 7.86–9.5 2.12 [41,42]

Coffee Silver skin N/D N/D N/D 16.31–18.9 2.91–3.0 9.47 1.28 [42,43]

Coffee Parchment N/D N/D N/D 1.66 0.18 0.65 0.18 [42]

Brewers Spent
Grains (BSGs) 25.4 21.8 11.9 24.0–31.4 10.3–10.6 2.4–3.7 N/D [44,45]

Whole Corn Stover
(Combined Stalks, Leaves,

Cobs, and Flower)
37.72 20.62 34.25 N/D N/D 5.03 N/D [46]

Sugar Cane Bagasse (SCB) 38.4–47.0 23.2–27.0 19.1–32.4 N/D N/D 1.0–2.8 N/D [47–52]

Rice Husk 35.0–35.23 24.39–25.0 12.92–20.0 3–3.75 N/D 17 14.90 ± 0.70 [53,54]

Rice Straw 34 36.06 14.5 N/D N/D 19.5 N/D [55]

Peanut Shells 44.8 5.6 36.1 5.4 0.1 N/D N/D [56]

Wheat Straw 34.9 ± 1.52 25.17 18.5 N/D N/D 7.56 ± 0.03 N/D [57]
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2. Creation of Value-Added Products from Spent Coffee Grounds

Spent coffee grounds contain a complex blend of organic compounds, including cellu-
lose, hemicellulose, lignin, lipids, phenolic compounds and proteins. These compounds can
be extracted and converted into a wide array of biobased products, including bioethanol,
biodiesel, biochar and other bioactive compounds. [58] Table 2 shows the various methods
of obtaining some value-added products from spent coffee grounds. The exploration of
coffee grounds as a resource for biobased chemicals and materials encourages research
and innovation in sustainable materials technology, fostering the development of novel
processes and products [59]. The carbohydrate fraction, primarily consisting of cellulose
and hemicellulose, offers potential for bioethanol production [60]. The lipid content makes
SCGs a source of valuable coffee oil which can be used for biodiesel production while
the protein fraction presents opportunities for animal feed protein supplementation [61].
Additionally, SCGs contain varying amounts of minerals, antioxidants, and bioactive
compounds, suggesting their potential for diverse applications beyond waste disposal,
including as a resource for sustainable and value-added products [62].

2.1. Biodiesel Production from Spent Coffee Grounds

Utilizing SCGs as a feedstock to produce biodiesel has garnered significant attention
in recent years, with growing research exploring this innovative approach. SCGs are a
valuable source of lipids that can be converted into biodiesel through various modification
processes. Several studies have investigated the extraction of lipids from SCGs for biodiesel
production. A schematic representation of biodiesel production from SCG oil is presented
in Figure 1. The lipids in SCGs can also be extracted using the Soxhlet apparatus with
n-hexane as the most efficient solvent reported for fat extraction from SCGs [63]. Other
types of solvents that may be used include ethyl acetate, n-heptane and n-Octane. The
lipid content in SCGs can vary depending on the bean type, roasting type, and extraction
method, with a fat content ranging from 13.4% to 14% being reported [63]. This compares
similarly to the lipid content of other oleaginous plants, such as soybeans, which range
from 10 to 22% [64]. Studies have also demonstrated that SCGs can yield a substantial
amount of oil, making them a promising feedstock for biodiesel production; for example,
Tuntiwiwattanapun and Tongcumpou [65] reported a yield of about 102 mg of biodiesel per
1 g of SCGs, which is promising [65]. However, challenges related to the efficient recovery
of solvents and the need for additional purification steps have been highlighted in the
extraction and transformation of SCG oil into biodiesel which may increase production
costs [63]. Alternative extraction techniques, such as supercritical fluid extraction and
the application of enzymes to facilitate oil release from SCGs have also been explored
as viable alternative. Supercritical carbon dioxide (SC-CO2)-assisted extraction has been
employed as an environmentally friendly and efficient method for the extraction of lipids
from SCGs [66]. For example, a study by Coelho et al. demonstrated that the extraction
of oil from SCGs using a supercritical fluid and a co-solvent decreases the time required
to obtain the maximum oil yield by half [67]. Enzymatic hydrolysis, on the other hand,
utilizes enzymes to break down the complex lipids in SCGs into simpler components,
facilitating the subsequent transesterification process [68]. These methods offer potential
advantages in terms of reducing solvent use and improving the overall sustainability of
biodiesel production from SCGs. After the extraction of oil from SCGs, the oil is converted
into biodiesel through a transesterification process. Most studies utilize a two-step transes-
terification process involving acid esterification followed by alkaline transesterification [69].
Acid esterification helps convert the free fatty acids present in the coffee oil into esters,
making it suitable for subsequent alkaline transesterification [70]. These processes typically
involve the use of methanol and a catalyst, such as sodium hydroxide (NaOH) or potassium
hydroxide (KOH), to facilitate the chemical reactions [71]. Also, biodiesel production from
SCGs via transesterification using immobilized lipase resulting in high yields and purity of
biodiesel has been reported [72].
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Furthermore, researchers are exploring strategies to optimize the biodiesel production
process from SCGs. Parameters like the reaction time, temperature, catalyst concentration,
and the molar ratio of methanol-to-oil have been investigated to enhance the biodiesel yield
and quality, which can hold valuable insights in comparison to parameters used to enhance
the biodiesel yield and quality from SCGs [73]. Additionally, efforts have been made to
develop cost-effective and sustainable approaches, such as using heterogeneous catalysts
and microwave-assisted transesterification [74]. In addition to biodiesel production, some
studies have also considered the utilisation of byproducts generated during the biodiesel
production process. Yang et al. [75] explored the valorisation of crude glycerol, which is
a co-product of transesterification, for the improvement of the overall viability of SCG-
based biodiesel production. The crude glycerol can be refined for various applications,
contributing to the overall sustainability of the SCG-based biodiesel production process
by converting glycerol at rates necessary to prevent a large accumulation of glycerol from
biodiesel production [75].

Various challenges associated with the utilisation of SCGs for biodiesel production
have been reported. This includes the variation in the oil content within the SCGs which
poses a huge obstacle, making consistent and high yields difficult to achieve [76]. Also,
the extraction process, whether it is solvent-based, mechanical, or using supercritical fluid,
struggles with efficiency and standardization due to this variability challenge [77]. Pre-
treatment has been explored to investigate its impact on improving oil extraction yield,
energy requirement, and processing cost [78]. For example, Akula et al. investigated the
effect of pretreatment methods of SCGs on coffee oil yield and they reported a higher yield
of 17% coffee oil in pretreated SCGs and a 13% coffee oil yield in untreated SCGs [79].

In addition to the variability in oil yield, the quality and purity of extracted oil are also
of concern as they can impact the resulting biodiesel properties. A poor quality and poor
purity of oil may necessitate further refining steps to meet stringent biodiesel standards,
adding to production costs [80]. Economically, the scalability and cost-effectiveness of
large-scale production remain uncertain, given the expense associated with the collection
of SCGs, the extraction of oil, and the processing into biodiesel. Environmental impli-
cations, energy consumption during extraction and waste management are additional
challenges. Some promising methods for improving the overall energy consumption and
reducing the associated environmental impact of producing biodiesel from SCGs have been
reported [81]. Figure 1 demonstrates the production of biodiesel from transforming spent
coffee grounds [82].
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2.2. Bioethanol Production from Spent Coffee Grounds

SCGs represent a promising feedstock for the synthesis of bioethanol due to their
high carbohydrate content and widespread availability. Several studies have examined the
production of bioethanol from SCGs [83]. The conversion of SCGs into bioethanol involves
several key steps. Firstly, a pretreatment step is required to remove the lignin, break
down the complex nature of the SCGs’ biomass, and make the polysaccharides present
in the SCGs available for enzymatic action [84]. Various pretreatment methods, including
acid [85], alkaline [86], deep eutectic solvents [87], and steam explosion treatments [88],
have been explored to improve the accessibility of carbohydrates to enzymes [89]. After
pretreatment, the carbohydrates present in SCGs, primarily cellulose and hemicellulose,
can be released, and fermented to produce bioethanol [90]. Hydrolysis is an essential
process, and various researchers have focused on optimising enzyme cocktails and reaction
conditions to enhance sugar yield [91]. Enzyme conversion, microbial fermentation, and
physio-chemical conversion techniques are employed to ferment or convert the sugars
before distillation. This fermentation product is then distilled or separated to reach the
purity levels that are acceptable for product formulation [92]. The schematic diagram for
the production of bioethanol from SCGs is shown in Figure 2.

The main sugars from SCG hydrolysis are the hexoses such as glucose, mannose,
and galactose, with mannose being reported as the most abundant sugars [93]. Pentose
such as arabinose have also been reported to be present in SCGs. The overall economic
viability of a lignocellulose-based bioethanol can be improved through an efficient sugar
conversion process. This includes the development of robust yeast strains that can ferment
these sugars and the optimization of fermentation parameters such as pH, temperature,
and sugar concentration [94]. Studies to improve bioethanol’s economic potential using
pentose-fermenting have been reported [95]. For example, Moremi et al. developed
yeasts fermenting both D-xylose and L-arabinose in a medium containing acetic acid. The
developed yeast strain produced up to 5.7 g/L of ethanol, with variance between yeast
strains, demonstrating the possibility of improving the ethanol yield using improved
yeast strains [95]. In addition to the development of various yeast strains, some studies
have explored the simultaneous saccharification and fermentation (SSF) processes, where
enzymatic hydrolysis and fermentation occur concurrently [96]. This integrated approach
can reduce the production time and increase the overall bioethanol yields. The potential of
using co-cultures of microorganisms to improve bioethanol production from SCGs has also
been investigated [97]. Co-culturing different microorganisms can enhance the fermentation
performance and tolerance to inhibitors that may be present in SCGs, such as phenolic
compounds. Co-culturing microorganisms has been shown to positively impact bioethanol
yields and the efficiency of producing bioethanol in one single system from agricultural
wastes [98]. This approach has shown promise in increasing the overall bioethanol yield
and reducing the need for detoxification steps, thereby reducing the operational cost [97].
The sequential and co-production of biodiesel and bioethanol with spent coffee grounds
were also explored with promising results showing yields of 0.46 g/g for bioethanol and
97.5 ± 0.5% for biodiesel [99].

Challenges in SCG-based bioethanol production remain. Variability in SCGs’ com-
position due to factors like the coffee bean type and brewing methods can impact the
efficiency of the conversion process. Moreover, the presence of inhibitory compounds in
SCGs, such as caffeine and tannins, can affect the fermentation performance and require
detoxification strategies [100]. Figure 2 showcases the production of bioethanol from spent
coffee grounds [101].
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2.3. Production of Biopolymers and Biocomposites from Spent Coffee Grounds

To reduce the dependence on fossil resources and their associated environmental
impact, significant research has been carried out on replacing synthetic polymers with
biodegradable materials, especially those derived from natural resources. SCGs are rich in
cellulose, hemicellulose, lignin, and other bioactive compounds. These components can
serve as the building blocks for the development of sustainable materials addressing both
the need for waste reduction and the demand for green alternatives [61].

The extraction of biopolymers such as cellulose fibre from SCGs is a critical step in
their utilization. Various extraction methods have been explored, each with its advantages
and drawbacks. Alkaline treatments, such as sodium hydroxide or potassium hydroxide,
and deep eutectic solvents, are commonly employed to remove lignin and hemicellulose,
leaving behind purified cellulose. A bleaching process is then used to enhance the purity
of the cellulose with chemicals such as sodium chlorite used a bleaching agent [102]. On
the other hand, enzymatic treatments, using cellulase or xylanase enzymes, offer an eco-
friendly alternative but may be slower and require further optimization for large-scale
applications [103]. Once the cellulose is extracted from SCGs, it can potentially serve as a
versatile precursor to produce various biopolymers such as cellulose acetate [104], cellulose
nanocrystal and carboxymethyl cellulose (CMC). Each of these biopolymers exhibits unique
properties and potential applications.

Cellulose acetate is a thermoplastic polymer derived from cellulose and has garnered
attention in applications such as films, membranes, and textiles [105]. Its biodegradability
and ability to form flexible films make it a promising alternative to petroleum-based plas-
tics in packaging and other industries [106]. Cellulose nanocrystals (CNCs) are nanoscale
particles derived from cellulose and exhibit exceptional mechanical properties [107]. They
are known for their high strength, stiffness, and low density, making them ideal candi-
dates for reinforcement in biocomposites. CNC-reinforced materials have been explored
in various applications, including automotive parts, construction materials, and biomedi-
cal devices [107]. Carboxymethyl cellulose (CMC) is a polymer and a modified cellulose
derivative. CMC is a water-soluble cellulose derivative with numerous applications in
the food, pharmaceutical, and cosmetic industries [108]. Its water-absorbing properties
and biocompatibility make it a valuable ingredient in products like pharmaceutical tablets,
food additives, and wound dressings. Biocomposites are materials composed of a poly-
mer matrix reinforced with natural fibres or particles. SCGs have been investigated as a
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potential reinforcing agent in biocomposites production. Fang et al. [109] developed Poly
(butylene succinate) (PBS)-based biocomposites comprising varying amounts of spent cof-
fee grounds (SCGs). PBS-based biocomposites comprising varying amounts of spent coffee
grounds (SCGs) were developed via a reactive extrusion with the polymethyl methacrylate-
polyglycidyl methacrylate random (PMMA-r-PGMA) copolymer as a compatibilizer. The
PMMA-r-PGMA copolymer was effectively produced through free radical polymerization
techniques to change the surface of coffee oil-extracted SCGs (mSCGs). It was reported that
mSCGs might operate as a nucleating agent, increasing the degree of crystallinity and the
crystallization temperature of composites. The mechanical characteristics of mSCG/PBS
composites were superior to those of raw PBS and eSCG/PBS composites. Furthermore,
the coefficient of thermal expansion of mSCG/PBS biocomposites decreased, while the heat
deflection temperature of the composite with the addition of 20 wt% mSCGs increased by
11 ◦C [109]. Similarly, spent coffee waste was used to produce sustainable poly (butylene
Succinate) biocomposites by Gaidukova et al. [110]. The addition of SCGs was found to
significantly increase the elasticity, tensile strength, and storage modulus of biocompos-
ites [111]. This suggests that SCGs can serve as valuable fillers in biocomposites to improve
their elasticity.

While the utilisation of SCGs for biopolymers and biocomposites shows great promise,
several challenges and limitations must be addressed. Also, achieving a high extraction
efficiency of biopolymers from SCGs is essential for cost-effective material production [112].
The further optimization of extraction methods is required to maximise yield while min-
imising energy consumption. Ensuring compatibility between SCG-derived biopolymers
and other polymers used in biocomposites is critical for achieving desirable material proper-
ties [113]. Strong interfacial bonding is essential for the success of these materials. Scaling up
the production of biopolymers and biocomposites from SCGs to an industrial level presents
logistical and economic challenges that must be overcome for widespread adoption [114].
Comprehensive life cycle assessments are necessary to evaluate the environmental impacts
and sustainability of SCG-based materials compared to their conventional counterparts.

To address these challenges and further explore the potential of SCGs for biopolymer
and biocomposite production, several avenues of research and development should be pur-
sued. Developing extraction methods tailored to specific SCG compositions and intended
applications can improve efficiency and material properties [115]. The surface modification
of SCG-derived materials can enhance their compatibility with polymers and improve the
interfacial adhesion in biocomposites [116]. Exploring the incorporation of SCGs’ natural
antioxidant and antimicrobial properties into biopolymers and biocomposites can open
new applications in packaging and healthcare [117]. Collaborations with coffee producers
and retailers can help establish a consistent supply of SCGs and promote the circular
economy. Conventional extraction methods, such as solvent extraction, alkaline treatments,
and acid hydrolysis, have been widely studied. These methods effectively extract various
components of SCGs for application, including the lipids, antioxidants, and cellulose from
SCGs that could potentially be utilized in biocomposites. However, they often involve the
use of hazardous chemicals and may have limited sustainability, hence the need to use
novel methods and processes that are continuously being explored, such as the potential of
greener solvents, enzymatic extraction, microwave-assisted extraction, and supercritical
fluid extraction.

2.4. Extraction of Phenolic Compounds from Spent Coffee Grounds

Phenolic compounds are a diverse group of secondary metabolites found abundantly
in SCGs. The compounds themselves reside in the coffee bean and are left behind after the
beans have been exhausted into coffee grounds through extraction processes (hot water
and steam). The roasting of coffee beans can affect the levels of polyphenolic compounds
found in the original coffee bean, and results have shown both increases and decreases
in the polyphenolic content in coffee beans, with decreases primarily seen as the roasting
time steadily increased. Antioxidant capacity assays such as FRAP and DPPH were among
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the tests performed to conclude this [118]. These compounds, which include phenolic
acids, flavonoids, and tannins, are known for their antioxidant properties and have been
associated with various health-promoting effects, such as anti-inflammatory, antimicrobial,
and anticancer activities [119]. As such, their extraction from coffee waste has gained
significant attention. Chlorogenic acids, a subgroup of phenolic compounds, are particu-
larly prevalent in coffee waste and are known for their antioxidant and anti-inflammatory
properties [120]. Studies have demonstrated that SCGs contain a substantial amount of
chlorogenic acids, making them a valuable source for its extraction. SCGs also contain other
bioactive compounds, such as melanoidin (in a favourable concentration range, reporting
up to 8.8 mg/L when using SCGs at 8.3 g/L) [121] and caffeine (1.41%) [40,122]. These
compounds have potential applications in nutraceuticals, functional foods, and dietary
supplements due to their health benefits. Beyond their potential health-related applications,
phenolic extracts from SCGs could also be potentially employed in the food and beverage
industry as natural preservatives, flavour enhancers, and colourants [123]. Additionally,
they find use in cosmetics and skincare products for their skin-protective and anti-ageing
properties [124].

The extraction of phenolic compounds from SCGs has been a subject of significant
interest. Solvent-based extraction methods have been widely employed, with ethanol and
methanol being among the most common solvents [125]. The optimization of extraction
parameters, such as the temperature, solvent type, extraction time, and extraction method,
has been crucial in maximising the yield of phenolic compounds from SCGs [126].

2.5. SCG Is a Source of Biochar and Activated Carbon

Biochar and activated carbon are two types of carbon-based materials with unique
properties. Biochar is a carbon-rich material produced through the pyrolysis of organic
materials such as SCGs and has potential benefits in soil improvement, carbon sequestration,
and as a sustainable energy source [127]. Biochar has gained attention for its potential as a
soil conditioner and carbon sequestration agent. Several studies investigated the effects
of SCG-derived biochar on soil properties and plant growth. SCG biochar was reported
to show a high removal efficiency and stabilization of trace elements in soil, with further
studies being necessary on its biological toxicity [128]. SCG-derived biochar has been found
to improve soil quality (soil amendment) by enhancing the soil’s water retention, nutrient
retention, and cation exchange capacity when compared to peat-growing media [129].
Its porous structure creates a habitat for beneficial microorganisms and promotes soil
aeration. These improvements can lead to increased crop yields and decreased fertiliser
requirements [130]. One of the potential benefits of using SCG-derived biochar is its ability
to sequester carbon in the soil. Biochar’s recalcitrant nature allows it to persist in the
soil for an extended period, reducing carbon dioxide emissions and mitigating climate
change [131]. A study by Islam et al. evaluated the potentials of SCG-derived biochar and
its absorption capacity of silver. The authors reported that the biochar produced at 500 ◦C
offered a maximum surface area of 40.1 m2/g with a yield of 23.48% biochar and the highest
silver adsorption capacity of 49.0 mg/g with a 99.9% silver removal efficiency [132]. This
removal efficiency demonstrates the great potential of SCG-derived biochar. The chemical
composition of SCG-derived biochar may compare differently to other biochar from other
biomasses, due to the chemical nature of SCGs. SCGs, in general, typically contain higher
levels of nitrogen and potassium when compared to most other biomass types, which may
result in differences in the resulting biochar.

Activated carbon is a highly porous form of carbon produced through physical or
chemical processes. It is widely used for the adsorption of various substances and purifi-
cation processes. Chemical activation involves the impregnation of SCGs with chemical
agents, typically potassium hydroxide (KOH) or phosphoric acid (H3PO4), followed by
high-temperature carbonisation [133]. This method has been shown to enhance the porosity
and adsorption capacity of the activated carbon produced from SCGs. Physical activation
methods, such as steam activation, involve exposing SCGs to high-temperature steam in
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the absence of oxygen [134]. This process creates pores within the material, increasing its
surface area and adsorption capacity [135]. Researchers have explored different activa-
tion temperatures and times to optimize the properties of activated carbon derived from
SCGs [136].

Activated carbon is widely used for its high adsorption capacity, making it effective
in various applications, including water treatment, air purification, and wastewater re-
mediation [137]. The production of activated carbon from SCGs has been investigated
for its potential as a low-cost and sustainable alternative to traditional sources. Studies
have shown that SCG-derived activated carbon exhibits a good adsorption capacity for
a range of contaminants, including heavy metals, organic pollutants, and dyes [138]. Its
performance is influenced by factors such as the activation method, activation agent, and
precursor material [139]. The biochar and activated carbon derived from SCGs exhibit a
high porosity and surface area, making them suitable for adsorption applications. The
specific surface area is a crucial factor in determining their adsorption capacity, and the
optimization of production methods can influence these properties [140]. Its adsorption
properties can be tailored to target specific contaminants, offering a sustainable solution for
treating various types of wastewater.

Researchers have extensively characterized SCG-derived biochar and activated carbon
to understand their physical and chemical properties [141]. Key characterization techniques
include scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area
analysis, Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) [142].
An FTIR analysis is employed to reveal the presence of functional groups on the surface of
SCG-derived materials, such as hydroxyl, carboxyl, and phenolic groups [143]. These func-
tional groups play a role in adsorption mechanisms and can be modified through activation
methods. An XRD analysis is used to investigate the presence of crystalline phases, such as
graphite-like structures in SCG-derived biochar and activated carbon [144]. Understanding
the crystalline structure is essential for tailoring the materials to specific applications. The
biochar and activated carbon produced from SCGs offer numerous applications beyond soil
improvement and water treatment. Some potential future directions include SCG-derived
carbon materials that could be explored for energy storage applications, such as superca-
pacitors and batteries, due to their high surface area and conductivity [145]. Research into
the catalytic properties of SCG-derived materials for various chemical reactions, including
the conversion of biomass into valuable chemicals, is an emerging area of interest [146]. In-
corporating SCG-derived carbon materials into composite materials could lead to enhanced
properties, such as mechanical strength, thermal stability, and electrical conductivity [147].
Table 3 showcases the extraction of value-added products from SCGs. Figure 3 below
shows a refining scheme of the chemical activation of SCGs to activated carbon and bio oil.
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Table 3. Extraction and application of value-added products from SCGs.

Coffee Waste Type Methods/Parameters Research Findings Product/Potential Applications Reference

SCGs

• Pyrolysis of SCGs at different temperatures
(350 and 500 ◦C) for 2 h each at the heating
rate of 10 ◦C/min

• SCGs significantly hamper the compressive
strength of SCG-blended concrete.

• Pyrolyzing the SCGs at 350 ◦C led to a
significant improvement in their
material properties.

• A 29.3% enhancement in the compressive
strength of the composite concrete blended
with coffee biochar was reported

Biochar for concrete
strength enhancement [148]

SCGs

• Alkaline extraction of fibre from SCGs using
50% NaOH at a ratio of 1:10 (w/v) at 60 ◦C
for 8 h with constant stirring (100 rpm).

• Extracted cellulose fibre was solubilized
using 68% ZnCl2 and crosslinked with salt
(CaCl2) amounts of 0.1, 0.2, 0.3, and 0.4 g for
the preparation of biodegradable films.

• Films showed significant antioxidant
properties and blocked UV IR radiation.

• The highest tensile strength of \t6.8 MPa.
• The tensile strengths are positively

correlated to salt and SCG extract amounts.

Cellulose fibre is used to produce
biodegradable, UV-blocking,
and antioxidant films

[149]

SCGs

• The ultrasound pretreatment was
performed with a frequency, nominal
power, and amplitude of 35 kHz, 160 W,
and 100%, respectively.

• The ultrasound pretreatment was
performed for 1 h at Tamb and 80 ◦C.

• A reduction in the lignin content and the
increased contact surface due to the
powdery nature of the SCGs resulted in the
highest methane potential among the
LMs investigated.

• This difference in methane potential can be
attributed to the diversity in the coffee
species, as well as to the torrefaction and
coffee-brewing procedures.

Methane Production for
Organic Chemicals [150]
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Table 3. Cont.

Coffee Waste Type Methods/Parameters Research Findings Product/Potential Applications Reference

SCGs
• Plaster, Water, and SCGs were placed in a

mould together.

• The study found that coffee grounds and
gypsum have a good homogeneity and
adhesion when mixed.

• The addition of coffee grounds reduced the
density of plaster and improved its
thermal qualities,

• A reduction in flexural strength of the plaster
was observed.

Plastering Composite [151,152]

Spent Coffee
Ground Wastes

• Pyrolysis of SCGs at different temperatures
(30 and 900 ◦C) at a rate of 10 ◦C/min with
a continuous flow of nitrogen at 50 mL/min

• The SCG-biochar showed a high fixed carbon
content (82.83%), low volatile matter (12.28%),
and low ash content (2.22%).

• The combustion characteristics of the
SCG-biochar were in a form of steady
combustion behaviour suitable for energy
generation. The cost of SCG-biochar was also
found to be competitive at the price of
$7.22 per kg.

Solid Biofuel [153]

SCGs

• Extractions using a powder-to-liquor ratio
of 1:50.

• Temperature was raised from 25 ◦C to 80 ◦C
at 2 ◦C/min, and maintained at 80 ◦C for
60 min.

• After cooling, extracted solutions were
centrifuged at 10,000 rpm for 10 min and
were then filtered to separate the solution
from the leftover grounds

• An ethanol/alkali solvent is effective for
extracting natural colorants and bioactive
chemicals from SCGs.

• Silk and wool fabrics dyed with the extracts
exhibited an improved antioxidant capacity
as well as a natural brownish colour with
satisfactory colour fastness,

• An extraordinarily high level (>90%) of
antibacterial activities (against E. coli,
S. Aureus, and C. albicans) was achieved by all
fabric samples investigated.

Textiles Dyes—Natural bio-colorant,
improved UV protection. [154]
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Table 3. Cont.

Coffee Waste Type Methods/Parameters Research Findings Product/Potential Applications Reference

Spent Coffee Grounds

• SCGs mixed with a 5% NaOH solution
(1:10 w/v) at 70 ◦C for 2 h, oven drying at
80 ◦C for 24 h.

• Followed by bleaching using a mixture of
an acetate buffer and a sodium chlorite
solution (1:1 v/v), at 80 ◦C for 2 h.

• Treatment was repeated three times to
ensure the complete removal of lignin.

• The percent yield of the purification
was 29.5%.

• The purified SCGs (PSCGs) have a greater
surface roughness leading to a higher specific
surface area. PSCGs contain approximately
30% cellulose and, 70% hemicellulose with a
trace of nitrogen-containing compounds.

• At any given filler loading, TESPT-treated
PSCGs exhibits greater reinforcement than
PSCGs as evidenced by the improved
modulus, hardness, and tensile strength.

Reinforcement in a Natural
Rubber Composite [155]

Spent Coffee Grounds.

• SCGs were defatted using hexane and
treated using sodium chlorite at 1% (w/w)
and acetic acid at 1% (v/w biomass), at a
solid/liquid ratio of 1:10 (w/v) at 80 ◦C, for
3 h for the SCG-derived polysaccharides.

• A two-stage enzymatic hydrolysis
(short- and long-term) was performed to
produce short-chain
Manno-oligosaccharides (MOSs)
and monosaccharides (MSs),

• Amounts of 77% delignified SCGs and 61%
SCG-derived polysaccharides, amounts of
15.9 g of first bio sugars (mostly MOSs), 25.6 g
of second bio sugars (mostly MSs), and 3.1 g
of bioethanol, were recovered from 100 g dry
weight (DW) amounts of SCGs.

Oligosaccharides (OSs),
manno-oligosaccharides (MOSs),
mannose, and bioethanol

[156]
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The following schematic demonstrates the potential of utilising spent coffee grounds
in a refining scheme of chemical activation to activated carbon, and retrieval of bio-oil [157].
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2.6. Other Applications of Spent Coffee Grounds
2.6.1. Soil Amendment and Agriculture

Studies have consistently highlighted the potential of SCGs as an effective soil amend-
ment [158]. SCGs are rich in essential nutrients and organic matter, making them valuable
inputs for enhancing soil quality [159]. When incorporated into agricultural practices,
SCGs can improve the soil structure, water retention, and nutrient availability [160]. This
not only enhances crop yields but also reduces the need for synthetic fertilisers, thereby
diminishing the environmental footprint of conventional agriculture [161]. The circular
economy potential here lies in the repurposing of a waste product to support sustainable
food production.

2.6.2. Carbon Sequestration

The organic nature of SCGs contributes to their carbon-rich composition, making them
an important resource for carbon sequestration [162]. Incorporating SCGs into soils can aid
in the capture and storage of carbon dioxide (CO2) from the atmosphere [163]. This carbon
sequestration potential aligns with the sustainability goal of mitigating climate change by
reducing CO2 emissions. Utilizing SCGs in this manner exemplifies the circular economy
principle of reusing waste materials for environmental benefits.

2.6.3. Energy Production

In addition to soil amendments, SCGs can be converted into biofuels through var-
ious processes such as pyrolysis, anaerobic digestion, or direct combustion [164]. This
bioenergy generation not only reduces the dependence on fossil fuels but also provides
a renewable and sustainable energy source. The circular economy potential is evident in
the repurposing of SCGs as a source of energy, turning a waste product into a valuable
resource. However, it is important to consider the efficiency of these biofuel processes and
their overall environmental impact.

2.6.4. Biodiversity and Ecosystem Impacts

While the focus of SCG utilisation is on the direct benefits it offers, it is essential to
consider the broader environmental impacts of coffee production itself. Studies on the
environmental feasibilities of individual processes of utilization of SCG for its compounds
are necessary, to fully assess the biodiversity and ecosystem impacts of the processes.
One study, for example, assesses the environmental feasibility of the biofuel produced from



Biomass 2024, 4 301

SCGs via transesterification with pretreatment and pyrolysis via process simulation with
500–4000 kg of SCGs, which found promising results using recycling systems which im-
proved carbon dioxide emissions in one of the two recycling systems [165]. This highlights
the importance of environmentally assessing the impacts of the processes used to utilize
SCGs, to fully understand their impacts.

3. Role of the Valorisation of Spent Coffee Grounds in the Circular Economy

The utilisation of SCGs aligns with key circular economy principles, including reduc-
ing waste, reusing materials, and recycling resources. By repurposing SCGs, we extend
their lifecycle and reduce the demand for virgin materials, thereby promoting circularity
in resource use. This approach is essential for addressing environmental challenges and
achieving long-term sustainability.

3.1. Economic and Social Implications

The sustainability and circular economy potential of SCG utilisation are closely linked
to economic and social factors. The economic viability of SCG utilisation can influence its
widespread adoption [166]. Additionally, the social aspects of SCG collection and process-
ing, including job creation and community engagement, can have positive implications for
local economies and sustainable practices. The utilisation of SCGs as a biobased resource
holds substantial promise in contributing to sustainability and embracing circular economy
principles [167]. By diverting waste from landfills, enhancing soil quality, sequestering
carbon, generating renewable energy, and aligning with circular economy principles, SCG
utilisation presents an opportunity to address pressing environmental challenges. Collabo-
rative efforts among stakeholders in the coffee industry, policymakers, and researchers are
essential to unlock the full potential of SCGs as a valuable biobased resource, fostering a
more sustainable and circular economy. Figure 4 portrays the potential circular bioeconomy
of spent coffee grounds [168].

Biomass 2024, 4, FOR PEER REVIEW 17 
 

study, for example, assesses the environmental feasibility of the biofuel produced from 
SCGs via transesterification with pretreatment and pyrolysis via process simulation with 
500–4000 kg of SCGs, which found promising results using recycling systems which im-
proved carbon dioxide emissions in one of the two recycling systems [165]. This highlights 
the importance of environmentally assessing the impacts of the processes used to utilize 
SCGs, to fully understand their impacts. 

3. Role of the Valorisation of Spent Coffee Grounds in the Circular Economy 
The utilisation of SCGs aligns with key circular economy principles, including reduc-

ing waste, reusing materials, and recycling resources. By repurposing SCGs, we extend 
their lifecycle and reduce the demand for virgin materials, thereby promoting circularity 
in resource use. This approach is essential for addressing environmental challenges and 
achieving long-term sustainability. 

3.1. Economic and Social Implications 
The sustainability and circular economy potential of SCG utilisation are closely 

linked to economic and social factors. The economic viability of SCG utilisation can influ-
ence its widespread adoption [166]. Additionally, the social aspects of SCG collection and 
processing, including job creation and community engagement, can have positive impli-
cations for local economies and sustainable practices. The utilisation of SCGs as a biobased 
resource holds substantial promise in contributing to sustainability and embracing circu-
lar economy principles [167]. By diverting waste from landfills, enhancing soil quality, 
sequestering carbon, generating renewable energy, and aligning with circular economy 
principles, SCG utilisation presents an opportunity to address pressing environmental 
challenges. Collaborative efforts among stakeholders in the coffee industry, policymakers, 
and researchers are essential to unlock the full potential of SCGs as a valuable biobased 
resource, fostering a more sustainable and circular economy. Figure 4 portrays the poten-
tial circular bioeconomy of spent coffee grounds [168] 

 
Figure 4. The potential of SCGs in the circular economy [168]. 

3.2. Challenges and Future Perspectives 
The utilisation of SCGs as a resource for biobased chemicals and materials has gained 

significant attention in recent years due to their sustainability and abundance. However, 
the utilisation of SCGs as a resource for biobased chemicals and materials presents certain 
challenges that need to be addressed for successful industrial applications. One of the pri-
mary challenges is the heterogeneity of SCGs from their various sources and the logistics 
of collections from their various sources especially the coffee shops and household con-
sumers. Regarding the variability in SCG composition, factors such as the coffee type, 
brewing method, and processing conditions are the main influencing parameters. This 
variability can make it difficult to standardize extraction processes and optimize the 

Figure 4. The potential of SCGs in the circular economy [168].

3.2. Challenges and Future Perspectives

The utilisation of SCGs as a resource for biobased chemicals and materials has gained
significant attention in recent years due to their sustainability and abundance. However,
the utilisation of SCGs as a resource for biobased chemicals and materials presents certain
challenges that need to be addressed for successful industrial applications. One of the pri-
mary challenges is the heterogeneity of SCGs from their various sources and the logistics of
collections from their various sources especially the coffee shops and household consumers.
Regarding the variability in SCG composition, factors such as the coffee type, brewing
method, and processing conditions are the main influencing parameters. This variability
can make it difficult to standardize extraction processes and optimize the production of
biobased chemicals and materials. Researchers must develop efficient methods to sort
and preprocess SCGs to ensure their consistent quality and composition. Table 4 gives
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insight into recent initiatives that are currently converting large quantities of SCGs into
valuable products.

Since a huge amount of SCGs is obtained from coffee shops and household consumers,
the logistical challenges faced in concentrating large volumes of spent coffee grounds to
processing levels by bioprocessing plants requires innovative approaches and technological
advancements to overcome these challenges. Various initiatives have been explored to
improve the collection and processing of SCGs at a commercial scale. For example, there
are initiatives such as ANDRITZ, a company in Austria, Finland, and Germany who are
working closely with businesses to transform their coffee waste into biofuels [169]. This
would suggest that with proper infrastructure and processes, the concentration of coffee
grounds on a large scale is feasible. Similarly, the Kafsimo project in Greece is a community-
led approach that involves collecting spent coffee ground waste from local coffee shops,
drying it under natural processes, and then converting it into solid fuels such as briquettes
and pellets. This project demonstrates the potential for similar projects in other regions
to successfully collect and process coffee waste on a larger scale [170]. Matrapazi and
Zabaniotou [171] conducted an experimental study into the feasibility of SCGs via their
pyrolysis into biochar and energy with a capacity of 2566 tons of SCGs per year.

The authors demonstrated that SCGs, via their pyrolysis into biochar and energy, are
economically profitable at a net profit of 47 euros per ton of treated SCGs [171]. The study
demonstrates the feasibility of concentrating SCGs to a scale necessary for bioprocessing.
Statistics on the mass of coffee grounds collected in Ireland and the EU are limited. However,
based on the advancements and recent innovations in other regions, it would demonstrate
that for countries such as Ireland. Further research on the mass of SCGs generated by
various coffee processing institutions such as Insomnia as well as the concentration of spent
coffee grounds is needed to fully harness the potential of the material.

Despite these challenges, the prospects for implementing SCGs for biobased chemicals
and materials are promising. As sustainability becomes a driving force in various industries,
the demand for alternative, renewable resources is expected to rise [172]. SCGs offer an
eco-friendly solution that can contribute to reducing waste and greenhouse gas emissions.
Potential research directions in this area include the development of innovative extraction
techniques to efficiently recover valuable compounds from SCGs, such as antioxidants,
polyphenols, and cellulose [173]. Additionally, exploring novel applications for SCGs in
bioplastics, biofuels, and speciality chemicals could open up new avenues for sustainable
product development [174]. Collaboration between academia, industry, and government
entities is crucial to overcome certain obstacles and unlock the full potential of SCGs as a
valuable resource for biobased chemicals and materials. Also obtaining data on the amount
of SCGs generated in EU countries will be beneficial. By addressing these challenges and
pursuing innovative research, SCGs can play a significant role in the transition towards a
more sustainable and circular economy.
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Table 4. SCG collection statistics that could hold potential feasibility in systems at bio-processing plant levels.

Institute/Organisation/Company/Body Findings City/Country References

Imbibe—Coffee Roasters
• 6 kg Beans Delivery and SCGs ‘Zero Waste’ Return Scheme.
• Currently this is utilised for compositing purposes only. Ireland [175]

Coffee 4 Planet Ark—The Council of the City
of Sydney

• 921 café and coffee shops produce 3000 tonnes of coffee grounds
annually (93% end up in landfill).

• Shops’ sending of coffee grounds via a postage service—Sendle
(distribute where necessary in country)

• $8.75 to collect and receive 25 kg of SCG.
• Additional cost of 19c-50 for sustainable transport liners.

Syndey, Australia [176]

ANDRITZ

• Helping large processing plants and coffee companies dispose of
tonnes of spent coffee grounds each day.

• Turning this waste into biofuel (sustainably)
• Coffee companies using biofuel from coffee grounds to fuel their

steam heaters, saving on energy.
• Mechanical dewatering of wet grounds (Paddle dryer, fluid bed

dryer, pelletizing, or steam generation)
• Providing coffee producers with a complete automated production

line of proven technology to transform their exhausted coffee waste.
• Circular Coffee Production

Operating in:
Austria, Brazil, Canada, China, Finland, Germany,
United States.

- 280 Cities Worldwide
[169]

Bio-Bean Ltd., Nafigate, and WaysTUP!

• First coffee recycling company
• Transforming SCGs into biofuels and biomass pellets

(chemical and plastics industry).
• Uses in plastics, brake pads, and more.
• Research in areas such as utilising SCGs into natural flavour extracts.
• Collection system from hundreds of coffee shops, bars, and factories

across England.
• Initial factory setup in 2015 could process up to

50,000 tonnes annually.
• Navigate produces biopolymers from SCGs that are sourced

through Biobean.
• Low industrial-scale cost of polymers.

- Alconbury and Cambridgeshire, England.
- Prague, Czech Republic [177–179]

Agricultores De La Vega Valencia and
WaysTUP! Project

• Utilising spent coffee grounds to extract flavours, polyphenols, oils,
and carotenoids Valencia, Spain. [180,181]
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Table 4. Cont.

Institute/Organisation/Company/Body Findings City/Country References

Coffeefrom

• Create products by the injection and moulded 3D Printing of
exhausted coffee grounds that are sold through numerous avenues.

• Coffee espresso cup and saucer
• Coffee mugs.
• 100% Italy-based supply chain.
• Collaborates with local enterprises.

Italy [182]



Biomass 2024, 4 305

4. Conclusions

In conclusion, the utilization of SCGs has the potential to contribute to the production
of biobased chemicals and materials. SCGs can be harnessed to create a wide range of
sustainable products, including bioplastics, biofuels, and adsorbents. This could reduce
the environmental burden associated with coffee waste disposal and also contribute to
the development of more sustainable alternatives to conventional petroleum-based ma-
terials. Effectively repurposing SCGs may reduce the environmental footprint of both
the coffee industry and the materials sector. Additionally, this innovation aligns with the
principles of the circular economy, promoting resource efficiency and waste minimisation.
The utilisation of SCGs for biobased materials represents a step towards a more sustain-
able and environmentally conscious future. It exemplifies the transformative potential
of waste-to-value approaches, offering a solution to the challenges of resource depletion
and environmental degradation. Continued research and development in this field will
undoubtedly play a crucial role in advancing the circular bioeconomy and mitigating the
environmental impacts of traditional materials production.
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