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Abstract: We study the random flow, through a thin cylindrical tube, of a physical quantity of
random density, in the presence of random sinks and sources. We model convection in terms
of the expectations of the flux and density and solve the initial value problem for the resulting
convection equation. We propose a difference scheme for the convection equation, that is both stable
and satisfies the Courant–Friedrichs–Lewy test, and estimate the difference between the exact and
approximate solutions.

Keywords: convection equation; stochastic differential equations; finite-difference approximation
schemes; Bochner integral reminder

1. Introduction and Statement of Main Results

Models involving the convection equation, were used to discuss the random flux of
several physical quantities in a number of applied science problems (cf. G. C. Craig, B. G.
Cohen, and R. S. Plant [1]; A. Hermoso, V. Holmar, and R. S. Plant [2]; D. D. Holm and
W. Pan [3]), e.g., when dealing with atmosphere and ocean dynamics, where diffusive
effects appear as negligible (cf. [3]). The stochastic models in [3] build on work by R.H.
Kraichnan [4,5] and C. R. Doering, W. Horsthemke, and J. Riordan [6], on the effects of
stochastic fluctuations on convection. The Holm–Pan models (cf. op. cit.) are essentially
derived from a Hamiltonian principle for the deterministic case, by introducing noise. On
the other hand, the very convection equation (without sources or drains)

ut + c ux = 0 (1)

can be seen as a stochastic differential equation describing say random motion with bias c.
Through the present paper we adopt a similar yet new approach, as follows. Let ϕ(x, t)
be the one-dimensional flux of a physical quantity of density u(x, t), and let s(x, t) be a
sink/source function. We assume that ϕ(x, · ), u(x, · ) and s(x, · ) are stochastic processes
T → L2(Ω) and derive, from elementary physical considerations, the conservation law

ut(x, t) + ϕx(x, t) = s(x, t), 0 < x < ℓ, t ∈ T . (2)

Here, {Ω, K , P} is an infinite probability field, and partials are defined in the mean
square. Equation (2) is derived from a conservation law in integral form, itself obtained
by exhibiting Bochner integrals of vector-valued (i.e., L2(Ω)-valued) functions as mean
square limits of “Riemann sums” (cf. e.g., [7] (p. 89)). When convection is manifest, one
postulates, in the deterministic setting, that ϕ = c u for some constant c > 0 having the
dimensions of a velocity. As ϕ and u have a random nature, we model convection in terms
of the expectations of ϕ and u, i.e., we postulate that

M ϕ(x, t) = c M u(x, t) (3)
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for all 0 < x < ℓ and t ∈ T . Here, Mξ =
∫

Ω ξ(ω) d P(ω) for any random variable ξ. This
is one of the main novelties brought forth by the present paper, and under the additional
requirement that ∣∣ru(x, t) ϕ(x, t)

∣∣ = 1, (4)

we show that (3) yields
ϕ − c u = v ů (5)

for some function v : [0, ℓ]×T → R (having the dimensions of a velocity), where rξ η is the
correlation coefficient of the random variables ξ and η, and ξ̊ = ξ − M ξ. Consequently (2)
leads to the convection equation

ut + (c + v) ux − v M
[
ux

]
+ vx ů = s, (6)

and we consider the initial value problem

u(x, 0) = f (x) (7)

for (6). Taking expectations in (6) and (7) leads to the initial value problem for the ordinary
convection, or transport, equation so that the mean value of the spatial derivative of the
density can be computed and (6) becomes

ut + (c + v) ux + vx u = s + B, (8)

B(x, t) =
∂

∂x

{
v M

[
f (x − c t)

]}
.

We solve the initial value problem (7) for (8) within the theory of characteristic mani-
folds (cf. [8]) (pp. 56–61). To write the equation of the characteristic curves Γ for (8), we
consider generalized solutions to (8), i.e., solutions with jumps across Γ in their first deriva-
tives. As a byproduct, we determine the law according to which the intensity of jumps
propagates along Γ. The rather involved form (37) (in Section § 4) of the solution calls, for
any practical purposes, for an approximation scheme. We consider two finite-difference
equations, with either a forward- or backward-difference quotient for the x-partials, solve
the two equations in the absence of sinks or sources (s = 0) and under the structural
assumption v ∈ (0, +∞), and investigate the stability of the two difference schemes. The
problem remains open in more general cases, where v is no longer a constant. The difference
scheme involving backward difference quotients for x-derivatives

1
k
{

w(x, t + k)− w(x, t)
}
+

c + v
h

{
w(x + h, t)− w(x, t)

}
= Bk(x, t), (9)

Bk(x, t) := − v
c k

M
[

f
(
x − c (t + k)

)
− f (x − c t)

]
,

turns out to be stable, and to satisfy the Courant–Friedrichs–Lewy test provided that

(c + v) λ ≤ 1 (10)

where λ = k/h is the mesh ratio of the grid G =
{
(m h, n k) : m ∈ Z, n ∈ Z+

}
⊂ R×

[0, +∞) used to discretize (8). Provided that (10) holds, and under structural assumptions
on the initial data, i.e., that M

[
f ′(x)

]
≥ 0 and f ′′ : R → L2(Ω) is bounded, we estimate in

mean square the difference between the exact solution u(x, t) and the approximate solution
w(x, t) (the solution to the initial value problem w(x, 0) = f (x) for (9))

∥∥u(x, t)− w(x, t)
∥∥ ≤ K h t

λ
sup
x∈R

∥∥ f ′′(x)
∥∥+ v

c
M
[

f (x)− f (x − c t)
]

(11)
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for any (x, t) ∈ G. The main tool in deriving (11) is the truncated Taylor formula with
Bochner integral rest, that we prepare in Section § 5 for functions f : R → X with values
in an arbitrary Fréchet space X. Our main references for vector-valued integration are W.
Rudin [7] and W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander [9].

2. Conservation Laws

Let
(
Ω, K , P) be a probability field, and let Sa be the set of all random signals, or

stochastic processes ξ : T → L2(Ω), with the time set T = [0, +∞). Let u = u(x, t),
ϕ = ϕ(x, t), and s = s(x, t) be, respectively, the density of a given physical quantity, the
flux of the quantity through a cylindrical tube C of cross-sectional area A, and the rate at
which the quantity is created or destroyed within the section at x at time t, such that

u(x, · ), ϕ(x, · ), s(x, · ) ∈ Sa , 0 ≤ x ≤ ℓ .

We adopt the following structural assumptions:

(i) The functions u, ϕ , s : [0, ℓ]×T → L2(Ω) are continuous.

(ii) The partials
∂u
∂t

,
∂ϕ

∂x
: [0, ℓ]×T → L2(Ω) are well defined and continuous.

Let Q = [a, b] ⊂ [0, ℓ] be an arbitrary subinterval, and let {Ej : 1 ≤ j ≤ N} be a
partition of Q, i.e., a mutually disjoint family of Borel subsets Ej ⊂ Q covering Q, and
let xj ∈ Ej, 1 ≤ j ≤ N. The amount of the quantity in the tube between the sections
at x = a and x = b at time t is approximated by A ∑N−1

j=0 m
(
Ej
)

u
(

xj , t
)
, where m is

the Lebesgue measure. By the structural assumption (i), for every t ∈ T , the subset
u(Q, t) ⊂ L2(Ω) is compact, and hence co

[
u(Q, t)

]
is compact, too, by Milman’s theorem

(cf. e.g., Theorem 3.25 in [7] (p. 76)). Here, co(A) denotes the closed convex hull of the set
A ⊂ L2(Ω). Indeed, Milman’s theorem applies to compact subsets of locally convex spaces
and, in particular, Banach spaces such as L2(Ω). Consequently, by (Theorem 3.27 in [7]
(p. 78)), there is a unique vt ∈ co

[
u(Q, t)

]
(the Bochner integral vt =

∫
Q u( · , t) dm1) such

that Λ
(
vt
)
=

∫
Q Λ

(
u( · , t)

)
dm1 for every Λ ∈ L2(Ω)∗. Here, dm1(x) = |Q|−1 dm(x)

with |Q| = b − a. For every ν ≥ 1, there is a partition {Eν
j : 1 ≤ j ≤ Nν} of Q such that for

any xν
j ∈ Eν

j

∫
Q

u
(

x, t) dm1(x)−
Nν

∑
j=1

m1
(
Eν

j
)

u
(
xν

j , t
)
∈ B1/ν(0) ⊂ L2(Ω)

Thus, limν→∞ ∑Nν−1
j=0 m1

(
Eν

j
)

u(xν
j , t) exists in the topology of L2(Ω), and

A |Q|
∫

Q u( · , t) dm1 is the amount of quantity in the cylinder CQ of generator Q.

Lemma 1. Let F ∈ Sa be given by F(t) =
∫

Q u(x, t) dm1(x). Then, F is differentiable (in the
mean square) and

F′(t) =
∫

Q

∂u
∂t

(x, t) dm1(x) . (12)

Proof. The proof is straightforward. Indeed, for any Λ ∈ L2(Ω)∗, the function Λ(u) :
Q × T → R is continuous, and its partial derivative ∂Λ(u)/∂t : Q × T → R is well
defined and continuous. Then,

d
dt

∫ b

a
Λ
[
u(x, t)

]
dm1(x) =

∫ b

a

∂Λ(u)
∂t

(x, t) dm1(x) =

= Λ
( ∫

Q

∂u
∂t

(x, t) dm1(x)
)

yields (12).
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Therefore, A|Q|
∫

Q(∂u/∂t)(x, t) dm1(x) is the rate of change of the total amount of
quantity in CQ. Similarly, A|Q|

∫
Q s(x, t) dm1(x) represents the amount of the quantity

that is created (destroyed) in CQ. By convention, the flux is positive if the flow (parallel
to the cylinder’s axis) is to the right and negative if the flow is to the left; hence, the
flux contribution (to the rate of change of the quantity in CQ) at the moment t ∈ T is
−A ϕ( · , t)

∣∣
∂ Q. Then,

|Q|
∫

Q

∂u
∂t

(x, t) dm1(x) = −ϕ( · , t)
∣∣
∂Q + |Q|

∫
Q

s(x, t) dm1(x) (13)

i.e., the rate of change of the amount of quantity in CQ equals the rate at which it flows in
at x = a, minus the rate at which it flows out at x = b plus the rate at which it is created
(destroyed) within CQ. By the Leibniz–Newton formula (applied to Λ(ϕ( · , t)) with t ∈ T
fixed and arbitrary Λ ∈ L2(Ω)∗), the conservation law (13) becomes∫

Q

{∂u
∂t

(x, t) +
∂ϕ

∂x
(x, t)− s(x, t)

}
dm1(x) = 0,

yielding
∂u
∂t

(x, t) +
∂ϕ

∂x
(x, t) = s(x, t), 0 < x < ℓ, t > 0 (14)

by the arbitrariness of the interval Q ⊂ [0, ℓ]. Developments to other geometries and
other-than-circular cross-section shapes (as suggested by the reviewer) may be considered.
For instance, if the area of the cross-section at x is a smooth function A(x), then an approxi-
mation by Riemann sums argument similar to the above leads to the conservation law

A(x)
{∂u

∂t
(x, t) +

∂ϕ

∂x
(x, t)− s(x, t)

}
+ A′(x) ϕ(x, t) = 0. (15)

The conservation law (15) was adopted by A. M. Berezhoskii, M. A. Pustovoit, and S.
M. Bezrukov (cf. (1.5) in [10] (p. 134706-2)) to study the reduction of the three-dimensional
diffusion with a position-dependent diffusion coefficient, in tubes of varying cross-sections,
to a one-dimensional description.

3. Convection Equation

Let rξ η = cov(ξ, η)
/
(σξ ση) denote the correlation coefficient of the random variables

ξ, η, where
cov(ξ, η) = ⟨ξ̊, η̊⟩L2(Ω) , σξ = ∥ξ̊∥L2(Ω) , ξ̊ = ξ − M ξ ,

hence
∣∣rξ η

∣∣ ≤ 1. Also, Mξ is the expectation, or mean value, of the random variable ξ

Mξ =
∫

Ω
ξ(ω) d P (ω).

When convection is manifest, the state equation in the deterministic setting is

ϕ = c u (16)

for some constant c > 0, yielding∣∣ru(x, t) ϕ(x, t)
∣∣ = 1, 0 ≤ x ≤ ℓ, t ≥ 0.

For random flows, a reasonable assumption (modeling convection) should involve the
mean values of the variables in (16) i.e.,

(iii)
M ϕ = c M u (17)
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for some constant c > 0. Let ů : [0, ℓ]×T → L2(Ω) be given by ů(x, t) = u(x, t)−
M
[
u(x, t)

]
. Through the following calculation, we omit (x, t) for simplicity. Then,

(by (17)),
ϕ̊ = ϕ − c M u, (18)

cov(u, ϕ) =
〈
ů , ϕ̊

〉
= c ∥ů∥2 +

〈
ů, ϕ − c u

〉
, (19)

σ2
ϕ = ∥ϕ̊∥2 = ∥ϕ − cu∥2 + c2 σ2

u + 2 c
〈
ů, ϕ − c u

〉
. (20)

Moreover, we adopt the structural assumption

(iv)
∣∣ru ϕ

∣∣ = 1

i.e., intuitively, the random variables u(x, t) and ϕ(x, t) are as far from being uncorrelated
as possible. This is equivalent to (by (18)–(20))∣∣〈ů , ϕ − c u

〉∣∣ = σu ∥ϕ − c u∥

yielding
ϕ − c u = v ů (21)

for some function v : [0, ℓ]×T → R. An elementary dimensional analysis of (21) shows
that v has the dimensions of a velocity (i.e., [v]SI = L · T−1). We adopt the structural
assumptions

(v) The partial
∂u
∂x

: [0, ℓ]×T → L2(Ω) exists and is continuous.

(vi) v ∈ C1([0, ℓ]×T ).

Therefore, we replace the deterministic convection model (16) by the probabilistic (17),
yet (by (21)) our assumptions imply that the mean square error ∥ϕ − c u∥ is proportional
to the mean square deviation σu =

√
Du by a proportionality factor |v(x, t)|. That is, the

mean square approximation to which ϕ and u satisfy (16) at (x, t) depends on the size of
the dispersion of the random variable u(x, t). Substitution from (21) into the conservation
law (14) leads to

∂u
∂t

+ (c + v)
∂u
∂x

− v M
(∂u

∂x

)
+

∂v
∂x

ů = s. (22)

Let us consider the initial value problem

u(x, 0) = f (x) (23)

for Equation (22) in the absence of sinks or sources, i.e.,

(vii) M s = 0,

where

(viii) f ∈ C1[[0, ℓ], L2(Ω)
]
.

Passing to expectations in (14) and (23) leads (by (17)) to the initial value problem

∂

∂t
(Mu) + c

∂

∂x
(Mu) = 0, M

[
u(x, 0)

]
= M

[
f (x)

]
, (24)

with the solution
Mu(x, t) = M

[
f (x − ct)

]
. (25)

Finally, substitution from (25) into (22) leads to

Lu ≡ ∂u
∂t

+ (c + v)
∂u
∂x

+
∂v
∂x

u = s +
∂

∂x

{
v M

[
f (x − ct)

]}
. (26)

The solution to the initial value problem (23) for Equation (26) relies on the classical
theory of characteristic manifolds and the Cauchy problem (cf., e.g., [8] (pp. 56–61)).
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4. Generalized Solutions, Characteristic Curves, and the Initial Value Problem

Let Γ = {Φ = 0} ⊂ R2 be a curve with Φ(x, t) = x − φ(t) and φ ∈ C2(0, +∞). Let us
assume that

R2 \ Γ = Ω+ ∪ Ω− , Ω+ ∩ Ω− = ∅ .

Let u be a generalized solution to (26), i.e.,

u ∈ C
(
R2), u± ∈ C1(Ω± ∪ Γ

)
, u± := u

∣∣
Ω±∪Γ ,

Lu±(x, t) = s(x, t) +
∂

∂x

{
v(x, t) M

[
f (x − ct)

]}
, (x, t) ∈ Ω± ∪ Γ .

Given a function w(x, t) defined for (x, t) ∈ R2, we denote by[
w
]
= w+

(
φ(t), t

)
− w−(φ(t), t

)
, w± := w

∣∣
Ω±∪Γ ,

the jump of w at a point (φ(t), t) of Γ. Then,
[
u
]
= 0 so that d

[
u
]
/d t = 0 yields[∂u

∂x

]
φ′(t) +

[∂u
∂t

]
= 0. (27)

Let us subtract the two equations

(Lu±)(φ(t), t) = s
(

φ(t), t
)
+

∂

∂x

{
v M

[
f (x − ct)

]}
x=φ(t)

and form jumps. We obtain

(c + v)
[∂u

∂x

]
+

[∂u
∂t

]
= 0. (28)

If we set µ(t) :=
[
∂u/∂x

]
, then[∂u

∂x

]
= µ ,

[∂u
∂t

]
= −φ′ µ , (29)

and substitution from (29) into (28) yields (unless µ = 0, i.e., unless u ∈ C1)

φ′(t) = v
(

φ(t), t
)
+ c, (30)

i.e., Γ is a characteristic curve. According to (29), the quantity µ measures the “intensity”
of the jumps in the first derivatives. As t ∈ T is time, one interprets φ as the point
x = φ(t) moving along the x-axis. For every t one has in u(x, t), a function of x whose first
derivative is discontinuous at the moving point φ(t). The speed dx/dt of “propagation of
the discontinuity” is determined by (30).

The jumps in different points of Γ are therefore related to each other. Let us determine
the law according to which the intensity µ of the jump propagates along Γ. By (29),

µ′ =
dµ

dt
=

[∂2u
∂x2

]
φ′ +

[ ∂2u
∂x ∂t

]
, (31)

−
(

φ′ µ
)′

=
[ ∂2u

∂t ∂x

]
φ′ +

[∂2u
∂t2

]
. (32)

From now on, we assume that u± ∈ C2(Ω± ∪ Γ). Let us differentiate in Lu± =
s + ∂

{
v M

[
f (x − ct)

]}
/∂x with respect to x

∂2u±

∂x ∂t
+

{
c + v(x, t)

} ∂2u±

∂x2 + 2
∂v
∂x

∂u±

∂x
+

∂2v
∂x2 u± =



AppliedMath 2024, 4 231

=
∂s
∂x

+
∂2

∂x2

{
v M

[
f (x − ct)

]}
evaluate along Γ, subtract the two resulting equations, and form jumps. We obtain

(c + v)
[∂2u

∂x2

]
+

[ ∂2u
∂x ∂t

]
+ 2

∂v
∂x

[∂u
∂x

]
= 0. (33)

Similarly, differentiation with respect to t

∂2u±

∂t2 +
∂v
∂t

∂u±

∂x
+ (c + v)

∂2u±

∂x ∂t
+

∂2v
∂x ∂t

u± +
∂v
∂x

∂u±

∂t
=

=
∂s
∂t

+
∂2

∂x ∂t

{
v M

[
f (x − ct)

]}
leads to [∂2u

∂t2

]
+

∂v
∂t

[∂u
∂x

]
+ (c + v)

[ ∂2u
∂x ∂t

]
+

∂v
∂x

[∂u
∂t

]
= 0. (34)

Let us eliminate the jumps between Equations (29) and (31)–(34) to obtain

µ′ + 2
∂v
∂x

(
φ(t), t

)
µ = 0, (35)

(
φ′ µ

)′
+

{
φ′ ∂v

∂x
(

φ(t), t
)
− ∂v

∂t
(

φ(t), t
)}

µ = 0. (36)

The characteristic Equation (30) yields

φ′′ =
∂v
∂x

(
φ(t), t

)
φ′ +

∂v
∂t

(
φ(t), t

)
,

and a straightforward calculation shows that (35) and (36) are equivalent. Therefore, the
ODE (35) for the jump intensity µ governs its growth during the propagation of singularities.
The general solution to (35) is

µ(t) = C exp
{
− 2

∫ t

0

∂v
∂x

(
φ(τ), τ

)
d τ

}
,

so if µ = 0 at some point of Γ, then µ = 0 along Γ, and no jump occurs.
Let Γξ be the characteristic curve of equation x = φ(t, ξ), that is, φ( · , ξ) :

(
−

r0 , r0
)
→ R is the solution to the Cauchy problem φ′(t) = v

(
φ(t), t

)
+ c and φ(0) = ξ.

An inspection of the (proof of the) classical existence and uniqueness of the solution to the
Cauchy problem for a first-order ODE shows that to form the domain of the solution, one
chooses 0 < r0 < min

{
r, R/M, 1/L} with

r > 0, R > 0, M = sup
(x,t)∈K

∣∣v(x, t)
∣∣, L = sup

(x,t)∈K

∣∣∣∂v
∂x

(x, t)
∣∣∣,

where K =
[
ξ − R, ξ + R

]
×

[
− r, r

]
. Let u be a C1 solution to the initial value problem

(23) and (26), and let us set
U(ξ, t) := u

(
φ(t , ξ), t

)
.

Differentiation with respect to t gives

Ut +
∂v
∂x

(
φ(t, ξ), t)U = s

(
φ(t, ξ), t

)
+

+
∂v
∂x

(
φ(t, ξ), t

)
M
[

f (φ(t, ξ)− ct)
]
+ v

(
φ(t, ξ), t) M

[
f ′(φ(t, ξ)− ct)

]
.



AppliedMath 2024, 4 232

Let us set

H(ξ, t) =
∫ t

0

∂v
∂x

(
φ(τ, ξ), τ

)
d τ.

Then,

U(ξ, t) = exp
(
− H(ξ, t)

) { ∫ t

0
exp

(
H(ξ, τ)

)
s
(

φ(τ, ξ), τ
)

d τ+

+
∫ t

0
exp

(
H(ξ, τ)

) [∂v
∂x

(
φ(τ, ξ), τ

)
M
[

f
(

φ(τ, ξ)− cτ
)]
+

+v
(

φ(τ, ξ), τ
)

M
[

f ′
(

φ(τ , ξ)− cτ
)]]

d τ
}
+ f (ξ).

Let ξ0 ∈ R, and let Γξ0 = {x = φ(t , ξ0)} be a characteristic curve with φξ(0, ξ0) ≠ 0.
Let F ∈ C1(R3) be given by F(x, t, ξ) := x − φ(t, ξ) so that F(ξ0 , 0, ξ0) = 0 and
Fξ(ξ0 , 0, ξ0) ̸= 0. By the implicit function theorem, there exist δ > 0 and σ > 0, and
there is a unique C1 function ψ : Bδ(ξ0 , 0) → (ξ0 − σ , ξ0 + σ) such that ψ(ξ0 , 0) = ξ0 and
F
(

x, t, ψ(x, t)
)
= 0. Then,

u(x, t) = exp
(
− H(ψ(x, t), t)

)
× (37)

×
( ∫ t

0
exp

(
H(ψ(x, t), τ)

)
s
(

g(x, t, τ), τ
)

d τ+

+
∫ t

0
exp

(
H(ψ(x, t), τ)

) {∂v
∂x

(
g(x, t, τ), τ

)
M
[

f
(

g(x, t, τ)− cτ
)]
+

+v
(

g(x, t, τ), τ
)

M
[

f ′
(

g(x, t, τ)− cτ
)]}

d τ
)
+ f (ψ(x, t))

where g(x, t, τ) := φ(τ, ψ(x, t)). The next section is devoted to a recast of the convection
Equation (26) as either the finite-difference Equation (38) or (53), where x-derivatives are
approximated by a forward, respectively, a backward, difference quotient. For the sake
of simplicity, we assume that s = 0. Also, our analysis is confined to the case where
∥ϕ − c u∥

/
σu = constant, i.e., precisely

(ix) v ∈ (0, +∞).

We solve both (38) and (53) and examine the stability of the two difference schemes.
The scheme provided by (53) is shown to be stable, and then we parallel the exact solution
(to the initial value problem for (26) with s = 0 and v ∈ (0, +∞)) and the approximate
solution (to the initial value problem for (53)).

5. Two Finite-Difference Equations

Let G =
{(

mh, nk
)
∈ R× [0, +∞) : m ∈ Z, n ∈ Z+

}
be a grid in R2 of mesh

size h > 0 in the x-direction and k > 0 in the t-direction. Let us consider the finite-
differences equation

1
k
{

w(x, t + k)− w(x, t)
}
+ (38)

+
(
c + v

) 1
h
{

w(x + h, t)− w(x, t)
}
= B(x, t)

where
B(x, t) = v M

[
f ′(x − ct)

]
.

Formally, Equation (38) leads to the convection equation Lw = B (cf. (26) with s = 0
and v ∈ (0, +∞)) for h → 0 and k → 0. We seek for solutions w : G → R to (38) together
with the initial condition

w(x, 0) = f (x). (39)
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If we set λ = k/h, then (38) becomes

w(x, t + k) =
{

1 + λ(c + v)
}

w(x, t)+ (40)

−λ (c + v)w(x + h, t) + k B(x, t).

The advantage of the form (40) of the finite-difference equation is to express the values
of w at the moment t + k in terms of the values of w at the moment t. To solve (40), we need
the shift operator (Ew)(x, t) = w(x + h, t) acting (in the x-variable) on functions w(x, t).
Equation (40) becomes

w(x, t + k) = (Tw)(x, t) + k B(x, t), (41)

T ≡
{

1 + λ (c + v)
}

I − λ (c + v) E,

where (Iw)(x, t) = w(x, t). If t = nk, then

w(x, t) = w(x, nk) = w
(
x, (n − 1)k + k

)
=⇒

(by (40) for t = (n − 1)k)

w(x, nk) = (Tw)
(
x, (n − 1)k

)
+ k B

(
x, (n − 1)k

)
. (42)

We need

Lemma 2. For every 0 ≤ m ≤ n − 1(
Tm w

)(
x, (n − m)k

)
=

(
Tm+1 w

)(
x, (n − m − 1)k

)
+ (43)

+k
(
Tm B

)(
x, (n − m − 1)k

)
where Tm = T ◦ · · · ◦ T (m terms).

Proof. Let us denote the predicate (42) by P(x, n). Let us set µ := (c + v) λ for simplicity
so that T = (1 + µ) I − µ E. Then,(

T2 w
)(

x, (n − 2)k
)
= (44)

= (1 + µ)(Tw)
(

x, (n − 2)k
)
− µ (Tw)

(
x + h, (n − 2)k

)
.

On the other hand (by P(x, n − 1) and P(x + h, n − 1))

(Tw)
(
x, (n − 2)k

)
= w

(
x, (n − 1)k

)
− k B

(
x, (n − 2)k

)
, (45)

(Tw)
(

x + h, (n − 2)k
)
= w

(
x + h, (n − 1)k

)
− k B

(
x + h, (n − 2)k

)
. (46)

Substitution from (45) to (46) into (44) yields(
T2w

)(
x, (n − 2)k

)
=

= (1 + µ)
{

w
(
x, (n − 1)k

)
− k B

(
x, (n − 2)k

)}
+

−µ
{

w
(

x + h, (n − 1)k
)
− k B

(
x + h, (n − 2)k

)}
=

= (Tw)
(

x, (n − 1)k
)
− (1 + µ) k B(x, (n − 2)k

)
+ µ k B

(
x + h, (n − 2)k

)
or

(Tw)
(

x, (n − 1)k
)
=

(
T2w

)(
x, (n − 2)k

)
+ k (TB)

(
x, (n − 2)k

)
(47)
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which is (43) for m = 1. The proof of Lemma 2 may now be completed by induction over m.
Iteration of (43) for 0 ≤ m ≤ n − 1 gives

w(x, nk) = (Tnw)(x, 0) + k
n−1

∑
m=0

(
TmB

)(
x, (n − m − 1)k

)
(48)

and (
Tnw

)
(x, 0) =

n

∑
j=0

( n
j

)
(1 + µ)j(−µ)n−j (En−j w

)
(x, 0)

or (
Tnw

)
(x, 0) =

n

∑
j=0

( n
j

)
(1 + µ)j(−µ)n−j f

(
x + (n − j)h

)
. (49)

Similarly (
TmB

)(
x, (n − m − 1)k

)
= (50)

=
m

∑
j=0

( m
j

)
(1 + µ)j (−µ)m−j B

(
x + (m − j)h, (n − m − 1) k

)
.

The solution to the initial value problem (39) for the difference Equation (38) is

w(x, nk) =
n

∑
j=0

( n
j

)
(1 + µ)j(−µ)n−j f

(
x + (n − j)h

)
+ (51)

+kv
m

∑
j=0

( m
j

)
(1 + µ)j (−µ)m−j M

[
f ′
(
x + (m − j)h − (n − m − 1) k c

)]
.

Hence, the domain of dependence for w(x, t) = w(x, nk) consists of the set of points
on the x-axis {

x, x + h, x + 2h, · · · x + nh
}
∪

n−1⋃
m=0

Am ,

Am :=
{

x − (n − m − 1) k c + j h : 0 ≤ j ≤ m
}

,

and {
x + jh : 0 ≤ j ≤ n

}
⊂

[
x, x + nh

]
⊂ R ,

Am ⊂ Im , 0 ≤ m ≤ n − 1,

Im :=
[

x − (n − m − 1) c k , x − (n − m − 1) c k + m h
]
⊂ R.

As v is a constant H = 0, the exact solution to the initial value problem for (26) is (by
(37) with s = 0 and v ∈ (0, +∞))

u(x, t) = f
(
x − (c + v)t

)
+ v

∫ t

0
M
[

f ′
(
x − (c + v)t + vτ

)]
d τ. (52)

Thus, the domain of dependence of u(x, t) on the initial values f and on the expecta-
tion of their first derivatives f ′ consists, respectively, of the single point ξ = x − (c + v) t,
and of the interval

[
x − (c + v)t, x − ct

]
⊂ R. Note that[

x, x + nh
]
∩
[
x − (c + v)t, x − ct

]
= ∅ ,

Im ∩
[
x − (c + v)t, x − ct

]
= ∅ , 0 ≤ m ≤ n − 1.
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Hence, one cannot expect w to converge for h, k → 0 to the exact solution. The high
degree of instability of the scheme (38) may be ascertained as follows. Let ϵ ∈ L2(Ω) be a
random variable such that ϵ(ω) > 0 for a.e. ω ∈ Ω, and let fϵ ∈ C1(R, L2(Ω)

)
such that

fϵ(x + jh) = f (x + jh) + (−1)j ϵ , x ∈ R, 0 ≤ j ≤ n.

Let wϵ(x, t) be the solution to the initial value problem w(x, 0) = fϵ(x) for the
difference Equation (38), i.e.,

wϵ(x, t) = wϵ(x, nk) = w(x, t) +
(
1 + 2 (c + v) λ

)n
ϵ

hence,
M
[
wϵ(x, t)

]
− M

[
w(x, t)

]
=

(
1 + 2 (c + v) λ

)n M[ϵ]

i.e., for a fixed mesh ratio λ, the possible error in the expectation of w grows exponen-
tially with the number n of steps in the t-direction. Alternatively, let us consider the
difference equation

1
k
{

w(x, t + k)− w(x, t)
}
+ (53)

+(c + v)
1
h
{

w(x, t)− w(x − h, t)
}
= B(x, t).

The shift operator is invertible and (E−1w)(x, t) = w(x − h, t). Equation (53) may
then be recast as

w(x, t + k) = (Tw)(x, t) + k B(x, t) , (54)

T ≡
{

1 − (c + v) λ
}

I + (c + v)λ E−1 ,

The solution to the initial value problem (39) for (54) is

w(x, nk) = (55)

=
n

∑
j=0

( n
j

) [
1 − (c + v) λ

]j [
λ(c + v)

]n−j f
(
x − (n − j) h

)
+

+k v
n−1

∑
m=0

m

∑
j=0

( m
j

) [
1 − (c + v) λ

]j [
λ(c + v)

]m−j ×

× M
[

f ′
(
x − (m − j) h − (n − m − 1) c k

]
whose dependence domain is

{
x, x − h, x − 2h, · · · , x − nh = x − t

λ

}
∪
{ n−1⋃

m=0
Am

}
,

Am :=
{

x − c(n − m − 1) k − j h : 0 ≤ j ≤ m
}

,{
x, x − h, x − 2h, · · · , x − nh

}
⊂

[
x − t

λ
, x

]
⊂ R,

Am ⊂ Im :=
[
x − (n − m − 1) c k − m h, x − (n − m − 1) c k

]
⊂ R.

The point ξ = x − (c + v)t lies in the interval
[

x − t
λ

, x
]

if and only if

(c + v) λ ≤ 1. (56)
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On the other hand, as h → 0 and t/n = k → 0

n−1⋃
m=0

Im =
n⋃

j=1

[
x − ct + (n − j + 1) c k −

(
1 − j

n

) t
λ

, x − ct + (n − j + 1) c k
]
→

→
[

x − ct − t
λ

, x − ct
]

and ξ = x − (c + v)t ∈
[
x − ct − t/λ , x − ct

]
⇐⇒ λv ≤ 1, which follows from (56).

Therefore, the Courant–Friedrichs–Lewy test (requiring that the limit of the domain of
dependence for the difference Equation (53) contains the domain of dependence for (37)
with s = 0 and v ∈ (0, +∞)) is satisfied when the mesh ratio λ satisfies (56). Let us look at
the stability of the scheme (53). To this end, let ϵ ∈ L2(Ω), and let fϵ(x) = f (x) + ϵ. Let
wϵ(x, t) be the solution to Equation (53) with the initial condition w(x, 0) = fϵ(x), i.e.,

wϵ(x, nk) =

=
n

∑
j=0

( n
j

) [
1 − (c + v) λ

]j [
λ(c + v)

]n−j fϵ

(
x − (n − j) h

)
+

+k v
n−1

∑
m=0

m

∑
j=0

( m
j

) [
1 − (c + v) λ

]j [
λ(c + v)

]m−j ×

× M
[

f ′ϵ
(
x − (m − j) h − (n − m − 1) c k

]
= w(x, nk) + ϵ,

yielding
M
[
wϵ(x, n k)

]
= M

[
w(x, n k)

]
+ M[ϵ]

that is to say an error of size M[ϵ] in the mean value of the initial random signal f results in
a maximum possible error of size M[ϵ] in the expectation of w(x, t) = w(x, nk).

To parallel the exact solution (52) to the solution w(x, t) to the initial value problem (39)
for (54), we start by recasting (52) as

u(x, t) = f
(
x − (c + v) t

)
+ M

[
f
(
x − c t

)
− f

(
x − (c + v) t

)]
. (57)

We need the following

Lemma 3.

(i) M : L2(Ω) → R is continuous.
(ii) For every continuous function φ : T → L2(Ω) and every t ∈ T ,

∫ t

0
M
[
φ(τ)

]
d τ = M

[ ∫ t

0
φ(τ) d τ

]
. (58)

Proof. (i) By the Cauchy–Schwartz inequality (and P(Ω) = 1)∣∣M[
g
]∣∣ ≤ ∫

Ω
|g| d P ≤ ∥g∥L2(Ω)

for every g ∈ L2(Ω).
(ii) One starts with the observation that (58) holds for simple functions φ : [0, t] →

L2(Ω) (by the mere linearity of M). Next, as φ : [0, t] → L2(Ω) is a Bochner integrable,
there is a sequence of simple functions φν : [0, t] → L2(Ω) such that φν → φ pointwise a.e.
in [0, t] and limν→∞

∫ t
0 ∥φ(τ)− φν(τ)∥L2(Ω) d τ = 0, and
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∫ t

0
φ(τ) d τ = lim

ν→∞

∫ t

0
φν(τ) d τ

in L2(Ω). Then,

M
[ ∫ t

0
φ(τ) d τ

]
= (by the continuity of M)

= lim
ν→∞

M
[ ∫ t

0
φν(τ) d τ

]
= (by (58) on simple functions)

= lim
ν→∞

∫ t

0
M
[
φν(τ)

]
d τ .

Note that M ◦ g : [0, t] → R is simple for every simple function g : [0, t] → L2(Ω) (by
the linearity of M). Hence, M ◦ φν are simple. Also,∣∣M[

φν(τ)
]
− M

[
φ(τ)

]∣∣ ≤ ∥φν(τ)− φ(τ)∥L2(Ω)

implies both that M ◦ φν → M ◦ φ pointwise a.e. in [0, t], and that limν→∞
∫ t

0

∣∣∣M[
φ(τ)

]
−

M
[
φν(τ)

]∣∣∣ d τ = 0. Therefore, M ◦ φ is a (scalar-valued) Bochner integrable function and

∫ t

0
M
[
φ(τ)

]
d τ = lim

ν→∞

∫ t

0
M
[
φν(τ)

]
d τ.

At this point, we may check (57). Indeed, the last term in (52) is

v
∫ t

0
M
[

f ′
(
x − (c + v) t + v τ

)]
d τ =

=
∫ t

0
M
[ d

dτ

{
f
(
x − (c + v) t + v τ

)}]
d τ = (by Lemma 3)

= M
[ ∫ t

0

d
dτ

{
f
(
x − (c + v) t + v τ

)}
d τ

]
= M

[
f (x − c t)− f

(
x − (c + v) t

]
.

Let u(x, t) be the solution to the problem

ut + (c + v) ux = v M
[

f ′(x − c t)
]
, u(x, 0) = f (x).

Let w(x, t) be the solution to the problem

1
k

{
w(x, t + k)− w(x, t)

}
+

c + v
h

{
w(x, t)− w(x − h, t)

}
=

= v M
[

f ′(x − c t)
]
, w(x, 0) = f (x).

Let us set (for the sake of brevity)

(L ϕ)(x, t) ≡ ϕ(x, t + k)−
{

1 − (c + v)λ
}

ϕ(x, t)− (c + v) λ ϕ(x − h, t)

for any function ϕ(x, t). By Taylor’s formula with Bochner integral reminder, and base
point ξ = x − (c + v) t

f (X) =
1

∑
p=0

1
p!

(X − ξ)p f (p)(ξ) + r1(X ; f , ξ),

r1(X ; f , ξ) = 2
∫ |X−ξ|

0
r2 f ′′

(
X − X − ξ

|X − ξ| r
)

d r ,
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∥∥r1
(
X ; f , ξ

)∥∥
L2(Ω)

≤ |X − ξ|2 sup
0≤θ≤1

∥∥∥ f ′′
(
(1 − θ) X + θ ξ

)∥∥∥
L2(Ω)

.

In particular for X ∈
{

x − (c + v) (t + k), x − h − (c + v) t
}

f
(

x − (c + v) (t + k)
)
= f

(
x − (c + v) t

)
− (c + v) k f ′

(
x − (c + v) t

)
+ (59)

+r1
(
x − (c + v) (t + k) ; f , x − (c + v) t

)
,

f
(

x − h − (c + v) t
)
= f

(
x − (c + v) t

)
− h f ′

(
x − (c + v) t

)
+ (60)

+r1
(
x − h − (c + v) t ; f , x − (c + v) t

)
.

Similarly, if ξ = x − c t and X ∈
{

x − c(t + k), x − h − ct
}

, then

f
(
x − c (t + k)

)
= f (x − c t)− c k f ′(x − c t)+ (61)

+r1
(
x − c (t + k) ; f , x − c t

)
,

f (x − h − c t) = f (x − c t)− h f ′(x − c t)+ (62)

+r1(x − h − c t ; f , x − c t).

Next (by (57)),

(L u)(x, t) = f
(
x − (c + v)(t + k)

)
− f

(
x − (c + v)t

)
+

−(c + v)λ
{

f
(
x − h − (c + v)t

)
− f

(
x − (c + v)t

)}
+

+M
[

f
(
x − c(t + k)

)
− f (x − ct)

]
+

−M
[

f
(

x − (x + v)(t + k)
)
− f

(
x − (c + v)t

)]
+

−(c + v)λ
{

M
[

f (x − h − ct)− f (x − ct)
]
+

−M
[

f
(

x − h − (c + v)t
)
− f

(
x − (c + v)t

)]}
=

(by (59)–(62))
= r1

(
x − (c + v)(t + k) ; f , x − (c + v)t

)
+

−(c + v)λ r1
(

x − h − (c + v)t ; f , x − (c + v)t
)
+

+M
[
r1
(
x − c(t + k) ; f , x − ct

)]
+

−M
[
r1
(

x − (c + v)(t + k) ; f , x − (c + v)t
)]
+

−(c + v)λ
{

M
[
r1
(
x − h − ct ; f , x − ct

)]
+

−M
[
r1
(

x − h − (c + v)t ; f , x − (c + v)t
)]}

.

We adopt the structural assumption

(x) f ′′ : R → L2(Ω) is bounded.

Finally, the estimates on the Taylor rest∥∥r1
(

x − (c + v)(t + k) ; f , x − (c + v)t
)∥∥ ≤ (c + v)2k2 sup

X∈R

∥∥ f ′′(X)
∥∥ ,

∥∥r1
(

x − h − (c + v)t ; f , x − (c + v)t
∥∥ ≤ h2 sup

X∈R

∥∥ f ′′(X)
∥∥ ,
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∥∥r1
(
x − c(t + k) ; f , x − ct

)∥∥ ≤ c2k2 sup
X∈R

∥∥ f ′′(X)
∥∥ ,

∥∥r1
(
x − h − ct ; f , x − ct

)∥∥ ≤ h2 sup
X∈R

∥∥ f ′′(X)
∥∥ ,

yield ∥∥(L u)(x, t)
∥∥ ≤ K h2 sup

X∈R

∥∥ f ′′(X)
∥∥ (63)

where K =
{

2(c + v)2 + c2} λ2 + 3 (c + v) λ. Let us set ϕ(x, t) := u(x, t)− w(x, t) so that
ϕ(x, 0) = 0. Then, ∥∥(L ϕ)(x, t)

∥∥ ≤
∥∥(L u)(x, t)

∥∥+ ∥∥(L w)(x, t)
∥∥ ≤

≤ K h2 sup
X∈R

∥∥ f ′′(x)
∥∥+ k

∣∣B(x, t)
∣∣

so that ∥∥ϕ(x, t + k)
∥∥ ≤

∥∥(L ϕ)(x, t)
∥∥+

+
∣∣1 − (c + v)λ

∣∣ ∥∥ϕ(x, t)
∥∥+ (c + v)λ

∥∥ϕ(x − h, t)
∥∥ ≤

(by (56))
≤ K h2 sup

x∈R

∥∥ f ′′(x)
∥∥+ sup

x∈R

∥∥ϕ(x, t)
∥∥,

yielding
sup
x∈R

∥∥ϕ(x, t + k)
∥∥ ≤ sup

x∈R

∥∥ϕ(x, t)
∥∥+ (64)

+K h2 sup
x∈R

∥∥ f ′′(x)
∥∥+ k

∣∣B(x, t)
∣∣ .

Let us set t = nk with n ∈ Z+ and use (64) to iterate. We obtain (as nh2 = (ht)/λ)

sup
x∈R

∥∥ϕ(x, nk)
∥∥ ≤ h t K

λ
sup
x∈R

∥∥ f ′′(x)
∥∥+ k

n−1

∑
j=0

∣∣B(x, jk)
∣∣. (65)

We adopt the structural assumption

(xi) M
[

f ′(x)
]
≥ 0 for any x ∈ R.

Note that

B(x, t) = v M
[

f ′(x − ct)
]
= −v

c
M
[ d

dt

{
f (x − c t)

}]
≈ Bk(x, t),

where
Bk(x, t) := − v

c k
M
[

f
(
x − c (t + k)

)
− f (x − c t)

]
.

From now on, let w(x, t) be the solution to (53) with B(x, , t) replaced by Bk(x, t).
Then,

n−1

∑
j=0

∣∣B(x, jk)
∣∣ = − v

c k
M
[ n−1

∑
j=0

{
f
(
x − c (j + 1) k

)
− f

(
x − c j k

)]
=

= − v
c k

M
[

f (x − c t)− f (x)
]

and (65) reads

sup
x∈R

∥∥ϕ(x, t)
∥∥ ≤ h t K

λ
sup
x∈R

∥∥ f ′′(x)
∥∥+ v

c
M
[

f (x)− f (x − c t)
]

yielding (11).
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6. Taylor’s Formula with Bochner Integral Reminder for Vector-Valued Functions

Let X be a topological vector space on which X∗ separates points, and let m be a Borel
probability measure on a compact Hausdorff space Q. If f : Q → X is continuous and
co

[
f (Q)

]
is a compact subset of X, then (cf. e.g., Theorem 3.27 in [7] (p. 78)) there is a

unique y ∈ co
[

f (Q)
]

such that

Λ(y) =
∫

Q
Λ( f ) dm, Λ ∈ X∗ .

A partition of Q is a finite family of mutually disjoint Borel subsets of Q whose union
is Q. When X is a Fréchet space, the (Bochner) integral

∫
Q f dm := y may be exhibited as a

strong limit of “Riemann sums”, i.e., for every neighborhood V ⊂ X of the origin, there is a
partition {Ej : 1 ≤ j ≤ N} of Q such that

∫
Q

f dm−
N

∑
j=1

m(Ej) f (xj) ∈ V

for any xj ∈ Ej, 1 ≤ j ≤ N, cf. [7] (p. 89). Approximations of Lebesgue integrals by
Riemann sums were considered by S. Gy. Révész and I. Z. Ruzsa [11] and R. Nair [12] for
scalar-valued functions. Recovering their results to the case of vector-valued functions is
an open problem.

Let X be a locally convex space over R, on which X∗ separates points, and let
f ∈ Cn+2(U,X), where U ⊂ R is an open set. For our needs (as to the applications
to flows of quantities of random density), X = L2(Ω) (with a given probability field
(Ω , K , P)). Let t0 ∈ U, and let us set

Pn(t ; f , t0) =
n

∑
k=0

1
k!

(t − t0)
k f (k)(t0), (66)

Rn(t ; f , t0) = f (t)− Pn(t ; f , t0). (67)

Lemma 4.

(i) The reminder is of order o(|t − t0|n), i.e.,

lim
t→t0

1
(t − t0)n Rn(t ; f , t0) = 0.

(ii) The reminder admits the integral representation formula

Rn(t ; f , t0) =
1
n!

∫ t

t0

(t − s)n f (n+1)(s) ds.

Proof. (i) Linear and continuous functionals Λ ∈ X∗ commute with derivatives of any
order. Hence,

Λ[Pn(t ; f , t0)] = Pn(t ; Λ( f ), t0) (68)

where Λ( f ) := Λ ◦ f . As Λ( f ) is a scalar-valued function of class Cn+1, for any t ∈ U, there
is α = α(t, t0 , Λ( f )) ∈ [0, 1] such that

Rn(t ; Λ( f ), t0) =
(t − t0)

n+1

(n + 1)!
dn+1Λ( f )

dtn+1 (ξ) (69)

where ξ = (1 − α)t0 + α t. Consequently, as Λ( f ) is of class Cn+2, the representation
formula (69) implies
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lim
t→t0

Rn(t ; Λ( f ), t0)

(t − t0)
n+1 =

1
(n + 1)!

dn+1Λ( f )
dtn+1 (t0). (70)

On the other hand (by (68)),

Rn(t ; Λ( f ), t0)

(t − t0)
n+1 =

1

(t − t0)
n+1 [Λ( f (t))− Pn(t ; Λ( f ), t0)] =

= Λ

[
1

(t − t0)
n+1 Rn(t ; f , t0)

]
hence (by (70)), for any sequence {tν}ν≥1 ⊂ U with limν→∞ tν = t0 the limit

lim
ν→∞

Λ

[
1

(tν − t0)
n+1 Rn(tν ; f , t0)

]

exists and is finite. Consequently,{
Λ

[
1

(tν − t0)
n+1 Rn(tν ; f , t0)

]
: ν ≥ 1

}
⊂ R

is a bounded set for every Λ ∈ X′, i.e., the set

E =

{
1

(tν − t0)
n+1 Rn(tν ; f , t0) : ν ≥ 1

}
⊂ X

is weakly bounded. From now on, we assume that X is a locally convex space. By
Theorem 3.18 in [7] (p. 70), every weakly bounded set in X is also strongly bounded.
Hence, for any neighborhood V of 0 ∈ X, there is sV > 0 such that E ⊂ sV for any
s > sV , i.e.,

1
(tν − t0)

n Rn(tν ; f , t0) ∈ (tν − t0) s V

for any ν ≥ 1. Consequently, the sequence{
1

(tν − t0)
n Rn(tν ; f , t0)

}
ν≥1

is strongly convergent to 0 as ν → ∞.
(ii) Let X be a topological vector space on which X∗ separates points. By a classical

representation formula

Rn(t ; Λ( f ), t0) =
1
n!

∫ t

t0

(t − s)n dn+1(Λ ◦ f )
dtn+1 (s) ds

for any t ∈ U. Then,

Λ
[

Rn(t ; f , t0)−
1
n!

∫ t

t0

(t − s)n f (n+1)(s) ds
]
= 0

for any Λ ∈ X∗, where
∫ t

t0
(t − s)n f (n+1)(s) ds is a Bochner integral. As X∗ separates points,

we may conclude that

Rn(t ; f , t0) =
1
n!

∫ t

t0

(t − s)n f (n+1)(s) ds (71)
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for any t ∈ U.

Lemma 5. Let X be a locally convex space on which X∗ separates points. Let U ⊂ R be an open
neighborhood of t0 ∈ R, and let F ∈ Cn+1(U,X) such that F(t0) = F′(t0) = · · · = F(n)(t0) =
F(n+1)(t0) = 0. Then,

lim
t→t0

[
1

(t − t0)n F(t)
]
= 0.

Proof. Λ(F) ∈ Cn+1(U,R) for every Λ ∈ X′ and (by applying repeatedly the classical
l’Hôspital theorem)

lim
t→t0

Λ(F(t))
(t − t0)n+1 = lim

t→t0

d
dt
[Λ(F(t))]

(n + 1)(t − t0)n = · · · = lim
t→t0

dn

dtn [Λ(F(t))]

(n + 1)! (t − t0)
=

= lim
t→t0

dn+1

dtn+1 [Λ(F(t))]

(n + 1)!
=

1
(n + 1)!

Λ
[

F(n+1)(t0)
]
= 0

hence,

lim
ν→∞

Λ(F(tν))

(tν − t0)n+1 = 0

for any sequence {tν}ν≥1 ⊂ U such that limν→∞ tν = t0. Consequently, the set{
1

(tν − t0)n+1 F(tν) : ν ≥ 1
}

⊂ X

is weakly bounded, and then strongly bounded, in X. Then, for any neighborhood V ⊂ X

of 0, there is s > 0 such that

1
(tν − t0)n F(tν) ∈ (t − t0) s V, ν ≥ 1,

yielding lim
ν→∞

[
1

(tν − t0)n F(tν)

]
= 0 strongly in X.

Let X be a Fréchet space. Let A ⊂ Rn be an open set, and let f ∈ Ck(A,X) and x0 ∈ A.
There is R > 0 such that BR(x0) ⊂ A. Let w ∈ Rn such that ∥w∥ = 1, and let us consider
the function

F : (−R, R) → X, F(t) = f (x0 + tw), |t| < R.

Then, F ∈ Ck((−R, R), X) and then by Taylor’s formula with a reminder for X-valued
functions of one real variable, cf. (66) and (67)

F(t) =
k

∑
j=0

tj

j!
F(j)(0) + Rk(t; F, 0). (72)

On the other hand,

F(h)(t) = h! ∑
|α|=h

wα

α!
(Dα f )(x0 + tw) (73)

and choosing

w =
1

∥x − x0∥
(x − x0), t = ∥x − x0∥, x ∈ BR(x0),

the Formula (72)
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becomes

f (x) = F(∥x − x0∥) =
k

∑
j=0

∥x − x0∥j

j!
F(j)(0) + Rk(∥x − x0∥; F, 0) =

(for (73) with t = 0)

=
k

∑
j=0

∥x − x0∥j ∑
|α|=j

1
α!

(x − x0)
α

∥x − x0∥|α|
(Dα f )(x0) + rk(x; f , x0)

where we have set
rk(x; f , x0) = Rk(∥x − x0∥; F, 0),

F(t) = f
(

x0 +
t

∥x − x0∥
(x − x0)

)
, |t| < R.

The Taylor formula we seek for is

f (x) = ∑
|α|≤k

(x − x0)
α

α!
(Dα f )(x0) + rk(x; f , x0). (74)

Next, let us assume that f ∈ Ck+2(A,X) so that F ∈ Ck+2((−R, R),X) and hence

Rk(t; F, 0) =
1
k!

∫ t

0
(t − s)kF(k+1)(s) ds

where from (by (73) for h = k + 1)

rk(x; f , x0) =
1
k!

∫ ∥x−x0∥

0
(∥x − x0∥ − s)k×

×(k + 1)! ∑
|α|=k+1

(x − x0)
α

α! ∥x − x0∥|α|
(Dα f )

(
x0 +

s
∥x − x0∥

(x − x0)

)
ds =

or (by a change of variable r = ∥x − x0∥ − s)

rk(x; f , x0) =
k + 1

∥x − x0∥k+1 × (75)

× ∑
|α|=k+1

(x − x0)
α
∫ ∥x−x0∥

0
rk (Dα f )

(
x − r

∥x − x0∥
(x − x0)

)
dr.

Let X be a complex Fréchet space. Let {∥ · ∥m : m ≥ 0} be a separating family of
semi-norms defining the topology of X as a local convex space.

Lemma 6. Let A ⊂ Rn be an open set and let f ∈ Ck+2(A,X). Let x0 ∈ A and R > 0 such that
BR(x0) ⊂ A. Then,

∥rk(x; f , x0)∥m ≤ Mk+1∥x − x0∥k+1× (76)

× max
|α|=k+1

sup
0≤τ≤1

∥(Dα f )((1 − τ)x + τx0)∥m

for any x ∈ BR(x0).

Here, Mℓ is the cardinality of the set {α ∈ Zn
+ : |α| = ℓ}.
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Proof of Lemma 6.

∥rk(x; f , x0)∥m ≤ k + 1
∥x − x0∥k+1 ∑

|α|=k+1

n

∏
j=1

∣∣∣xj − x0
j

∣∣∣αj×

×
∫ ∥x−x0∥

0
rk

∥∥∥∥(Dα f )
(

x − r
∥x − x0∥

(x − x0)

)∥∥∥∥
m

dr ≤

(as ∏n
j=1

∣∣∣xj − x0
j

∣∣∣αj ≤ ∥x − x0∥|α|)

≤
[
(k + 1)

∫ ∥x−x0∥

0
rk dr

]
×

× ∑
|α|=k+1

sup
0≤r≤∥x−x0∥

∥∥∥∥(Dα f )
(

x − r
∥x − x0∥

(x − x0)

)∥∥∥∥
m
≤

≤ Mk+1∥x − x0∥k+1×

× max
|α|=k+1

sup
0≤r≤∥x−x0∥

∥∥∥∥(Dα f )
(

x − r
∥x − x0∥

(x − x0)

)∥∥∥∥
m

.

Setting τ = r/∥x − x0∥ ∈ [0, 1], one may conclude that

∥rk(x; f , x0)∥m ≤ Mk+1∥x − x0∥k+1×

× max
|α|=k+1

sup
0≤τ≤1

∥(Dα f )((1 − τ)x + τx0)∥m .

7. Examples of Initial Value Problems

Let Fξ ∈ L1
loc(Ω) be the distribution function Fξ(a) = P

(
ξ ≤ a

)
of the random variable

ξ : Ω → R, and let pξ(x) = F′
ξ(x) (distributional derivative) be the corresponding probabil-

ity density. Let u be the solution to the initial value problem (23) for the Equation (26) with
s = 0, expressed as in (57), i.e.,

u(x, t) = f
(
x − (c + v) t

)
+ M

[
f (x − c t)− f

(
x − (c + v) t

)]
.

The probability distribution of u at {(xi , ti)}1≤i≤p is the joint probability distribution
of the random variables ξi := u(xi , ti) ∈ L2(Ω), i.e.,

P(x1 , t1), ··· , (xp , tp)

(
B
)

:= P
(
(ξ1 , · · · , ξp) ∈ B

)
for any Borelian set B ⊂ Rp. For every (x, t) ∈ R2 and B = (−∞, a] ⊂ R

P(x, t)
(

B
)
= P

(
u(x, t) ≤ a

)
= Fu(x, t)(a).

Through this section, we discuss the class of functions given by (57) for various
choices of random signals f : T → L2(Ω) (where T is R or [0, +∞)), e.g., random sine
signals, Poisson, and Wiener processes. Of course, Poisson and Wiener processes are not
differentiable, yet the right-hand side of (57) is well defined for such choices of “initial
values” f .

7.1. Deterministic Initial Values and Generalizations

Let g ∈ C1(R), and let f : R → L2(Ω) be the corresponding deterministic signal, i.e.,
f (x)(ω) = g(x) for any ω ∈ Ω and x ∈ R. Then, (57) becomes u(x, t) = f (x − c t) so the
solution u is a deterministic signal as well. In particular, the probability density of u at
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(x, t) is pu(x, t) = δg(x−ct). Here, δa ∈ D ′(R) is the Dirac distribution concentrated at a ∈ R.
As another example, let αk ∈ L2(Ω) and fk ∈ C1(R), 1 ≤ k ≤ p, be, respectively, random
variables and C1 functions, and let us set

f : R → L2(Ω), f (x) =
n

∑
k=1

fk(x) αk , x ∈ R. (77)

Then, f ∈ C1(R, L2(Ω)
)
, and the solution is

u(x, t) =
n

∑
k=1

{
fk
(
x − (c + v)t

)
α̊k + fk(x − ct) M

[
αk
]}

.

The family of initial data (77) contains the random algebraic and trigonometric polynomials

n

∑
k=0

xk ak ,
1
2

a0 +
n

∑
k=0

{
(cos kx) ak + (sin kx) bk

}
,

with ak , bk ∈ L2(Ω).

7.2. Sine Random Initial Values

Let A, α, φ : Ω → R be independent random variables such that (1) A is square
integrable, (2) A ≥ 0, α ≥ 0, (3) A and α have the same distribution function, and 4) φ is
uniformly distributed over the interval [0, 2π), i.e., its probability density is

pφ(x) =
1

2π

{
σ(x)− σ(x − 2π)

}
with σ the Heaviside unit step function. Let

f (x)(ω) = A(ω) sin
[
x α(ω) + φ(ω)

]
(78)

be a sine random signal, with random amplitude, frequency, and phase. Then,∫
Ω

∣∣ f (x)(ω)
∣∣2 d P(ω) ≤ ∥A∥2

L2(Ω) < ∞

i.e., f (x) ∈ L2(Ω). The solution to (26) with the initial values (78) possesses the remarkable
property that its distributions are translation invariant in the x-variable, i.e.,

P(x1+a , t1) , ··· , (xp+a , tp) = P(x1 , t1), ··· , (xp , tp) , (xi , ti) ∈ R2 , a ∈ R . (79)

For every Borel set B ⊂ Rp,

P(x1+a , t1) , ··· , (xp+a , tp)(B) = P
((

u(x1 + a , t1) , · · · , u(xp + a , tp)
)
∈ B

)
.

Let us consider the Borel set C ⊂ R3 given by

C =
{
(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, 0 ≤ z ≤ 2π,

p

∑
i=1

{
x sin

(
(xi − (c + v)ti) y + z

)
+

+M
[

x sin
(
(xi − cti) y + z

)
− x sin

(
(xi − (c + v)ti) y + z

)]}
ei ∈ B

}
where {ei : 1 ≤ i ≤ 3} ⊂ R3 is the canonical basis. For every r ∈ R, let r̂ ∈ R denote
the unique real number such that 0 ≤ r̂ ≤ 2π and r − r̂ ∈

{
2mπ : m ∈ Z

}
. Then, (79) is

equivalent to

P
((

A, α, φ̂ + a α
)
∈ C

)
= P

(
(A, α , φ) ∈ C

)



AppliedMath 2024, 4 246

or (as A, α, φ are independent, i.e., PAαφ = PA Pα Pφ)∫ ∞

0
PA(x) d x

∫ ∞

0
Pα(y) Pφ

({
z : (x, y, ẑ + ay) ∈ C

})
d y =

=
∫ ∞

0
PA(x) d x

∫ ∞

0
Pα(y) Pφ

(
{z : (x, y, z) ∈ C}

)
d y.

The set
{

z : (x, y, ẑ + ay) ∈ C
}

is obtained from the set {z : (x, y, z) ∈ C} by
translation with a y, followed by reduction modulo 2π. Finally, as the random variable φ is
uniformly distributed, its distribution is translation invariant so that

Pφ

({
z : (x, y, ẑ + ay) ∈ C

})
= Pφ

(
{z : (x, y, z) ∈ C}

)
.

7.3. Poisson Initial Values

Let λ > 0, and let f : [0, +∞) → L2(Ω) be a function such that (1) f (0) = 0, (2) for
any n ∈ Z+ and any 0 ≤ x0 < x1 < · · · < xn the random variables

f (x1)− f (x0), f (x2)− f (x1), · · · , f (xn)− f (xn−1),

are independent, (3) for any 0 ≤ x < y the random variable f (y) − f (x) is Poisson
distributed with parameter λ(y − x), i.e.,

f (y)− f (x) ∼

 0 1 · · · k · · ·

p0 p1 · · · pk · · ·

,

pk = P
(

f (y)− f (x) = k
)
=

λk(y − x)k

k!
e−λ(y−x) .

Hence, for every t > 0, the random variable f (x − ct)− f (x − (c + v)t) is discrete and
Poisson distributed with parameter λ v t; hence, its expectation is

M
[

f (x − ct)− f (x − (c + v)t)
]
=

∞

∑
n=0

n pn = e−λ(x−ct)
∞

∑
n=1

(λ v t)n

(n − 1)!

so that
u(x, t) = f

(
x − (c + v)t

)
+ λ v t e−λ

(
x−(c+v)t

)
.

7.4. Wiener Initial Values

Let f : [0, +∞) → L2(Ω) be a function such that (1) f (0) = 0, (2) for any n ∈ Z+

and any 0 ≤ x0 < x1 < · · · < xn the random variables f (xi)− f (xi−1), 1 ≤ i ≤ n, are
independent, and (3) for any 0 ≤ x < y the random variable f (y)− f (x) is Gaussian with
mean m = 0 and dispersion σ2 = y − x, i.e., the probability distribution is

p f (y)− f (x)(a) =
1√

2π(y − x)
exp

{
− a

2(y − x)

}
, a ∈ R.

Let x ∈ R and t > 0 such that x − (c + v)t ≥ 0. Then, f (x − ct)− f (x − (c + v)t) is a
Gaussian random variable with mean 0 and dispersion vt, i.e.,

p f (x−ct)− f (x−(c+v)t)(z) =
1√

2πvt
exp

(
− z

2vt

)
, z ∈ R,

hence

M
[

f (x − ct)− f (x − (c + v)t)
]
=

∫ +∞

−∞
z p f (x−ct)− f (x−(c+v)t)(z) d z =
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=
1√
2π

∫ +∞

−∞
ζ e−ζ2/2 d ζ = 0

so that u(x, t) = f
(

x − (c + v)t
)
.

8. Conclusions and Open Problems

The equation (6)
ut + (c + v) ux − v M

[
ux

]
+ vx ů = s

was derived from the conservation law (2) under the structural assumptions (iii) Mϕ = c Mu
and (iv)

∣∣ru(x, t) ϕ(x, t)
∣∣ = 1 for any (x, t) ∈ [0, ℓ]×T . The correlation coefficient rξη of two

random variables ξ, η ∈ L2(Ω) is known to satisfy
∣∣rξη

∣∣ ≤ 1, and ξ, η are uncorrelated if
rξ η = 0. Therefore, the meaning of the assumption (iv) is that the random variables u(x, t)
and ϕ(x, t) are as far from being uncorrelated as possible. Note that (iv) is a necessary
condition for ϕ = c u to hold, which is the deterministic model for transport. In the
probabilistic setting, we refuted the state Equation (16) and instead modeled convection by
the assumption (iii) that the mean values of the flux ϕ and density u at any point of a x-
section, and at any time moment t, be proportional. An elementary, yet crucial, consequence
of (iii) and (iv) was that the (non-vanishing, in general) flux ϕ − c u is proportional to ů (for
every random variable ξ ∈ L2(Ω) the L2 norm of ξ̊ is the mean square deviation of ξ), i.e.,
(5) holds for some function v : [0, ℓ]× T → R with the dimensions of a velocity. When
v = 0 Equation (6) becomes ut + c ux = s; hence, (6) is a probabilistic version of the ordinary
convection equation (with sinks/sources). Through the present paper, we discussed the
initial value problem u(x, 0) = f (x) for the Equation (6), where f : R → L2(Ω) is a given
random signal. Our structural assumption (vii) M s = 0 is the probabilistic version of the
simpler “no sinks or sources” case that we wish to analyze. An undesirable feature of (6) is
that it contains both the spatial derivative of the density and its expectation. A remedy we
adopt is to take the expectations of both members of (6) and of the initial condition (23) so
that to obtain the initial value problem (24) governing the evolution of the mean value M u
of the density, and uniquely determining it (cf. (25)). The initial value problem for (6) is
then recast as

ut + (c + v) ux + vx u = s +
∂

∂x

{
v M

[
f (x − ct)

]}
, (80)

u(x, 0) = f (x). (81)

When diffusion, rather than convection, is manifest, the appropriate probabilistic
version of Fick’s law is perhaps

M ϕ = −D M
[
ux

]
, (82)

for some constant D > 0 with
[
D
]

SI = L2 · T−1. It is an open problem to derive a
probabilistic diffusion equation from the conservation law (2) together with the constitutive
Equation (82). Under the simplifying assumption that the velocity v is a positive constant,
i.e., (ix) v ∈ (0, +∞), a difference equation scheme, approximating (80) over a grid G ⊂ R2

of mesh ratio λ, is proposed and recognized to be both stable and satisfying the Courant–
Friedrichs–Lewy test, provided that the mesh ratio and the velocities c and v obey to (10),
i.e., (c + v) λ ≤ 1. The more general problem with arbitrary v ∈ C1([0, ℓ]× T

)
is so far

open. To estimate (in the L2 norm) the difference between the analytic solution and the
discrete solution, we recover the integral representation of the Taylor rest in the truncated
Taylor development for functions f : U ⊂ R → L2(Ω). We do this in the more general
setting of Ck+1 functions f : A ⊂ Rn → X, where X is an arbitrary Fréchet space, and
integrals there are Bochner integrals, i.e.,

rk(x; f , x0) =
k + 1

∥x − x0∥k+1 × (83)
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× ∑
|α|=k+1

(x − x0)
α
∫ ∥x−x0∥

0
rk (Dα f )

(
x − r

∥x − x0∥
(x − x0)

)
dr

yielding the needed estimate on the Taylor rest (cf. (76))

∥rk(x; f , x0)∥m ≤ Mk+1∥x − x0∥k+1 ×

× max
|α|=k+1

sup
0≤τ≤1

∥(Dα f )((1 − τ)x + τx0)∥m ,

with respect to a given family {∥ · ∥m : m ∈ Z+} of semi-norms on X (defining its topology
as a locally convex space). The proof of (83) relies on standard techniques of functional
analysis, and in particular on the fact that any weakly bounded subset of a locally convex
space is also strongly bounded (cf. [7]). Convection and convection + diffusion models
are useful in understanding ion translocation (cf. C-Y. Kong and M. Muthukumar [13])
across cellular membranes (cf. A. Parsegian [14], L. Movileanu, S. Howorka, O. Braha,
and H. Bayley [15], A.G. Cherstvy [16]), which in turn is known to control a large number
of biological processes. Cf. also R.I. Stefan-van Staden [17], for a discussion of classical
sensing versus stochastic sensing. If small free ions in water are treated as a continuous
medium with charge density Ci(r, t) located at r at time t of the, say, i-th ion species, the
ionic flux Ji and the local electrostatic potential V(r) are related (cf. Equations (2.6)–(2.8)
in [13] (p. 18254)) by

∂Ci(r, t)
∂t

= −∇ · Ji , (84)

Ji = −Di

{
∇Ci(r, t) +

Zi Ci
kB T

∇V
}

, (85)

ϵ0 ∇ ·
{

ϵ(r)∇V(r)
}
= −ρex − ∑

i
Zi Ci(r), (86)

where Zi, Di are, respectively, the charge and diffusion coefficients of the i-th species
contributing to the ionic current. Equation (84) is a conservation law, while (85) ex-
hibits the flux Ji as having both a diffusive and a convective term (and (86) is the Pois-
son equation governing the electrostatic potential V (with ϵ0 = permittivity of vacuum,
ϵ(r) = inhomogeneous dielectric constant)). The model (84)–(86) may be further refined
by assuming (as in [10] (p. 134706-2)) a position-dependent diffusion coefficient Di(r). Prob-
abilistic versions of (84)–(86) may be derived in the spirit of the model proposed in the
current paper, as suggested by the reviewer (the problem will be addressed in future work).
A cell’s membrane is thought of (cf. e.g., H. Davson and J. Danielli [18]) as a region of
low polarizability acting as a barrier to the passage of solute material between two aque-
ous solutions. In a low-dielectric, hardly polarizable environment of lipid membranes,
the ion electrostatic self-energy (the self-energy, or energy of charging, is the leading term
in the energy of a charge in a given medium) Ec = e2

0
/(

2 ϵc a
)

(cf. M. Born [19], with
a = ion’s radius, e0 = elementary charge) is known to increase with several factors of kB T
(kB = Boltzmann constant, T = absolute temperature) resulting into strong barriers that
would stop ionic current across a membrane that were void of further intimate structure,
such as ion-transport proteins incorporated into cell’s membrane, that actually allow for
ion permeation. The possibility of including (as once again suggested by the reviewer)
low-dielectric membranes into the model developed in the present work, is left as an
open problem.
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