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Abstract: Our aim is to provide an insight into the procedures and the dynamics that lead the spread
of contagious diseases through populations. Our simulation tool can increase our understanding of
the spatial parameters that affect the diffusion of a virus. SIR models are based on the hypothesis
that populations are “well mixed”. Our model constitutes an attempt to focus on the effects of
the specific distribution of the initially infected individuals through the population and provide
insights, considering the stochasticity of the transmission process. For this purpose, we represent the
population using a square lattice of nodes. Each node represents an individual that may or may not
carry the virus. Nodes that carry the virus can only transfer it to susceptible neighboring nodes. This
important revision of the common SIR model provides a very realistic property: the same number
of initially infected individuals can lead to multiple paths, depending on their initial distribution in
the lattice. This property creates better predictions and probable scenarios to construct a probability
function and appropriate confidence intervals. Finally, this structure permits realistic visualizations
of the results to understand the procedure of contagion and spread of a disease and the effects of any
measures applied, especially mobility restrictions, among countries and regions.

Keywords: COVID-19; SARS-CoV-2; epidemiology; lattice simulation; infection diffusion; epidemics;
control measures

1. Introduction

This research aims to provide a supplementary tool, improving our ability to under-
stand, trace and visualize the epidemic and pandemic spread of viruses in populations,
considering specific spatial information. Our main purpose is to provide an appropriate
model to understand the diffusion mechanisms and the effects of different population
characteristics and restrictive measures as accurately as possible.

As a reference, we used parameters that are estimated as applicable on COVID-19 in
Greece. It is an appropriate example, since it constitutes a coronavirus disease (COVID),
first observed during the last days of 2019. An individual can become infected by close
contact, being in indoor settings or even by touching contaminated surfaces or objects.
Carriers can be symptomatic or asymptomatic. Both categories of carriers can become
contagious. One year later, the first vaccine was available, and now, nine vaccines have
been approved [1].

The most common model to approach the spread of a virus disease is using SIR [2]. A
homogenous population of size N is divided into three groups: susceptible (S), infected (I)
and removed (R). Susceptible individuals can become infected by contagious infected
individuals, while infected individuals can become removed, either by being recovered
(and immune) or dead. Obviously, at any given time t:

N(t) = S(t) + I(t) + R(t). (1)
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Continuous time epidemic models, such as SIR, are usually applied to describe the dy-
namics of transmission of infectious diseases, because of their tractability [3–5]. Parameters
are easier to predict, and the results provide interesting insights.

Additional conditions are allowed in more recent models. In the case of another
coronavirus syndrome, which broke out in South Korea, the model additionally included
people who were exposed to the virus (E), asymptomatic carriers (A) and hospitalized
heavily diseased individuals (H) [6].

The model works as follows: susceptible individuals might become exposed, if they are
in contact with infected or asymptomatic individuals. After an incubation period, exposed
individuals become infectious–contagious. Some of them are symptomatic (Infected), while
others are asymptomatic. Some of the symptomatic individuals are hospitalized, and all
asymptomatic, infected and hospitalized individuals move to removed (recover or die).

Recent research on COVID-19 additionally separated recovered from symptomatic
individuals (R), those who are observable and have recovered from being asymptomatic
(AR), and those who cannot be identified easily. They also added a spatial parameter: the
density of the population [7]. This consideration of heterogeneous populations and their
effect on the spread of the virus was an inspiration for our research.

Additionally, innovative research on COVID-19 introduced the possibility of contagion
through viral shedding in the environment, including a pathogen (P) variable too [8].

On the other hand, there are researchers that use a simulation procedure, considering
that the density of individuals infected by COVID-19 in a population could be fitted well by
a self-organizing diffusion model (SODM), designed to describe the diffusion of a charge
through a lattice. Considering a square lattice of nodes that can be active or inactive
(representing carriers or non-carriers), they assign a “charge” instead of the virus on some
nodes that become active (carriers). Charge can be transferred to inactive nodes neighboring
to an active node [9].

Difference equations are also appropriate, since they could be directly applicable to
time series data [5]; we choose to work using a simulation, which might be more accurate
and adapted to the time series data available if a discretized model is used [10].

Another interesting way to deal with heterogeneity is by separating the population
into categories and using contact matrices [11]. One of the potentials of our research is to
allow us apply “borders” to divide the population into geographical areas (such as islands
or geomorphologically separated regions) and use contact matrices to examine the effects
of landscape and restrictions on the transmission of the virus.

Briefly, this research aims to introduce a new, supplementary approach to simulate and
visualize the spread of epidemic and pandemic viruses through populations, considering
the importance of spatial information and the stochasticity of contagious contacts. Our
model is complementary to common diffusion equation approaches and meta-population
models, since it focuses on simulating different scenarios of the (usually unknown) initial
distribution of the infectious individuals through the population and the (initially unknown)
expected contagious contacts between individuals. Thus, we outlined the possible evolution
paths of the disease spread and estimated their probabilities using the information available
at any moment.

2. Materials and Methods
2.1. Context

We based our model on the initial concept of [9]. Thus, we present an example of its
structure using a simple 3 × 3 square lattice of nodes in Figure 1. It has one active node (A)
in the center and eight inactive nodes (N). The active node can transfer “charge” through
any of the red arrows, activating non-active nodes. It is also claimed that measures of
“isolation” reduce the number of the red arrows that transfer “charge” [9].
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Figure 1. A 3 × 3 lattice of 9 nodes. The central node is initially active (A) (infected) and may transmit
the virus to the four nodes (N) (non-infected) pointed to by the red arrows.

Applying this charge diffusion model on epidemics, we represent individuals of the
population as nodes. Active nodes can be considered as infected (I) and inactive nodes as
susceptible (S). We reduce the importance of “charge”, using it only to flag the individual as
infected (represented by 1) or susceptible (represented by 0). This constitutes a fundamental
change of the model, since it becomes able to reproduce the states of susceptible and infected
individuals and the properties of contagion and immunity in a way that corresponds to the
respective terms used in SIR models.

Additionally, we allowed more states than “active”–“infected” and “inactive”–“susceptible”,
based on the states that are used in extended SIR models (SEAIR); we will discuss those
states in Section 2.2. On a square lattice of L × L nodes, we “seeded” a few infected
individuals in random nodes. In every step (sweep), infected nodes might infect some of
their susceptible neighboring nodes. Infected nodes (symptomatic or asymptomatic) obtain
temporary immunity after a specific time.

This approach has two interesting and important advantages, compared to common
SIR models:

• It considers the initial distribution of the infections, through the lattice population.
• We can visualize this spread through time and space, making the whole concept easier

to understand.

The most important fact is that this model considers three kinds of realistic stochasticity:

• In most of the cases, accurate initial distribution of the infected individuals in the
lattice cannot be observed through the existing data, so any considerations are based
on random distribution (uniform). To make clear the importance of this property,
we return to the simple 3 × 3 square lattice, dividing population into infected (I-
nodes) and susceptible (S-nodes) as presented in Figure 2. In the following example,
both lattices (Figure 2a,b) represent a population of nine nodes–individuals. Two
of them are infected (I0 = 2) and seven are susceptible (S0 = 7). We note that their
distribution is not the same. Both diagrams could appear equally probable but may
lead to different paths of the virus spread, because of their initial distribution. SIR
models cannot conceive such information. It is obvious that the initial distribution of
infected individuals through the lattice determines the number of possible contagions.
This way, it affects the reproduction number of the virus. For example, we can verify
that the central node of Figure 2a can transmit the virus to up to four neighboring
nodes, while the bottom right node of Figure 2b can only affect a maximum of one
node. Additionally, if contagions represented by arrows happen with a probability less
than 1, then susceptible individuals have different probabilities of becoming infected.
For example, the susceptible nodes of the second column of Figure 2a would have
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different probabilities of becoming infected in such a case. The first-row node is
exposed to two separate contagious individuals, while the third-row node is exposed
to one contagious individual.
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Figure 2. Two 3 × 3 lattices of nodes (a,b) representing populations. Red arrows represent the
possible contagions. In both nodes, there are two initial infected people (I0 = 2), while seven are
susceptible (S0 = 7). In (a) there are four infected nodes, while in (b) there are three.

• A second realistic stochasticity is related to susceptible individuals who can contact
infected ones after every sweep (period). Some contacts may meet while others will not
(considering restrictions on mobility, self-protection measures, isolation etc.). We only
allow for a percentage of those possible contacts to transform susceptible individuals
to exposed, while the rest emerge with no contagion. We use a random process, so
that contact is enabled only for two neighboring nodes of each infectious node. In
the example presented in Figure 3, only up and right neighboring nodes can become
infected. In the first case (Figure 3a) both interactions lead to infections, while in the
second case (Figure 3b), one of them is already infected so only the other interaction
leads to a new infection.

• The third realistic stochasticity presented in our model allows some exposed individu-
als to evolve to be asymptomatic, while the rest evolve to be infected (symptomatic).
Both situations lead to immunity after some days (sweeps).
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Figure 3. Two 3 × 3 lattices of nodes (a,b) representing populations. Arrows represent the possible
contagions. Green arrows represent contacts that will lead to contagion. Red arrows represent
contacts that will not lead to contagion. (a) both interactions lead to infections. (b) one of them is
already infected so only the other interaction leads to a new infection.



AppliedMath 2024, 4 5

Finally, having tested a lot of scenarios and models, we ended up with a better
structured model, which works as follows. Contagious individuals are divided into infected
(I) and asymptomatic (A). Susceptible (S) individuals might become exposed (E) when
they contact infected or asymptomatic individuals. After an incubation period, exposed
individuals become infectious–contagious. Some of them are symptomatic (infected), while
others are asymptomatic. Infected and asymptomatic individuals move to removed (R)
and asymptomatic removed (AR), respectively, obtaining immunity. In this version of the
model, we excluded deaths for simplicity.

Based on the flow diagram of the compartmental model suggested in [6], Figure 4 is
a flow diagram of our compartmental model. For readers’ convenience, we use the same
colors as in the simulation videos.
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All of the above stochastic elements allow different paths to occur with the same initial
conditions. This is one of the most important facts that makes this model a useful tool and
offers an additive value to the existing literature.

2.2. Algorithm and Experimentation

We started exploring the potential of our model, using MATLAB [12]. We initially
based our research on the model of [9], so we used a lattice of nodes, representing a
population of individuals. We transformed it in a way that it could:

• become able to estimate the number of infected and susceptible individuals and
represent those states clearly, by replacing charge with flag values. We used 1 for
infected and 0 for susceptible. Diffusion of charge is replaced by contagion of virus to
neighboring nodes/individuals,

• apply to an extended SIR model (we experimented using SEAIR). In addition to values
1 and 0, for infected (I) and susceptible (S), respectively, we used 0.5 for exposed (E),
0.75 for asymptomatic (A) and −0.25 and −0.5 for asymptomatic who recovered (AR)
and infected who recovered (R), respectively,

• visualize results. Our model’s results can be depicted in short videos, presenting the
lattice from day one (initial condition) to the final day. An observer can identify the
exact coordinates of each infection and recovery and understand patterns of contagion
and immunity building in the population.

According to the process we follow, after defining the size of the lattice, the parameters,
and the initial conditions, the main steps are the following:

• All nodes/individuals are considered as susceptible. Then, according to the initial
conditions, an amount of I0, E0, and A0 nodes turn into infected, exposed and asymp-
tomatic. Their positions are chosen through a random process (thus any repetition of
the experiment is different).

• During the first step (period one):

# The algorithm recognizes all infected nodes/individuals and chooses randomly
n out of 4 neighboring nodes as possible infectious connections. If any of the
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nodes chosen are susceptible, they may transform to exposed with a probability
p that allows us to reproduce n × p infectious contacts per individual per period.
If the nodes chosen are not susceptible, nothing changes.

# The same process with different parameters holds for asymptomatic
nodes/individuals.

# The algorithm recognizes exposed nodes and may transform them into asymp-
tomatic or infected. The exact period and the type of transformation are defined
by a stochastic process, according to the parameters.

# The algorithm recognizes asymptomatic nodes and may transform them into
asymptomatic recovered if the period of asymptomatic infection is completed.

# The algorithm recognizes infected nodes and may transform them into recov-
ered if the period of symptomatic infection is completed.

# The algorithm recognizes immunized (asymptomatic recovered and recovered)
nodes/individuals and may transform them into susceptible if the immunity
period is completed.

• The process is repeated for all following periods, keeping track of the data.

Our initial approach was focused on small lattices. An interesting size that is small
but representative of the properties of our model is the 6 × 6 lattice. We present here two
different cases, both starting with three infected individuals, in different places on the
lattice. We observe its evolution for 120 days. Even if the lattice is small, the difference
of the paths is obvious. Then we apply our model on a 100 × 100 lattice starting with
117 infected individuals for 200 days and we extensively analyze the results and insights
that can be extracted.

Even though we have just been experimenting, we used parameters based (approxi-
mately) on the results of COVID-19 in Greece during the first months of its outbreak, in
2020 [7]. It became clear that those parameters should be corrected for our model, since we
have to consider that new infections in each period are neighboring to old ones, leading
to an important reduction of the effective reproductive number implied. At this point,
we ignored hospitalization and death, considering that disease ended in recovery and
immunization. We considered that this immunity effect lasts for 90 days, according to the
relevant certificate that the Greek government issued initially [13]. The parameters we used
are presented in Table 1.

Table 1. Parameters and Initial Conditions (for Exposed, E0, for Asymptomatic, A0 and Infected, I0)
used in our Experimentation.

Parameter Value Used

Recovery time (in days) 6
Immunity duration (in days) 90

Transmission rate (per infected) 0.31
Transmission rate (per asymptomatic) 0.21

Latent period (E → A) (in days) 3
Incubation period (E → I) (in days) 5

E0/I0 2.65
A0/I0 2.84

Finally, we tried to approximate the Greek population (10,768,477 individuals), by
a square lattice of 3282 × 3282 dimensions. In this case we used the initial condition of
117 infected individuals (as on 12 March 2020, according to [7]) and tracked its evolution
for 1000 days (up to 7 December 2022). The data are—reasonably—not fitting reality, since
we have not applied any measures such as quarantine, mobility restrictions or vaccination.

3. Results

We used our model to estimate and visualize three different populations, using a 6 × 6
lattice, a 100 × 100 lattice and a 3282 × 3282 lattice. Having researched a wide variety of



AppliedMath 2024, 4 7

lattices of different sizes, it seems that there are finite-size effects that can affect reliability
of the simulations. Larger lattices seem to provide more realistic simulations, reducing the
finite-size effects [14]. We focused on the second one to extract and present the insights
that can be obtained by applying this model. We suggest that our model is especially
appropriate to identify a confidence interval for the evolution of the spread of a virus in
a population. It can also reveal extraordinary but possible scenarios, based on any given
initial conditions and parameters.

3.1. 6 × 6 Lattice

We use this relatively small and simple infrastructure to briefly explain the mechanisms
and properties used in the model we created. In this presentation we have created two
videos that use the same parameters and initial conditions, although the stochastic nature
of our simulations allows for differences in the contagion and immunization process.

We observe that both Figure 5 (Video S1) and Figure 6 (Video S2) start having I0 = 3,
E0 = 7 and A0 = 8. Parameters are the same for both videos. In Figure 5 (Video S1),
infected individuals increase fast. This reaches up to 9 individuals simultaneously. After
day 20, the virus disappears. In Figure 6 (Video S2) we observe a maximum number of
infected individuals equal to 4. It takes more than 35 days to reach zero cases. These
important observed differences are strong arguments that support the use of our model to
analyze the evolution of epidemics in populations.
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Figure 6. (Video S2 in Supplementary Materials). 6 × 6 Lattice. I0 = 3 (3 yellow squares). The video
is created for 120 days with another initial distribution. The lattice is presented for day 1 (a), day
10 (b), day 15 (c) and day 35 (d). The total infected individuals are presented in (e) through the first
35 days.

A different scenario, using the same parameters and initial conditions, is presented in
Figure 6 (Video S2). While at around 20 days, infected individuals are zero, on day 35 there
are still asymptomatic and infected individuals. Obviously, exposed and asymptomatic
individuals carried the virus and became contagious.

3.2. 100 × 100 Lattice

In larger lattices of more nodes, such as 100 × 100, differences become more clear and
wider. The following two videos, Figure 7 (Video S3) and Figure 8 (Video S4), depict the
paths of two populations with an initial “seeding” of 117 infected cases in different initial
positions. We observed those populations for 200 days.

Again, there is an important difference in the number of days passed before the virus
stops spreading and a difference in the height of the peaks of infected individuals. In
Figure 7, there are very few infected individuals remaining after 100 days.

In Figure 8 (Video S4), we depict the differences that can appear when the initially
infected individuals are in different places in the lattice. There are still many infected
individuals after 100 days and some nodes are active even after 200 days. In Figure 8e we
can identify separate waves of activity.

In Figure 7 (Video S3), infected individuals increase fast, reaching a maximum of
more than 400 individuals, simultaneously, in less than 20 days. Before day 100, the virus
has disappeared. In Figure 8 (Video S4) we observed a maximum number of infected
individuals below 400 individuals. After 200 days, there are still a few infected individuals.
Again, we claim that those different paths cannot be observed or even identified without a
simulation model that accounts for realistic stochastic processes that affect the evolution of
the system.
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Figure 7. (Video S3 in Supplementary Materials). 100 × 100 Lattice. I0 = 117. The video is created
for 200 days. The lattice is presented for day 1 (a), day 25 (b), day 50 (c) and day 100 (d). The total
infected individuals are presented in (e) through the first 100 days.
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Figure 8. (Video S4 in Supplementary Materials). 100 × 100 Lattice. I0 = 117. The video is created for
200 days with another initial distribution. The lattice is presented for day 1 (a), day 25 (b), day 100 (c)
and day 200 (d). The total infected individuals are presented in (e) through the first 200 days.

After running 100 different scenarios of the initial distribution of the 117 infected
individuals, we can observe that the paths clearly follow a specific pattern, but differences
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are not so insignificant as to be ignored. Having the same number of initially infected
individuals, placed on the same lattice, we observed that the maximum number of simul-
taneously infected individuals varies between 340 and 450 cases, representing more than
25% fluctuation, only after running 100 simulations. The time series of estimated infected
individuals for 100 scenarios is presented in Figure 9.
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Figure 9. 100 different scenarios (100 different curves in 100 different colors overlapping) of 117 in-
fected individuals “seeded” into a population of 10,000 individuals. The period is (for all 100 scenar-
ios) 200 days.

Figure 9 makes clear that stochasticity plays a significant role in this procedure, and
it should be considered while planning best response policies. An important difference
that appeared is that the same initial conditions led most trajectories to one wave of the
epidemic, while others included an additional, second, less intense wave. Especially in
Video S4, we can observe endemic behavior of the virus spread.

To better present the utilities of our model, we found it useful to depict in Figure 10
the histogram of maximum infected individuals (at the same time) in all 100 scenarios.
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Figure 10. The distribution of the maximum number of infected individuals. This varies between 341
and 449 but concentrates at around 400 infected individuals at the same time.
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This information allows policy makers to identify the probability of scenarios that
exceed specific tolerance thresholds. For example, we can demonstrate that the estimated
probability of having a peak of above 438 infected individuals is less than 4%.

3.3. 3282 × 3282 Lattice

Moving to a larger and more representative lattice of a country’s population, we used
a 3282 × 3282 lattice. The number of its nodes is almost equal to the Greek population.
Using 117 infected people (12 March 2020) as the initial condition in various places, we
observed different results. We observed those populations for 1000 days. In Figure 11
(Video S5), we depict a representative case.
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Figure 11. (Video S5 in Supplementary Materials). 3282 × 3282 Lattice. I0 = 117. The video is created
for 1000 days. The lattice is presented for day 1 (a), day 200 (b), day 500 (c) and day 1000 (d). The
total infected individuals are presented in (e) through the first 1000 days. This lattice represents a
population similar to that of Greece.

The capacity of this population allows for an extremely different path, compared to
the case of the 100 × 100 lattice, although I0 = 117 was still the initial condition. Observing
the image of the lattice on the first day in this case, the 117 infected individuals are
almost impossible to identify. Soon, contagion creates clusters of infected and recovered
individuals, unveiling the location of the initial cases. After 1000 days, without intervention
(restrictions, measures, vaccination) the number of active infected individuals is increasing
rapidly, reaching 120,000.

3.4. Applying Borders

An interesting addition would be borders that separate the population into distinct
regions that cannot communicate. This is an application that could describe the mobility
restrictions among countries and regions.

In Figure 12 (Video S6), we observe a 100 × 100 lattice separated into four regions that
cannot communicate. The results appear to support the effectiveness of such restrictions
in mobility, as they appear to reduce the maximum number of infected individuals. More
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extensive separation in 9 or 16 regions seems to have even better effects on the results,
reducing contagion effectively.
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Figure 12. (Video S6 in Supplementary Materials). 100 × 100 Lattice. I0 = 117. The video is created
for 100 days. The lattice is presented for day 1 (a), day 25 (b), day 50 (c) and day 100 (d). The total
infected individuals are presented in (e) through the first 100 days. The blue cross divides the lattice
in 4 separate sub-lattices of equal size (2500 nodes).

4. Discussion

Our multiple observations suggest that this way of modeling and visualizing the
spread of COVID-19 can be helpful in understanding the range of different paths arising
from the same initial conditions. We do not claim that this approach must replace traditional
SIR models, but we suggest that it contributes to a better understanding of stochasticity,
while it allows researchers to define proper probabilities on different paths, emerging
from the same initial conditions, using a sufficiently large number of simulations. We
have created a large number of computer simulations (realizations) to extract probability
functions and observe rare events, according to the Monte Carlo method [15].

Since the data on the accurate location and interconnections of infected individuals
are rarely available, SIR based models (like [6]) remain useful, but multiple simulations
using our model allow the researchers to obtain a wider and more inclusive perspective on
the situation. Figures 9 and 10 in particular provide information that the existing literature
ignores, namely the distribution of various possible outcomes under a determined set of
parameters and initial conditions.

Compared to the SODM model, suggested by [9], our model allows for nodes being
in more states than infected and susceptible, while it is easier to understand, as the nodes
maintain agent-based model characteristics. As our model considers a more realistic
way of contagion, we consider it provides a more extensive and natural view of the
transmission process.

In a quite similar approach by [16], an agent-based model that describes COVID-19
transmission within facilities uses a model that allows for agents of two states (susceptible
and infected). Our approach extends to more states (exposed, asymptomatic, recovered).
Additionally, while [16] focuses on the effects of individuals’ density in facilities, our model
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considers a uniform density as all nodes have stable and equidistant positions on the
lattice. As our nodes (agents) have fixed places on the lattice and permanent neighbors, our
model seems to fit better the description of larger populations, such as regions or countries.
Additionally, this stable structure allows us to focus our computational power on different
states of the nodes (i.e., exposed, asymptomatic) and random contacts (and contagion)
between neighboring nodes.

We also suggest that the visualization of the forecasted paths can allow audiences
who are not familiar with virus spread to better understand the situation and the reasons
leading to any measures applied. Our work provides a MATLAB-2020 code (ver. 9.9.0)
(Appendix A) that allows anyone to recreate, visualize and observe the whole map of all
agents for separate simulations. As [17] explains, agent-based models are better learning
tools, rather than predicting because their perspective is more natural. Our model is
motivated by this purpose and we consider it allows for this exact use.

Our future steps include the application of this model on COVID-19 spread and
vaccination in Greece, with an emphasis on the small islands of Greece, where location
and (almost natural) isolation of small populations makes such simulations very useful to
understand the dynamics of epidemics.

5. Conclusions

In this research, we present a tool that can successfully simulate and visualize the
diffusion of contagious diseases through populations. We mainly focused on COVID-19,
although the model could be applied to any contagious disease, if adjusted appropriately.

We observed that the size of the population lattice and the specific location of the
initially infected individuals in the population lattice is critical to the evolution and the
spread of infections. The duration, the intensity of the pandemic and the number of waves
seem to extensively depend on those initial conditions, a property that is fundamentally
ignored by the SIR and extended SIR models.

We suggest a method that allows interested parties to understand and better explain
the probabilities of different scenarios and, thus, improve the ways to predict and prevent
the expansion of spreading diseases and viruses. The insights provided could become a
useful tool to investigate and compare different policies and understand the importance of
implementing any measures.

Visualization of the results might become a useful tool to explain and communicate the
diffusion of infections through a population to less familiar audiences, convincing them to
act in accordance with any given situation and prevent unhealthy behaviors or overreacting.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/appliedmath4010001/s1, Video S1: video1.avi. Video S2: video2.avi.
Video S3: video3.avi. Video S4: video4.avi. Video S5: video5.avi. Video S6: covidas100_Borders.avi.
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Appendix A. MATLAB Code Used for Simulations

%Initial Conditions

L=3282;
n=input("sweeps");
infected=117;
cnact=1;
rt=6;
imm=90;
bis=input(“bis”);
bas=input(“bas”);
daysas=5;
daysis=3;
EtoI=2.65;
AtoI=2.84;

filename = ‘SEAIR3282.xlsx’;
sim=input("simulations");

for SIMS=1:sim

LB=L

sitold=zeros(LB,LB);
sitnew=zeros(LB,LB);
timer=zeros(LB,LB);

exposed=infected*EtoI;
asymptomatic=infected*AtoI;
sumI=0;
sumE=0;
sumA=0;
sumS=0;
sumAR=0;
sumR=0;

%infected initial
for i=1:infected

test=0;
while test<1

rndx1(i)=rand;
ix(i)=fix(1+rndx1(i)*LB);

rndy1(i)=rand;
iy(i)=fix(1+rndy1(i)*LB);

if timer(ix(i),iy(i))==0
sitold(ix(i),iy(i))=sitold(ix(i),iy(i))+1;
sitnew(ix(i),iy(i))=sitnew(ix(i),iy(i))+1;
timer(ix(i),iy(i))=daysis+randi([1 rt]);
test=1;
sumI=sumI+1;

end
end

end

%asymptomatic initial
for i=1:asymptomatic
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test=0;
while test<1

rndx1(i)=rand;
ix(i)=fix(1+rndx1(i)*LB);

rndy1(i)=rand;
iy(i)=fix(1+rndy1(i)*LB);

if timer(ix(i),iy(i))==0
sitold(ix(i),iy(i))=sitold(ix(i),iy(i))+0.75;
sitnew(ix(i),iy(i))=sitnew(ix(i),iy(i))+0.75;
timer(ix(i),iy(i))=daysas+randi([1 rt]);
test=1;
sumA=sumA+1;

end
end

end

for i=1:exposed
test=0;
while test<1

rndx1(i)=rand;
ix(i)=fix(1+rndx1(i)*LB);

rndy1(i)=rand;
iy(i)=fix(1+rndy1(i)*LB);

if timer(ix(i),iy(i))==0
sitold(ix(i),iy(i))=sitold(ix(i),iy(i))+0.5;
sitnew(ix(i),iy(i))=sitnew(ix(i),iy(i))+0.5;
timer(ix(i),iy(i))=randi([1 daysas]);
test=1;
sumE=sumE+1;

end
end

end

for i=1:LB
for j=1:LB

if sitold(i,j) == 0
sumS=sumS+1;

elseif sitold(i,j) == −0.25
sumAR=sumAR+1;

elseif sitold(i,j) == −0.5
sumR=sumR+1;

end
end

end

I(1)=sumI;
A(1)=sumA;
E(1)=sumE;
S(1)=sumS;
AR(1)=sumAR;
R(1)=sumR;

tiledlayout(1,2)
nexttile
plot(I,‘-o’);
axis square



AppliedMath 2024, 4 16

title("I")
nexttile
clims=[−1 1];
imagesc(sitold,clims);
axis square;
colorbar;
title(1);
set(gcf, ‘Position’, [50, 50, 1300, 600]);
drawnow
F(1) = getframe(gcf);

%infections

for k=2:n
for i=1:LB

for j=1:LB
if timer(i,j) > 0 && sitold(i,j) == 0.75

rnd(i,j)=rand;

if rnd(i,j) >= (1− (bas/4))
if i > 1 && sitold(i−1,j) == 0

sitnew(i−1,j)=0.5;
timer(i−1,j)=1;

end
if j > 1 && sitold(i,j−1) == 0

sitnew(i,j−1)=0.5;
timer(i,j−1)=1;

end
end

if rnd(i,j) < (bas/4)
if i < LB && sitold(i+1,j) == 0

sitnew(i+1,j)=0.5;
timer(i+1,j)=1;

end
if j < LB && sitold(i,j+1) == 0

sitnew(i,j+1)=0.5;
timer(i,j+1)=1;

end
end

end
if timer(i,j) > 0 && sitold(i,j) == 1

rnd(i,j)=rand;

if rnd(i,j) >= (1− (bis/4))
if i > 1 && sitold(i−1,j) == 0

sitnew(i−1,j)=0.5;
timer(i−1,j)=1;

end
if j > 1 && sitold(i,j−1) == 0

sitnew(i,j−1)=0.5;
timer(i,j−1)=1;

end
end

if rnd(i,j) < (bis/4)
if i < LB && sitold(i+1,j) == 0

sitnew(i+1,j)=0.5;
timer(i+1,j)=1;

end
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if j < LB && sitold(i,j+1) == 0
sitnew(i,j+1)=0.5;
timer(i,j+1)=1;

end
end

end
end

end

%count infected and timer/transition

sumI=0;
sumA=0;
sumE=0;
sumS=0;
sumAR=0;
sumR=0;

for i=1:LB
for j=1:LB

if sitnew(i,j) >= cnact
if timer(i,j) < daysis + rt

timer(i,j)=timer(i,j)+1;
else

sitnew(i,j)= −0.5;
timer(i,j)= −imm;

end
end
if sitnew(i,j) == 0.75

if timer(i,j) < daysas + rt
timer(i,j)=timer(i,j)+1;

else
sitnew(i,j)= −0.25;
timer(i,j)= −imm;

end
end
if sitnew(i,j) == 0.5

if timer(i,j) >= daysas
sitnew(i,j)=0.75;
timer(i,j)=timer(i,j)+1;

elseif timer(i,j) == daysis
test=rand;
if (bis/(bis+bas)) >= test

sitnew(i,j)=1;
end
timer(i,j)=timer(i,j)+1;

else
timer(i,j)=timer(i,j)+1;

end
end
if timer(i,j) < −1

timer(i,j)=timer(i,j)+1;
elseif

timer(i,j) == −1 timer(i,j)=timer(i,j)+1;
sitnew(i,j)=0;

end
end

end

for i=1:LB
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for j=1:LB
if sitnew(i,j) == 0

sumS=sumS+1;
elseif sitnew(i,j) == −0.25

sumAR=sumAR+1;
elseif sitnew(i,j) == −0.5

sumR=sumR+1;
elseif sitnew(i,j)==0.5

sumE=sumE+1;
elseif sitnew(i,j)==0.75

sumA=sumA+1;
elseif sitnew(i,j)==1

sumI=sumI+1;
end

end
end

%density and renew

Q(k)=sumI/(Lˆ2);
I(k)=sumI;
A(k)=sumA;
E(k)=sumE;
S(k)=sumS;
AR(k)=sumAR;
R(k)=sumR;

for i=1:LB
for j=1:LB

sitold(i,j)=sitnew(i,j);
end

end

%Graphs

tiledlayout(1,2)
nexttile
plot(I,‘-o’);
axis square
title("I")
nexttile
clims=[−1 1];
imagesc(sitold,clims);
axis square;
colorbar;
title(k);
set(gcf, ‘Position’, [50, 50, 1300, 600]);
drawnow
F(k) = getframe(gcf);

end

FN=strcat(‘covidas3282_’,num2str(SIMS),‘.avi’)
video = VideoWriter(FN, ‘Uncompressed AVI’);
open(video)
writeVideo(video,F)
close(video)

cell=strcat(‘A’,num2str(SIMS))
writematrix(I,filename,‘Sheet’,"I",‘Range’,cell)
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writematrix(A,filename,‘Sheet’,"A",‘Range’,cell)
writematrix(E,filename,‘Sheet’,"E",‘Range’,cell)
writematrix(S,filename,‘Sheet’,"S",‘Range’,cell)
writematrix(AR,filename,‘Sheet’,"AR",‘Range’,cell)
writematrix(R,filename,‘Sheet’,"R",‘Range’,cell)

clear I
clear A
clear E

end
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