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Abstract: The reliability of the multicomponent stress–strength system was investigated under
the two-parameter Burr X distribution model. Based on the structure of the system, the type II
censored sample of strength and random sample of stress were obtained for the study. The maximum
likelihood estimators were established by utilizing the type II censored Burr X distributed strength
and complete random stress data sets collected from the multicomponent system. Two related
approximate confidence intervals were achieved by utilizing the delta method under the asymptotic
normal distribution theory and parametric bootstrap procedure. Meanwhile, point and confidence
interval estimators based on alternative generalized pivotal quantities were derived. Furthermore, a
likelihood ratio test to infer the equality of both scalar parameters is provided. Finally, a practical
example is provided for illustration.

Keywords: multicomponent stress–strength model; Burr X distribution; maximum likelihood estimation;
generalized pivotal estimation; asymptotic theory

1. Introduction

Systems or units that are subject to the competition between strength and stress have
been studied under the commonly called stress–strength model. The system survives if
the imposed stress is less than the system strength. Therefore, the stress–strength model
plays a substantial role in many aspects, such as lifetime study, engineering, and supply
and demand applications.

Let X be the system strength and Y be the stress applied. Then, the stress–strength
reliability (SSR) is labeled as R = P(Y < X). Generally, X indicates the measurement of
quality characteristics for the main subject and Y indicates the measurement of quality char-
acteristics for the opposite subject in the system. Next, three cases are presented to illustrate
the applications of a stress–strength system. In mechanical engineering, the strength mea-
sure X of a long horizontal part for a crane needs to exceed the stress of the loading weight
Y from the lifted object of operation. The reliability R = P(Y < X) is an essential quantity
for assessing the quality of a crane. In the application of civil engineering, the tolerable
bearing capacity of a suspension bridge is an important quality measure. The bearing
capacity X from a pair of cables for the suspension bridge should exceed the total weight Y
of the cars. In this application, a high reliability R = P(Y < X) is essential for a suspension
bridge design. In logistics applications, the supply capacity X can represent the strength
and the demand Y can represent the stress. A high reliability R = P(Y < X) indicates a
reliable logistics system. In recent years, the stress–strength model has been broadly used
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in a variety of fields, such as economics, hydrology, reliability engineering, seismology, and
survival analysis. The system reliability has also been studied by numerous researchers.
Eryilmaz [1] developed formulae for R and the mean residual life at random time based
on phase-type distributions, such as the Erlang distribution. Kundu and Raqad [2] inves-
tigated a modified maximum likelihood estimation for R based on Weibull distributions,
each of which possess three parameters: shape, scale, and location. Krishnamoorthy and
Lin [3] studied confidence limits for R by using the generalized variable approach through
the maximum likelihood estimation method with two independent Weibull distributions.
Mokhlis et al. [4] investigated the inferences of R under distributions that include general
exponential and inverse-exponential forms. Surles and Padgett [5] studied the maximum
likelihood estimate and Bayesian inference for R based on Burr X distributions with the
equal scale parameter set to one. Wang et al. [6] acquired inference procedures for R with a
generalized exponential distribution.

Very often, like in the aforementioned references, the studies of reliability inference are
mainly concentrated on a system with a main component. Nevertheless, several practical
systems, such as a system with series components, parallel components, or any combination
of these two, are composed of multiple components to accomplish the required functions.
Therefore, multicomponent system reliability investigations have attracted more attention
lately. Commonly, multicomponent systems consist of k > 1 main components, of which
the strengths follow an independent and identical distribution (i.i.d.) subject to an opposite
commonly distributed stress. The system survives if at least s(1 ≤ s ≤ k) main compo-
nents concurrently function. The multicomponent system is generally referred to as the
s-out-of-k G system. There are numerous practical multicomponent systems in the world.
For example, a communication system with three transmitters, where the expected message
load requires at least two transmitters to be operational; otherwise, critical messages are
lost. Hence, this transmission system is called a two-out-of-three G system. A second
example, where the Airbus A-380 with four engines is capable of flying if and only if at
least two of the four engines are functioning, is referred to as a two-out-of-four G system.
Another example is a suspension bridge with k pairs of cables, which needs at least s pairs
of unbroken cables to withstand the stress.

Let the k components’ strength variables in an s-out-of-k G system, where each compo-
nent is subject to a stress measure Y, be X1, X2, . . . , Xk. The multicomponent stress–strength
reliability (MSR) Rs,k, as presented by Bhattacharyya and Johnson [7], is given by

Rs,k = P(at least s of the (X1, X2, . . . , Xk) exceed Y)

=
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1 − F(w)]i[F(w)]k−idG(w), (1)

where F(·) is the common cumulative distribution (CDF) of X1, X2, . . . , Xk and G(·) is
the CDF of Y. The reliability Rs,k inferences for s-out-of-k G systems based on different
distribution models have been extensively investigated by several researchers. The work by
Dey et al. [8] was based on random samples from Kumaraswamy distributions. The work
by Kayal et al. [9] was based on random samples from Chen distributions. The works
by Kizilaslan [10,11] were based on random samples from proportional reversed hazard
rate distributions and a general class of inverse exponentiated distributions, respectively.
The work by Kizilaslan and Nadar [12] was based on complete sample sets from bivari-
ate Kumaraswamy distributions. The work by Nadar and Kizilaslan [13] was based on
complete samples from Marshall–Olkin bivariate Weibull distributions. The works by
Rao [14,15] were, respectively, based on complete random samples from Rayleigh and gen-
eralized Rayleigh distributions. The work by Rao et al. [16] was based on complete random
samples from Burr XII distributions. The work by Shawky and Khan [17] was based on
random samples from inverse Weibull distributions. The work by Lio et al. [18] was based
on type II sample of strength and complete random sample of stress Burr XII distributions.
The work by Sauer et al. [19] was based on progressively type II censored samples from
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generalized Pareto distributions. And the work by Wang et al. [20] was based on type II
censored strength and complete stress samples from Rayleigh stress–strength models.

Burr [21] developed numerous distributions. Among them, both Burr X and Burr XII
have been the most attractive in recent reliability studies. Meanwhile, Belili et al. [22] ex-
plored an elastic two-parameter family of distributions and provided numerous theoretical
results that include vital parameters and behaviors of distribution functions, reliability mea-
surements for the proposed two-parameter family, and applications to annual maximum
floods and survival times for breast cancer patients. The proposed two-parameter family
of distributions include the two-parameter Lindley distributions I and II, gamma Lind-
ley distribution, quasi-Lindley distributions, pseudo-Lindley distribution, and XLindley
distribution as special cases, but do not include the Burr types. Their proposed family of
distributions could potentially be applied to the stress–strength reliability inference for the
multicomponent system. Yousof et al. [23] and Jamal and Nasir [24] proposed two Burr X
generators to create different families of distributions by using the CDF of a one-parameter
Burr X distribution composite with − ln(Ḡ(t; η)) and G(t;η)

Ḡ(t;η) , where G(t; η) and Ḡ(t; η) are
the CDF and survival function of a second distribution with parameter vector η of one di-
mension or two dimensions, respectively. Therefore, both Burr X generalized distributions
have two parameters or three parameters. Both papers developed numerous properties
of these two generalized Burr X distributions that include stress–strength reliability for a
one-component system. However, the practical application of stress–strength reliability
was not provided. They also applied these two generalized Burr X distributions to model
a random sample of 128 bladder cancer patients’ remission times (in months) and con-
currently concluded that their respective extended Burr X distributions performed better
than a one-parameter Burr X distribution. These two generalized Burr X distributions
do not contain the current two-parameter Burr X distribution as a special case and could
potentially be applied to the stress–strength reliability inference for a multicomponent
system as well.

The Burr XII distribution has two shape parameters. For more information about Burr
XII, readers may refer to Lio et al. [18]. The Burr X distribution considered in the current
study has two parameters and the probability density function (PDF) and CDF, respectively,
are defined as

f (x; λ, α) =
2xα

λ
exp(−x2/λ)(1 − exp(−x2/λ))(α−1) and

F(x; λ, α) = (1 − exp(−x2/λ))α, x > 0, λ > 0, α > 0, (2)

where λ and α are the scale and shape parameters, respectively. For easy reference,
BurrX(λ, α) is used as the Burr X distribution with parameters λ and α, hereafter. Be-
cause of the flexibility of use for any two-parameter distribution, BurrX(λ, α) has been
investigated in the reliability studies of numerous scholars. Jaheen [25] explored the relia-
bility and failure rate functions for the Burr X model by utilizing the empirical Bayesian
estimation method based on complete random samples. Ahmad et al. [26] considered the
empirical Bayes estimate of R based on random samples from a Burr X distribution. When
both stress and strength Burr X distributions have scale parameters of one, Surles and Pad-
gett [5] and Akgul and Senoglu [27] studied the inference of R using maximum likelihood
and Bayes methods based on random samples and using a modified maximum likelihood
estimate method based on ranked set samples, respectively. Surles and Padgett [5] applied
a Burr X distribution to model the stress and strength reliability of a one-component system
based on the strengths of two carbon fibers. However, according to a literature search, work
that investigated Rs,k based on a Burr X distribution has not appeared.

In reality, we do not always obtain a complete random sample, except for censored data.
Moreover, under the current multicomponent model, usually only type II strength sample
and complete random stress observations can be observed from the system. Therefore,
the current research focused on some alternative inferential methodologies for Rs,k when
the strength data are a type II censored Burr X distributed sample and the stress data are
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a Burr X distributed random sample. The estimation methods for λ, α, and Rs,k include
maximum likelihood and pivotal quantity estimation methods for type II censored strength
and random stress samples. Based on our best knowledge, the approaches used in this
work have not appeared in the literature regarding BurrX(λ, α).

Section 2 briefly describes the structure information about typical type II censored
strength and associated stress data sets from the aforementioned G system and the like-
lihood function based on those data sets from n G systems. In Section 3, the maximum-
likelihood-based approaches are addressed for Burr X distributions. Additionally, asymp-
totic confidence intervals (ACIs) are derived via utilizing the delta method and bootstrap
percentile procedure. Inferences based on pivotal quantities are given in Section 4, where
numerous theorems to support the existence and uniqueness of each pivotal-quantity-based
estimator are established. For the model test of the equivalence of Burr X scale parameters
for strength and stress, Section 5 provides a ratio test. Section 6 provides a real data example
for demonstration. Some concluding remarks are given in Section 7.

2. The Likelihood Function Based on Sample from G System

In a lifetime-testing experiment using n s-out-of-k G systems, where each system
contains k strength components subject to a common stress, the strength and stress samples
can be obtained, respectively, as

Observed strength sample Observed stress sample X11 X12 · · · X1s
...

...
. . .

...
Xn1 Xn2 · · · Xns

 and

 Y1
...

Yn

,
(3)

where {Xi1 ≤ Xi2 ≤ . . . ≤ Xis} represents the first s ordered strength statistics under type
II censoring and Yi represents the stress variable accordingly for i = 1, 2, . . . , n. The strength
quantities from all system components are independent and follow the common CDF FX(·)
with the PDF fX(·) and the related stress measure follows the CDF FY(·) with the PDF fY(·).
Hence, the joint likelihood function based on the sample in Equation (3) is described as

L(data) ∝
n

∏
i=1

(
s

∏
m=1

fX(xim)

)
[1 − FX(xis)]

k−s fY(yi). (4)

When s = 1, the likelihood function of Equation (4) is for a series system; when s = k, it is
for a parallel system.

3. The Maximum Likelihood Estimators

The maximum likelihood estimation method is addressed based on the Burr X dis-
tributed strength and stress samples from n s-out-of-k G systems in this section. Let
X = {Xi1, Xi2, . . . , Xis} with i = 1, 2, . . . , n and Y = {Y1, Y2, . . . , Yn} of (3) be the observed
strength and associated stress samples for BurrX(λ1, α1) and BurrX(λ2, α2), respectively.
Via Equations (2) and the samples of (3), the likelihood function (4) of Θ = (λ1, α1, λ2, α2)
is given according to

L(Θ) ∝
n

∏
i=1

(
s

∏
m=1

f (xim; λ1, α1)

)
[1 − F(xis; λ1, α1)]

k−s f (yi; λ2, α2)

∝ αns
1 λ−ns

1 αn
2 λ−n

2

(
n

∏
i=1

s

∏
m=1

(
1 − exp(−x2

im/λ1)
)α1−1 n

∏
i=1

(
1 − exp(−y2

i /λ2)
)α2−1

)
n

∏
i=1

(
1 − (1 − exp(−x2

is/λ1))
α1
)(k−s)

× exp

{
−
(

n

∑
i=1

s

∑
m=1

x2
im/λ1 +

n

∑
i=1

y2
i /λ2

)}
. (5)

Hence, the log-likelihood function with the constant term deleted is described as
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ℓ(Θ) = ns(ln α1 − ln λ1) + n(ln α2 − ln λ2) +
n

∑
i=1

s

∑
m=1

(α1 − 1) ln(1 − exp(−x2
im/λ1))

+
n

∑
i=1

(α2 − 1) ln(1 − exp(−y2
i /λ2))−

n

∑
i=1

s

∑
m=1

x2
im/λ1 −

n

∑
i=1

y2
i /λ2

+
n

∑
i=1

(k − s) ln(1 − (1 − exp(−x2
is/λ1))

α1). (6)

3.1. Case 1: Equal Scale Parameters

Let λ1 = λ2 = λ. Equation (1) becomes

Rs,k =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1 − F(w; λ, α1)]

i[F(w; λ, α1)]
k−idF(w; λ, α2)

=
k

∑
i=s

k−i

∑
m=0

(
k
i

)(
k − i

m

)
(−1)mα2

(i + m)α1 + α2
. (7)

Moreover, the likelihood function of (5) is given as

L1(Θ1) ∝
n

∏
i=1

(
s

∏
m=1

f (xim; λ, α1)

)
[1 − F(xis; λ, α1)]

k−s f (yi; λ, α2)

∝ αns
1 αn

2 λ−n(1+s)

(
n

∏
i=1

s

∏
m=1

(
1 − exp(−x2

im/λ)
)α1−1

)(
n

∏
i=1

(
1 − exp(−y2

i /λ)
)α2−1

)

×
n

∏
i=1

(
1 − (1 − exp(−x2

is/λ))α1
)k−s

exp

(
− 1

λ

(
n

∑
i=1

s

∑
m=1

x2
im +

n

∑
i=1

y2
i

))
, (8)

and after dropping the constant term, the log-likelihood function is

ℓ1(Θ1) = n(s ln(α1) + ln(α2)− (s + 1) ln(λ)) + (α1 − 1)
n

∑
i=1

s

∑
m=1

ln
(

1 − exp(−x2
im/λ)

)
+ (α2 − 1)

n

∑
i=1

ln
(

1 − exp(−y2
i /λ)

)
+ (k − s)

n

∑
i=1

ln
(

1 −
(

1 − exp(−x2
is/λ)

)α1
)

− 1
λ

(
n

∑
i=1

(
s

∑
m=1

x2
im + y2

i

))
, (9)

where Θ1 = (α1, α2, λ).
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3.1.1. Point Estimators under Equal Scale Parameters

Taking partial derivatives of ℓ1(Θ1) with respective to α1, α2, and λ, one obtains

∂ℓ1(Θ1)

∂α1
=

ns
α1

+
n

∑
i=1

s

∑
m=1

ln
(

1 − exp(−x2
im/λ)

)
− (k − s)

n

∑
i=1

(1 − exp(−x2
is/λ))α1 ln(1 − exp(−x2

is/λ))

1 −
(
1 − exp(−x2

is/λ)
)α1

(10)

∂ℓ1(Θ1)

∂α2
=

n
α2

+
n

∑
i=1

ln(1 − exp(−y2
i /λ)) (11)

∂ℓ1(Θ1)

∂λ
=

−n(s + 1)
λ

− (α1 − 1)
n

∑
i=1

s

∑
m=1

x2
im exp(−x2

im/λ)

λ2
(
1 − exp(−x2

im/λ)
)

− (α2 − 1)
n

∑
i=1

y2
i exp(−y2

i /λ)

λ2(1 − exp(−y2
i /λ))

+
1

λ2

(
n

∑
i=1

s

∑
m=1

x2
im +

n

∑
i=1

y2
i

)

+ α1(k − s)
n

∑
i=1

(1 − exp(−x2
is/λ))α1−1x2

is exp(−x2
is/λ)

λ2(1 − (1 − exp(−x2
is/λ))α1)

. (12)

The gradient of ℓ1(Θ1) with respect to α1, α2, and λ is given as

∇ℓ1(Θ1) =

(
∂ℓ1(Θ1)

∂α1
,

∂ℓ1(Θ1)

∂α2
,

∂ℓ1(Θ1)

∂λ

)
. (13)

Then, the MLE Θ̂1 =
(
α̂1, α̂2, λ̂

)
of Θ1 = (α1, α2, λ) can be obtained by solving the nor-

mal equation ∇ℓ1(Θ1) = (0, 0, 0). Moreover, the MLE R̂s,k of Rs,k can be derived from
Equation (7) and is given by

R̂s,k =
k

∑
i=s

k−i

∑
m=0

(
k
i

)(
k − i

m

)
(−1)mα̂2

(i + m)α̂1 + α̂2
.

3.1.2. Approximated Confidence Interval for Rs,k

The exact sampling distribution of R̂s,k is unknown and difficult to develop. Hence,
the exact confidence interval of Rs,k is not available. Here, two approximated confidence in-
tervals (ACIs) of Rs,k are established by utilizing the delta method and bootstrap sampling.

The observed Fisher information matrix, given Θ1, is presented as

I(Θ1) =


− ∂2ℓ1

∂α2
1

− ∂2ℓ1
∂α1∂α2

− ∂2ℓ1
∂α1∂λ

− ∂2ℓ1
∂α1∂α2

− ∂2ℓ1
∂α2

2
− ∂2ℓ1

∂α2∂λ

− ∂2ℓ1
∂α1∂λ − ∂2ℓ1

∂α2∂λ − ∂2ℓ1
∂λ2

,

and the second derivatives in the matrix can be derived directly. The details are omitted
here for concision. An ACI is available via the delta method, as shown in Theorems 1 and 2.

Theorem 1. Let Θ̂1 = (α̂1, α̂2, λ̂) be the MLE of Θ1.
√

n
(
Θ̂1 − Θ1

) d−→ N(0, nI−1(Θ1))

as n → ∞, where ‘ d−→’ indicates ‘converges in distribution’.

Proof. The theorem can be proved by following the asymptotic properties of MLEs along
with the central limit theorem for the multivariate case.

Theorem 2. Let R̂s,k be the MLE of Rs,k. If n → ∞, then

√
n
(

R̂s,k − Rs,k
) d−→ N(0, n ∑(Θ1)),
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where ∑(Θ1) =
(

∂Rs,k
∂Θ1

)T
I−1(Θ1)

(
∂Rs,k
∂Θ1

)
and ∂Rs,k

∂Θ1
=
(

∂Rs,k
∂α1

, ∂Rs,k
∂α2

, ∂Rs,k
∂λ

)T
.

Proof. Appendix A provides the proof.

Let Θ1 be replaced by its MLE Θ̂1 and 0 < γ < 1. A 100 × (1 − γ)% ACI of Rs,k is
easily established through Theorem 2 and given by(

R̂s,k − zγ/2

√
V̂ar(R̂s,k), R̂s,k + zγ/2

√
V̂ar(R̂s,k)

)
,

where V̂ar(R̂s,k) =
(̂

∂Rs,k
∂Θ1

)T

V̂ar(Θ̂1)
(̂

∂Rs,k
∂Θ1

)
, V̂ar(Θ̂1) = I−1(Θ̂1) and

̂(∂Rs,k

∂Θ1

)
=

(
∂Rs,k

∂α1
,

∂Rs,k

∂α2
,

∂Rs,k

∂λ

)T∣∣∣
Θ1=Θ̂1

.

A negative lower bound may happen in the ACI established by the above procedure.
To remove this downside, we can apply the delta methods with logarithmic transformation
to develop the asymptotic normal distribution of ln R̂s,k. The procedure is given below:

ln R̂s,k − ln Rs,k

Var(ln R̂s,k)

d→ N(0, 1).

Hence, a 100(1 − γ)% ACI of Rs,k can instead be developed to be R̂s,k

exp
(

zγ/2

√
V̂ar(ln R̂s,k)

) , R̂s,k exp
(

zγ/2

√
V̂ar(ln R̂s,k)

),

where V̂ar(ln R̂s,k) = V̂ar(R̂s,k)/R̂2
s,k is obtained by utilizing the Taylor’s expansion for the

delta method.
Furthermore, for comparison purposes, a second MLE-based ACI of Rs,k, which is

called the parametric bootstrap confidence interval (BCI), is constructed by utilizing the
parametric bootstrap procedure that is detailed through Algorithm 1. For more information
about the parametric bootstrap procedures, readers may refer to Efron [28] and Hall [29].

3.2. Case 2: Different Scale Parameters

Under this condition, λ1 ̸= λ2, α1 ̸= α2, and Rs,k can be represented as

Rs,k =
k

∑
i=s

(
k
i

) ∫ ∞

0
[1 − F(w; λ1, α1)]

i[F(w; λ1, α1)]
k−idF(w; λ2, α2)

=
k

∑
i=s

k−i

∑
m=0

(
k
i

)(
k − i

m

)
(−1)mα2

∫ 1

0

(
1 − expλ2 ln(u)/λ1

)α1(m+i)
(1 − u)α2−1du.

According to our best knowledge, no study has published the reliability inference for
the multicomponent stress–strength model based on Burr X distributions under differ-
ent parameters.
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Algorithm 1: Parametric bootstrap procedure under λ1 = λ2 = λ.

Step 1 Let the observed strength and stress data be X = {Xi1, Xi2, Xi3, . . . , Xis, i = 1, . . . , n} and
Y = {Y1, Y2, Y3, . . . , Yn}, respectively. Calculate the MLE (α̂1, α̂2, λ̂) of (α1, α2, λ).

Step 2 For given n, s, and k, a type II bootstrap sample x∗ = {x∗
(i1), x∗

(i2), x∗
(i3) . . . , x∗

(is)} is

generated from BurrX(λ̂, α̂1) for i = 1, 2, . . . , n, whereas a bootstrap random sample
y∗ = {y∗

(1), y∗
(2), . . . , y∗

(n)} is generated from BurrX(λ̂, α̂2).

Step 3 Compute the bootstrap MLE (α̂∗1 , α̂∗2 , λ̂∗) of (α1, α2, λ) and the bootstrap MLE R∗
s,k of Rs,k by

using (x∗, y∗).
Step 4 Replicate steps 2 and 3 N times. And rearrange the resulting N bootstrap MLEs R∗

s,k

in ascending order as R∗[1]
s,k , R∗[2]

s,k , . . . , R∗[N]
s,k .

Step 5 Let 0 < γ < 1. A 100 × (1 − γ)% BCI is given as(
R∗[γN/2]

s,k , R∗[(1−γ/2)N]
s,k

)
,

where [y] indicates the greatest integer less than or equal to y.

3.2.1. Point Estimators under Different Parameters

Taking the partial derivatives of ℓ(Θ) with respective to α1, α2, λ1, and λ2, one can have

∂ℓ(Θ)

∂α1
=

ns
α1

− (k − s)
n

∑
i=1

ln
(
1 − exp(−x2

is/λ1)
)(

1 − exp(−x2
is/λ1)

)α1

1 − (1 − exp(−x2
is/λ1))α1

+
n

∑
i=1

s

∑
m=1

ln
(

1 − exp(−x2
im/λ1)

)
(14)

∂ℓ(Θ)

∂α2
=

n
α2

+
n

∑
i=1

ln(1 − exp(−y2
i /λ2) (15)

∂ℓ(Θ)

∂λ1
=

−ns
λ1

+
n

∑
i=1

s

∑
m=1

x2
im/λ2

1 − (α1 − 1)
n

∑
i=1

s

∑
m=1

x2
im/λ2

1 exp(−x2
im/λ1)

1 − exp(−x2
im/λ1)

+ (k − s)α1

n

∑
i=1

x2
is/λ2

1 exp(−x2
is/λ1)

(
1 − exp(−x2

is/λ1)
)(α1−1)

1 −
(
1 − exp(−x2

is/λ1)
)α1

(16)

∂ℓ(Θ)

∂λ2
=

−n
λ2

+
n

∑
i=1

y2
i /λ2

2 − (α2 − 1)
n

∑
i=1

y2
i /λ2

2 exp(−y2
i /λ2)

1 − exp(−y2
i /λ2)

. (17)

In this case, the gradient of ℓ(Θ) with respect to α1, α2, λ1, and λ2 is given as

∇ℓ(Θ) =

(
∂ℓ(Θ)

∂α1
,

∂ℓ(Θ)

∂α2
,

∂ℓ(Θ)

∂λ1
,

∂ℓ(Θ)

∂λ2

)
.

The MLE Θ̌ =
(
α̌1, α̌2, λ̌1, λ̌2

)
of Θ = (α1, α2, λ1, λ2) is the solution to the normal equation

∇ℓ(Θ) = (0, 0, 0, 0). The invariant property of maximum likelihood estimation allows the
MLE of Rs,k under different parameters to be established as

Řs,k =
k

∑
i=s

k−i

∑
m=0

(
k
i

)(
k − i

m

)
(−1)mα̌2

∫ 1

0

(
1 − exp(λ̌2 ln(u)/λ̌1)

)α̌1(i+m)
(1 − u)(α̌2−1)du.
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3.2.2. Approximated Confidence Interval for Rs,k

In this case, the observed Fisher information matrix, given Θ, is presented as

J(Θ) =


− ∂2ℓ2

∂λ2
1

− ∂2ℓ1
∂λ1∂α1

0 0

− ∂2ℓ2
∂λ1∂α1

− ∂2ℓ1
∂α2

1
0 0

0 0 − ∂2ℓ2
∂λ2

2
− ∂2ℓ2

∂λ2∂α2

0 0 − ∂2ℓ2
∂λ2∂α2

− ∂2ℓ2
∂α2

2


where the second derivatives in the matrix can be derived directly. Therefore, the detailed
results are not given for brevity.

By using a similar process to that used to develop Theorem 2, replacing Θ by Θ̌, and
having 0 < γ < 1, a 100 × (1 − γ)% ACI of Rs,k is given as(

Řs,k − zγ/2

√
Ṽar(Řs,k), Řs,k + zγ/2

√
Ṽar(Řs,k)

)
,

where

Ṽar(Řs,k) =

(
∂̃Rs,k

∂Θ

)T

Ṽar(Θ̌)

(
∂̃Rs,k

∂Θ

)
, Ṽar(Θ̌) = J−1(Θ̌),

and

∂̃Rs,k

∂Θ
=

(
∂Rs,k

∂λ1
,

∂Rs,k

∂α1
,

∂Rs,k

∂λ2
,

∂Rs,k

∂α2

)T∣∣∣
Θ=Θ̌

.

Moreover, an additional 100 × (1 − γ)% ACI of Rs,k is derived to produce Řs,k

exp
(

zγ/2

√
Ṽar(ln Řs,k)

) , Řs,k exp
(

zγ/2

√
Ṽar(ln Řs,k)

),

where Ṽar(ln Řs,k) = Ṽar(Řs,k)/Ř2
s,k via Taylor’s expansion for the delta method [30].

The BCI of Rs,k under this case can be obtained through a procedure presented above.
Hence, the details are not given.

4. Inference Based on Pivotal Quantity

Pivotal quantities are developed through utilizing the stress and strength samples of
(3). Moreover, some estimators for Rs,k based on the pivotal quantities established in this
section are uniquely derived by the associated theorems established below.

Theorem 3. Let X = {Xi1, Xi2, . . . , Xis; i = 1, 2, 3, . . . , n} be a type II censored strength sample
from BurrX(λ1, α1). Then,

PX(λ1) = 2
n

∑
i=1

s−1

∑
m=1

ln

[
(k − s) ln(1 − exp(−X2

is/λ1)) + ∑s
r=1 ln(1 − exp(−X2

ir/λ1))

(k − m) ln(1 − exp(−X2
im/λ1)) + ∑m

j=1 ln(1 − exp(−X2
ij/λ1))

]

and

QX(α1, λ1) = −2α1

n

∑
i=1

{
(k − s) ln(1 − exp(−X2

is/λ1)) +
s

∑
j=1

ln(1 − exp(−X2
ij/λ1))

}
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have independent chi-square distributions with degrees of freedom 2n(s − 1) and 2ns, respectively.
Therefore, PX(λ1) and QX(α1, λ1) are pivotal quantities for λ1 and α1, respectively.

Proof. Appendix B provides the proof.

Theorem 4. For a given stress random sample, Y = (Y1, Y2, . . . , Yn) of BurrX(λ2, α2) and Y(1) ≤
Y(2) ≤ Y(3) ≤ . . . ≤ Yn are the associated ordered statistics. Then,

PY(λ2) = 2
n−1

∑
m=1

ln

[
∑n

j=1 ln(1 − exp(−Y2
(j)/λ2))

(n − m) ln(1 − exp(−Y2
(m)

/λ2)) + ∑m
r=1 ln(1 − exp(−Y2

(r)/λ2))

]

and

QY(α2, λ2) = −2α2

n

∑
j=1

ln(1 − exp(−Y2
(j)/λ2)),

follow the independent chi-square distributions with degrees of freedom 2(n− 1) and 2n, respectively.
Therefore, PY(λ2) and QY(α2, λ2) are the pivotal quantities for λ2 and α2, respectively.

Proof. The proof is presented in Appendix C.

In order to derive estimators for Θ and Rs,k by utilizing the pivotal quantities estab-
lished above, additional theoretical results are required and stated below.

Lemma 1. Given 0 < a < b, K(t) =
(

ln(1−exp(−b2/t))
ln(1−exp(−a2/t))

)
is an increasing function of t.

Proof. The proof is given in Appendix D.

Corollary 1. PX(λ1) and PY(λ2) are increasing functions.

Proof. Appendix E shows the proof.

4.1. Case 1: λ1 = λ2

In this case, let λ1 = λ2 = λ, PX
1 (λ) = PX(λ), and PY

1 (λ) = PY(λ). Theorems 3 and 4,
combined with the probability independence between PX(λ) and PY(λ), imply that the
pivotal quantity

P1(λ) = PX
1 (λ) + PY

2 (λ)

= 2
n

∑
i=1

s−1

∑
m=1

ln

[
(k − s) ln(1 − exp(−X2

is/λ)) + ∑s
r=1 ln(1 − exp(−X2

ir/λ))

(k − m) ln(1 − exp(−X2
im/λ)) + ∑m

r=1 ln(1 − exp(−X2
ir/λ))

]

+ 2
n−1

∑
m=1

ln

[
∑n

r=1 ln(1 − exp(−Y2
(r)/λ))

(n − m) ln(1 − exp(−Y2
(m)

/λ)) + ∑m
r=1 ln(1 − exp(−Y2

(r)/λ))

]
,

has a chi-square distribution with degrees of freedom 2(ns − 1). Meanwhile, Corollary 1
implies that P1(λ) is increasing with respect to λ.

Given P1 ∼ χ2
2(ns−1), the equation P1(λ) = P1 of λ has a unique solution h1(P1; X, Y),

which can be solved numerically by utilizing the bisection method or R function ‘uniroot’.
h1(P1; X, Y) is a generalized pivotal-based estimate of λ. Moreover, Theorem 3 implies
QX

1 (λ) ∼ χ2
2ns where QX

1 (λ) = QX(α1, λ) and

α1 =
QX

1
HX

1 [λ]
,
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where

HX
1 [λ] = −2

n

∑
i=1

{
(k − s) ln(1 − exp(−x2

is × λ−1)) +
s

∑
j=1

ln(1 − exp(−x2
ij × λ−1))

}
.

By the substitution method of Weerahandi [31], a generalized pivotal quantity SX
1 can

be uniquely obtained by substituting h1(P1; X, Y) for λ in QX
1

HX
1 [λ]

and the result is given as

SX
1 =

QX
1

−2 ∑n
i=1
{
(k − s) ln(1 − exp(−x2

ish1(P1; x, y))) + ∑s
r=1 ln(1 − exp(−x2

ir/h1(P1; x, y)))
}

=
∑n

i=1
{
(k − s) ln(1 − exp(−x2

is/h1(P1; X, Y))) + ∑s
r=1 ln(1 − exp(−x2

ir/h1(P1; X, Y)))
}

∑n
i=1
{
(k − s) ln(1 − exp(−x2

is/h1(P1; x, y))) + ∑s
r=1 ln(1 − exp(−x2

ir/h1(P1; x, y)))
} · α1

=
QX

1
HX

1 [h1(P1; x, y)]
,

where (x, y) is the sample observation of (X, Y). It is noted that the distribution of SX
1 is

free from unknown parameters and SX
1 reduces to α1 when (X, Y) = (x, y). Hence, SX

1 is
a generalized pivotal-based estimate of α1. Let QY

1 (λ) = QY
1 (α2, λ). Similarly, Theorem 4

implies that a generalized pivotal-based estimate of α2 can be

SY
1 =

QY
1

HY
1 [h1(P1; x, y)]

, where QY
1 ∼ χ2

2n and HY
1 [λ] = 2

n

∑
j=1

[
ln(1 − exp(−y2

(j)/λ))
]
.

Moreover, a generalized pivotal quantity of Rs,k is derived as

W1 =
k

∑
i=s

k−i

∑
m=0

(
k
i

)(
k − i

m

)
(−1)m

1 + (i + m)
QX

1
QY

1

HY
1 [h1(P1;x,y)]

HX
1 [h1(P1;x,y)]

.

The pivotal-based estimation method for a 100 × (1 − γ)% generalized confidence interval
(GCI) of Rs,k under the case of equal scale parameters can be implemented by Algorithm 2.

Remark 1. Based on the pivotal quantity P1(λ), given 0 < γ < 1, a 100 × (1 − γ)% GCI
confidence interval for λ is (

h1(χ
1−γ/2
2(ns−1); X, Y), h1(χ

γ/2
2(ns−1); X, Y)

)
,

where χ
γ
k is the right-tail γth quantile of the chi-square distribution with k degrees of freedom.

Additionally, the 100 × (1 − γ)% GCI joint confidence regions for (λ, α1) and (λ, α2) can,
respectively, be obtained by using (P1(λ), QX

1 (α1, λ)) and (P1(λ), QY
1 (α2, λ)) as(λ, α1) : h1(χ

1−
√

1−γ
2

2(ns−1); X, Y) < λ < h1(χ
1+

√
1−γ

2
2(ns−1); X, Y),

χ
1−

√
1−γ

2
2ns
HX

1 [λ]
< α1 <

χ
1+

√
1−γ

2
2ns
HX

1 [λ]


and(λ, α2) : h1(χ

1−
√

1−γ
2

2(ns−1); X, Y) < λ < h1(χ
1+

√
1−γ

2
2(ns−1); X, Y),

χ
1−

√
1−γ

2
2n
HY

1 [λ]
< α2 <

χ
1+

√
1−γ

2
2n
HY

1 [λ]

.
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Algorithm 2: Pivotal-quantity-based estimation method under λ1 = λ2 = λ.

Step 1 Generate P1 = p1 from χ2
2(ns−1). Then, an observation h1 = h1(P1; X, Y) can be solved

from the equation P1(λ) = p1.
Step 2 Generate observations of QX

1 and QY
1 from χ2

2ns and χ2
2n, respectively, and calculate W1.

Step 3 Repeat steps 1 and 2 N times and collect N values of W1, labeled as W(1)
1 , W(2)

1 , . . . , W(N)
1 .

Step 4 Two estimators for Rs,k are presented here. One is a generalized estimator labeled as

Ŕs,k =
1
N

N

∑
m=1

W(m)
1 ,

and the other one utilizing the Fisher Z transformation is

ŔF
s,k =

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
1

1−W(j)
1

]}
− 1

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
1

1−W(j)
1

]}
+ 1

.

Step 5 Place all estimates of W1 in ascending order: W [1]
1 , W [2]

1 , . . . , W [N]
1 . For 0 < γ < 1, a series

of 100 × (1 − γ)% confidence intervals for Rs,k can be obtained by (W [i]
1 , W [i+N−[Nγ+1]]

1 )
i = 1, 2, . . . , [Nγ], where [x] indicates the greatest integer less than or equal to x. Hence,
a 100 × (1 − γ)% GCI of Rs,k is established as the i∗th one having

W [i∗+N−[Nγ+1]]
1 − W [i∗ ]

1 =
[Nγ]
min
i=1

(W [i+N−[Nγ+1]]
1 − W [i]

1 ).

Remark 2. Given the following listed null hypotheses H0 vs. the alternative ones H1:

(a) H0 : λ = λ0 vs. H1 : λ ̸= λ0,

(b) H0 : λ ≥ λ0 vs. H1 : λ < λ0,

(c) H0 : λ ≤ λ0 vs. H1 : λ > λ0,

and 0 < γ < 1, the decision of rejecting the null hypotheses (a), (b), and (c) can be conducted by
utilizing the following critical regions:

(a)′
{

P1(λ0) ≤ χ
γ/2
2(ns−1), or P1(λ0) ≥ χ

1−γ/2
2(ns−1)

}
,

(b)′
{

P1(λ0) ≤ χ
γ
2(ns−1)

}
,

(c)′
{

P1(λ0) ≥ χ
γ
2(ns−1)

}
,

respectively.

4.2. Case 2: λ1 ̸= λ2

Let PX
2 (λ1) = PX(λ1), PY

2 (λ2) = PY(λ2), QX
2 (α1, λ1) = QX(α1, λ1), and QY

2 (α2, λ2) =
QY(α2, λ2). Theorems 3 and 4 imply the follow theorem.

Theorem 5. Let X = {Xi1, Xi2, . . . , Xis; i = 1, 2, . . . , n} be a type II censored strength sample
from BurrX(λ1, α1) and Y = {Y1, X2, . . . , Yn} be a random stress sample from BurrX(λ2, α2).
Four pivotal quantities are listed below:

PX
2 (λ1) = 2

n

∑
i=1

s−1

∑
m=1

ln

[
(k − s) ln(1 − exp(−X2

is/λ1)) + ∑s
r=1 ln(1 − exp(−X2

ir/λ1))

(k − m) ln(1 − exp(−X2
im/λ1)) + ∑m

j=1 ln(1 − exp(−X2
ij/λ1))

]
,

QX
2 (α1, λ1) = −2α1

n

∑
i=1

{
(k − s) ln(1 − exp(−X2

is/λ1)) +
s

∑
r=1

ln(1 − exp(−X2
ir/λ1))

}
,
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and

PY
2 (λ2) = 2

n−1

∑
j=1

ln

 ∑n
r=1 ln(1 − exp(−Y2

(r)/λ2))

(n − j) ln(1 − exp(−Y2
(j)/λ2)) + ∑

j
r=1 ln(1 − exp(−Y2

(r)/λ2))

,

QY
2 (α2, λ2) = −2α2

n

∑
r=1

ln(1 − exp(−Y2
(r)/λ2)).

Then,

• PX
2 (λ1) ∼ χ2

2n(s−1) and QX
2 (α1, λ1) ∼ χ2

2ns are probability independent;

• PY
2 (λ2) ∼ χ2

2(n−1) and QY
2 (α2, λ2) ∼ χ2

2n are probability independent.

Following the process addressed in Section 4.1, let PX
2 ∼ χ2

2n(s−1) and PY
2 ∼ χ2

2(n−1),

and use h2(PX
2 ; X) and h2(PY

2 ; Y) to respresent the solutions to equations PX
2 (λ1) = PX

2
and PY

2 (λ2) = PY
2 , respectively. Adopting the substitution method from Weerahandi [31],

the generalized pivotal quantity for α1 is

SX
2 =

QX
2

HX
2 [h2(PX

2 ; x)]

with QX
2 ∼ χ2

2ns and

HX
2 [λ1] = −2

n

∑
i=1

{
(k − s) ln(1 − exp(−x2

is/λ1)) +
s

∑
r=1

ln(1 − exp(−x2
ir/λ1))

}
,

and the generalized pivotal quantity for α2 is

SY
2 =

QY
2

HY
2 [h2(PY

2 ; y)]
with QX

2 ∼ χ2
2n and HY

2 [λ2] = −2
n

∑
r=1

ln(1 − exp(−Y2
(r)/λ2)).

Consequently, a generalized pivotal quantity for Rs,k can be represented as

W2 =
k

∑
i=s

k−i

∑
m=0

(
k
i

)(
k − i

m

)
(−1)mSY

2∫ 1

0

(
1 − exp(h2(PY

2 ; Y) ln(u)/h2(PX
2 ; X))

)SX
2 (i+m)

(1 − u)SY
2 −1du.

Additionally, the generalized estimates of Rs,k under λ1 ̸= λ2 can be derived through
Algorithm 3.
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Algorithm 3: Pivotal-quantity-based estimation method under λ1 ̸= λ2.

Step 1 Generate p21 from χ2
2n(s−1) as a realization of PX

2 . Let the solution h21 of

PX
2 (λ1) = p21 be an observation of h2(PX

2 ; X). Similarly, generate p22 from χ2
2(n−1)

as a realization of PY
2 . Let the solution h22 of PY

2 (λ2) = p22 be an observation of
h2(PY

2 ; Y).
Step 2 Generate observations of QX

2 and QY
2 from χ2

2ns and χ2
2n, respectively, and calculate W2.

Step 3 Repeat steps 1 and 2 N times and label N values of W2 as W(1)
2 , W(2)

2 , . . . , W(N)
2 .

Step 4 The original generalized and Fisher-Z-transformation-based estimators of Rs,k are,
respectively, given as

R̀s,k =
1
N

N

∑
j=1

W(j)
2 and R̀F

s,k =

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
2

1−W(j)
2

]}
− 1

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
2

1−W(j)
2

]}
+ 1

;

Step 5 Display N estimates of W2 in ascending order: W [1]
2 , W [2]

2 , . . . , W [N]
2 . For a given

0 < γ < 1, a series of 100 × (1 − γ)% confidence intervals of Rs,k can be listed as

(W [i]
2 , W [i+N−[Nγ+1]]

2 ), i = 1, 2, . . . , [Nγ]. Hence, a 100 × (1 − γ)% GCI of Rs,k is
given as the i∗th one having

W [i∗+N−[Nγ+1]]
2 − W [i∗ ]

2 =
[Nγ]

min
i=1

(W [i+N−[Nγ+1]]
2 − W [i]

2 ).

Remark 3. For a given 0 < γ < 1, two 100 × (1 − γ)% exact individual confidence intervals of
λ1 and λ2 are, respectively, presented as(

h2(χ
1−γ/2
2n(n−1); X), h2(χ

γ/2
2n(s−1); X)

)
and

(
h2(χ

1−γ/2
2(n−1); Y), h2(χ

γ/2
2(n−1); Y)

)
,

Additionally, two exact joint confidence regions for (λ1, α1) and (λ2, α2) are constructed by(λ1, α1) : h2(χ
1−

√
1−γ

2
2n(s−1); X) < λ1 < h2(χ

1+
√

1−γ
2

2n(s−1); X),
χ

1−
√

1−γ
2

2ns
HX

2 [λ1]
< α1 <

χ
1+

√
1−γ

2
2ns

HX
2 [λ1]


and (λ2, α2) : h2(χ

1−
√

1−γ
2

2(n−1) ; Y) < λ2 < h2(χ
1+

√
1−γ

2
2(n−1) ; Y),

χ
1−

√
1−γ

2
2n

HY
2 [λ2]

< α2 <
χ

1+
√

1−γ
2

2n
HY

2 [λ2]

,

respectively.

Remark 4. Let i = 1, 2. The list of null hypotheses H0 vs. the alternative ones H1 is displayed:

(d) H0 : λi = λi0 vs. H1 : λi ̸= λi0,

(e) H0 : λi ≥ λi0 vs. H1 : λi < λi0,

( f ) H0 : λi ≤ λi0 vs. H1 : λi > λi0.
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Under the significance level 0 < γ < 1, the decision to reject H0 in (d), (e), and ( f ) for λ1
and λ2 can, respectively, be conducted using the following critical regions:

(d)′
{

PX
2 (λ10) ≤ χ

γ/2
2n(s−1), or PX

2 (λ10) ≥ χ
1−γ/2
2n(s−1)

}
,

(e)′
{

PX
2 (λ10) ≤ χ

γ
2n(s−1)

}
,

( f )′
{

PX
2 (λ10) ≥ χ

γ
2n(s−1)

}
,

and

(d)′′
{

PY
2 (λ20) ≤ χ

γ/2
2(n−1), or PX

2 (λ20) ≥ χ
1−γ/2
2(n−1)

}
,

(e)′′
{

PY
2 (λ20) ≤ χ

γ
2(n−1)

}
,

( f )′′
{

PY
2 (λ20) ≥ χ

γ
2(n−1)

}
.

Remark 5. For computational purposes, it is important that s ≥ 2 for the s-out-of-k G; otherwise,
the pivotal quantities PX

i and QX
i , i = 1, 2, cannot be obtained. Under this condition, the strength

variables X11, X21, . . . , Xn1 can be viewed as a random sample of size n. And an alternative approach
utilizes the following pivotal quantities:

PX
i (λ(·)) = 2

n−1

∑
j=1

ln

 ∑n
r=1 ln(1 − exp(−X2

(r1)/λ(·)))

(n − j) ln(1 − exp(−X2
(j1)/λ(·))) + ∑

j
r=1 ln(1 − exp(−X2

(r1)/λ(·)))


and

QX
i (α1, λ(·)) = −2α1

n

∑
r=1

ln(1 − exp(−X2
(r1)/λ(·))),

where λ(·) = λ if λ1 = λ2 = λ; otherwise, λ(·) = λ1, and X(11) ≥ X(21) ≥ . . . ≥ X(n1) are the
order statistics of X11, X21, . . . , Xn1. It can be shown that PX

i (λ(·)) and QX
i (α1, λ(·)) follow the

chi-square distributions with degrees of freedom 2(n − 1) and 2n, respectively. Consequently, the
previous generalized point and confidence interval estimates can also be created.

5. Inference of λ1 = λ2

Practically, it is important to test whether the scale parameters are equal or not. For this
purpose, the hypotheses and associated likelihood ratio test are displayed below:

H0 : λ1 = λ2 = λ vs. H1 : λ1 ̸= λ2.

The related likelihood ratio statistic has the property

−2{ℓ2(Θ̂)− ℓ2(Θ)} → χ2
1, as n → ∞, (18)

where Θ̂ = (λ̂, α̂1, λ̂, α̂2). Therefore, the likelihood ratio test can be conducted by utilizing
the test statistic of −2{ℓ2(Θ̂)− ℓ2(Θ)} with the reject region

−2{ℓ2(Θ̂)− ℓ2(Θ)} > c∗,

where c∗ is selected to satisfy the size P
(
χ2

1 > c∗
)

of the test.

6. Practical Data Application

Shasta Reservoir, which is the largest man-made lake, is located on the upper Sacra-
mento River in northern California. The monthly water capacities in the months of August,
September, and December from 1980 to 2015, which were accessed on 19 September 2021,
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were utilized for the demonstration of the processes presented. The data set was also
studied under the Rayleigh distribution and Burr XII one, respectively, by Wang et al. [20]
and Lio et al. [18].

Assume that the water level will not lead to excessive drought if the water capacity
in December is less than the water capacities of at least two Augusts within the next five
years, namely, the reliability states that in at least three years within the next five years, the
water capacities in August are not less than the water capacity in the previous December.
In this practical situation, s = 3, k = 5, and n = 6. Let Y1 be the capacity of December 1980;
X11, X12, X13, . . . , X15 be the capacities of August from 1981 to 1985; Y2 be the capacity of
December 1986; X21, X22, X23, . . . , X25 be the capacities of August from 1987 to 1991; and
so on. For the purpose of easily fitting water capacities with BurrX(λ, α), all the water
capacities needed to be rescaled and divided by 3,014,878 (the maximal water capacity),
and the transformed data are listed as follows:

Observed complete strength sample Observed complete stress sample

0.4238 0.5579 0.7262 0.8112 0.8296
0.2912 0.3634 0.3719 0.4637 0.4785
0.5381 0.5612 0.7226 0.7449 0.7540
0.5249 0.6060 0.6686 0.7159 0.7552
0.3451 0.4253 0.4688 0.7188 0.7420
0.2948 0.3929 0.4616 0.6139 0.7951

 and



0.7009
0.6532
0.4589
0.7183
0.5310
0.7665


For more detailed information about the above-transformed data, the reader may

refer to Kizilaslan and Nadar [12], whereas all the monthly water capacities of the Shasta
reservoir between 1981 to 1985 are presented in Appendix F.

The Kolmogorov–Smirnov (K-S) test of a two-sided rejection region was used to
evaluate the Burr X distribution fit of these data sets. The results from the K-S test for the
strength and stress data included the following test statistic distances and the corresponding
p-values (within brackets): 0.1737(0.2907) and 0.24812(0.7771), respectively. In addition,
the overlapped plots of sample empirical cumulative versus Burr X distributions, sample
cumulative probability versus Burr X cumulative probability (P-P), and sample quantile
versus Burr X quantile (Q-Q) are shown in Figures 1–3, respectively. P-P plot is a probability
plot for assessing how close a data set fits a specified model or how closely two data sets
agree. A Q-Q plot is a graphic method for evaluating whether two data sets come from
populations with a common distribution. Figure 2 shows two P-P plots to present the
empirical CDFs of the strength sample (left side) and the stress sample (right side) versus
the theoretical CDF of Burr X. The imposed linear regressions over P-P plots in Figure 2
were significant, with R-squared values of 0.97 and 0.91 for the complete strength and stress
samples, respectively, and the imposed linear regressions over the Q-Q plots in Figure 3
were also significant, with R-squared values of 0.93 and 0.89 for the complete strength and
stress samples, respectively. All information reveals that the Burr X distribution was a good
fitting probability model for the transformed data sets as well.

Based on the six three-out-of-five G systems provided in this example, the observed
data collected from these multicomponent systems are given as follows:

Strength data of X Stress data of Y

0.4238 0.5579 0.7262
0.2912 0.3634 0.3719
0.5381 0.5612 0.7226
0.5249 0.6060 0.6686
0.3451 0.4253 0.4688
0.2948 0.3929 0.4616

 and



0.7009
0.6532
0.4589
0.7183
0.5310
0.7665

.

The point and interval estimates for the multicomponent system reliability Rs,k are
shown in Table 1, where the significance level was set to 0.05. The estimated interval
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lengths for ACI, GCI, and BCI were 0.4641, 0.4519, and 0.4468, respectively, when λ1 = λ2,
and 0.4935, 0.5138, and 0.5112, respectively, when λ1 ̸= λ2. Under λ1 = λ2, three point
estimates were larger than three point estimates under λ1 ̸= λ2. It was observed that the
point estimates were close to each other, except the MLE Řs,k = 0.6336 when λ1 ̸= λ2.
When comparing between all estimated interval lengths, the ACI of Rs,k was found to
perform equally well in terms of length.

Table 1. The estimation results for Rs,k using the collected data from 3-out-of-5 G system.

λ1 = λ2

R̂s,k = 0.6937 Ŕs,k = 0.7398 ŔF
s,k = 0.7836

ACI = (0.4994, 0.9635) GCI = (0.4987, 0.9506) BCI = (0.4455, 0.8923)

λ1 ̸= λ2

Řs,k = 0.6336 R̀s,k = 0.4512 R̀F
s,k = 0.4627

ACI = (0.4332, 0.9267) GCI = (0.1976, 0.7114) BCI = (0.3358, 0.8470)
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Figure 1. Step figure is the sample empirical distribution and curve is the fitted Burr X distribution.
Left side is for strength data modeling with BurrX(0.18, 3.47). Right side is for stress data modeling
with BurrX(0.13, 13.10).
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Figure 2. Sample cumulative probability vs. Burr X cumulative probability plot overlapped with the
regression line. Left side is for strength data modeling with BurrX(0.18, 3.47) and fitting regression
line y = 0.0496+ 0.9161x with R2 = 0.97. Right side is for stress data modeling with BurrX(0.13, 13.10)
and fitting regression line y = 0.11 + 0.90x with R2 = 0.91.
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Figure 3. Sample quantile vs. Burr X quantile plot overlapped with the regression line. Left side is
for strength data modeling with BurrX(0.18, 3.47) and fitting regression line y = 0.032 + 0.94x with
R2 = 0.93. Right side is for stress data modeling with BurrX(0.13, 13.10) and fitting regression line
y = 0.037 + 0.94x with R2 = 0.89.

Furthermore, to compare the equivalence between the scale parameters λ1 and λ2
from the strength and stress distributions, i.e., null hypothesis H0 : λ1 = λ2, the likelihood
ratio test provided the statistic and p-value of 86.83223 and 1.18 × 10−20, respectively.
Hence, the results indicate that under a 0.05 significance level, there is sufficient evidence
to reject the null hypothesis. And the strength and stress distributions are suggested to
have Burr X distributions with different scale parameters for the current monthly capacity
applied. It is worth mentioning that the point estimates of Rs,k under different parameters
for both Burr X distributions were consistent with the point estimate results of Rs,k under the
Burr XII distribution modeling studied by Lio et al. [18], where both Burr XII distributions
had one common parameter, while the Burr X modeling had different parameters for the
same data sets considered.

7. Concluding Remarks

The inference for the multicomponent stress–strength model reliability was investi-
gated using two-parameter Burr X distributions. The maximum likelihood and generalized
pivotal quantity based estimators for the model parameters were constructed under equal
scale parameters and different scale parameters, respectively. Moreover, confidence inter-
vals were also provided by using the delta method with an asymptotic normal distribution,
parametric bootstrap percentile, and generalized pivotal sampling.

Yousof et al. [23] and Jamal and Nasir [24] presented two different Burr X generators
based on a one-parameter Burr X distribution. These two types of families have not been
applied to estimate the reliability of the multicomponent stress–strength system and can be
considered potential future research work. The other possible extension work is to extend
the two-parameter Burr X distributions using the same approaches from Yousof et al. [23]
and Jamal and Nasir [24]. When the research work is to establish the common goals based
on a family of distributions, the model selection based on the Bayesian and likelihood
approaches will be reasonably applied and a best model will be used to compare the based
model. For more information, readers may also refer to [32–34].

Additionally, the present results were established under type II censoring for strength
data sets. The approaches could possibly be extended to other censoring; for example,
the progressively type-II or progressive first-failure type II censoring scheme with proper
modification of pivotal quantities for the related samples. Viveros and Balakrishnan [35]
provided more information about progressive censoring schemes. Additionally, the mo-
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ment and maximum product of spacing estimations are interesting new directions. All of
these are potential research opportunities.
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Appendix A. The Verification of Theorem 2

Utilizing the mean value theorem for a derivative, the Taylor series expansion of
Rs,k(Θ̂) is presented as

Rs,k(Θ̂) = Rs,k(Θ) +

(
∂Rs,k(Θ)

∂Θ

)T

(Θ̂ − Θ) +
1
2
(Θ̂ − Θ)T

(
∂2Rs,k(Θ∗)

∂Θ

)
(Θ̂ − Θ)

≈ Rs,k(Θ) +

(
∂Rs,k(Θ)

∂Θ

)T

(Θ̂ − Θ), (A1)

where ∂Rs,k(Θ)
∂Θ and ∂2Rs,k(Θ)

∂Θ are the appropriate matrices of the first and second derivatives
of Rs,k with respect to Θ, correspondingly, and Θ∗ is an appropriate value between Θ and
Θ̂. Equation (A1) can also be represented as

Rs,k(Θ̂)− Rs,k(Θ) ≈
(

∂Rs,k(Θ)

∂Θ

)T

(Θ̂ − Θ).

Theorem 3 implies Θ̂ → Θ and Rs,k(Θ̂) → Rs,k(Θ) when n → ∞. Moreover, by the delta
method [30] and Equation (A1), the variance of Rs,k(Θ̂) is approximated as

Var[Rs,k(Θ̂)] ≈ Var

[
Rs,k(Θ) +

(
∂Rs,k(Θ)

∂Θ

)T

Θ̂ −
(

∂Rs,k(Θ)

∂Θ

)T

Θ

]

= Var

[(
∂Rs,k(Θ)

∂Θ

)T

Θ̂

]
=

(
∂Rs,k(Θ)

∂Θ

)T

Var[Θ̂]

(
∂Rs,k(Θ)

∂Θ

)
.
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Therefore, through utilizing the delta method [30], Theorem 1 implies

Rs,k(Θ̂)− Rs,k(Θ)
d→ N

(
0,
(

∂Rs,k(Θ)

∂Θ

)T

Var[Θ̂]

(
∂Rs,k(Θ)

∂Θ

))
.

The proof is done.

Appendix B. The Verification of Theorem 3

Given a positive integer i(≤ n), Xi1 ≤ Xi2 ≤ Xi3 ≤ . . . ≤ Xis indicate the first s ordered
statistics from a size k random sample of BurrX(λ1, α1). Therefore, Tim = −α1 ln(1 −
exp(−X2

im/λ1)), m = 1, 2, . . . , s, is viewed as a type II censored sample collected from an
exponential distribution that has a mean of one. Because of the memory-less property
of the exponential distribution, Zi1 = kTi1, Zi2 = (k − 1)(Ti2 − Ti1), · · · , Zis = (k − s +
1)(Tis − Ti(s−1)) is a random sample from the exponential distribution that has a mean
of one. Lawless [36] provided more information about the memory-less property of the
exponential distribution.

For m = 1, 2, . . . , s, i = 1, 2, . . . , n, let

Wim =
m

∑
r=1

Zir = −α1{(k − m) ln(1 − exp(−X2
im/λ1)) +

m

∑
r=1

ln(1 − exp(−X2
ir/λ1))}.

Stephens [37] and Viveros and Balakrishnan [35] provided reasonable background to

show that Ui(1) = Wi1
Wis

, Ui(2) = Wi2
Wis

, . . . , Ui(s−1) =
Wi(s−1)

Wis
are the order statistics of a size

s − 1 random sample of the uniform distribution over the interval (0, 1). Additionally,
Ui(1) < Ui(2) < · · · < Ui(s−1) is independent of

Wis =
s

∑
r=1

Zir = −α1{(k − s) ln(1 − exp(−X2
is/λ1)) +

s

∑
r=1

ln(1 − exp(−X2
ir/λ1))}.

It can be shown that the quantities Pi1(λ1) = −2 ∑s−1
m=1 ln(Ui(m)) and Qi1(α1, λ1) =

2Wis are independent and follow the chi-square distributions with degrees of freedom
2(s − 1) and 2s, respectively. Furthermore, by the probability independence of Pi1(λ1), i =
1, 2, . . . , n, one can show that

PX(λ1) = 2
n

∑
i=1

Pi1(λ1)

= 2
n

∑
i=1

s−1

∑
m=1

ln

[
(k − s) ln(1 − exp(−X2

is/λ1)) + ∑s
j=1 ln(1 − exp(−X2

ij/λ1))

(k − m) ln(1 − exp(−X2
is/λ1)) + ∑m

j=1 ln(1 − exp(−X2
ij/λ1))

]

and

QX(α1, λ1) = 2
n

∑
i=1

Qi1(α1, λ1)

= −2α1

n

∑
i=1

{
(k − s) ln(1 − exp(−X2

is/λ1)) +
s

∑
j=1

ln(1 − exp(−X2
ij/λ1))

}
.

are independent and follow chi-square distributions with degrees of freedom 2n(s − 1) and
2ns, respectively.

The theorem is proven.

Appendix C. The Verification of Theorem 4

Let the ordered statistics of Y1, Y2, . . . , Yn be denoted Y(1) ≤ Y(2) ≤ Y(3) ≤ . . . ≤
Y(n). Then, −α2 ln(1 − exp(−Y2

(m)/λ2)), m = 1, 2, 3, . . . n, are ordered statistics from an
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exponential distribution that has a mean of one. The theorem can be proved by following
the same proof procedure for the previous theorem.

Appendix D. The Verification of Lemma 1

dK(t)
dt

=

(
−(b2/t) exp(−b2/t) ln(1 − exp(−a2/t))

1 − exp(−b2/t)

−−(a2/t) exp(−a2/t) ln(1 − exp(−b2/t))
1 − exp(−a2/t)

)
× 1

(t(ln(1 − exp(−a2/t)))2)
, t > 0.

Showing that dK(t)
dt > 0 for t > 0 is equivalent to verifying

−(b2/t) exp(−b2/t)
(1 − exp(−b2/t))(ln(1 − exp(−b2/t)))

>
−(a2/t) exp(−a2/t)

(1 − exp(−a2/t))(ln(1 − exp(−a2/t)))
for t > 0.

Let ϕ(u) = −u exp(−u)
(1−exp(−u))(ln(1−exp(−u))) for u > 0 and

g(u) = ln(ϕ(u)) = ln(u)−u− ln(1−exp(−u))− ln(− ln(1−exp(−u))) for u > 0. Then,

dg(u)
du

= −1 +
1
u
− exp(−u)

1 − exp(−u)
+

exp(−u)
−(1 − exp(−u)) ln(1 − exp(−u))

.

It can be shown that

exp(−u)
−(1 − exp(−u)) ln(1 − exp(−u))

=
1

(exp(u)− 1)(u − ln(exp(u)− 1))
> 0,

lim
u→∞

1
(exp(u)− 1)(u − ln(exp(u)− 1))

= 0,

lim
u→0+

1
(exp(u)− 1)(u − ln(exp(u)− 1))

= ∞,

lim
u→0+

−1 +
1
u
− exp(−u)

1 − exp(−u)
= −0.5,

lim
u→∞

−1 +
1
u
− exp(−u)

1 − exp(−u)
= −1.0,

and − 1.0 < −1 +
1
u
− exp(−u)

1 − exp(−u)
< −0.5.

Hence, dg(u)
du > 0, g(u) is an increasing function and ϕ(u) is an increasing function.

Lemma 1 is proven.

Appendix E. The Verification of Corollary 1

The definitions of PX and PY imply that

(k − s) ln(1 − exp(−X2
is/λ1)) + ∑s

r=1 ln(1 − exp(−X2
ir/λ1))

(k − j) ln(1 − exp(−X2
ij/λ1)) + ∑

j
r=1 ln(1 − exp(−X2

ir/λ1))
(A2)

= 1 +
(k − s)

[
ln(1−exp(−X2

is/λ1))

ln(1−exp(−X2
ij/λ1))

]
+ ∑s

r=j+1

[
ln(1−exp(−X2

ir/λ1))

ln(1−exp(−X2
ij/λ1))

]
− (k − j)

∑
j
r=1

[
ln(1−exp(−X2

ir/λ1))

ln(1−exp(−X2
ij/λ1))

]
+ (k − j)

, (A3)
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and

∑n
r=1 ln(1 − exp(−Y2

(r)/λ2))

(n − j) ln(1 − exp(−Y2
(j)/λ2)) + ∑

j
r=1 ln(1 − exp(−Y2

(r)/λ2))
(A4)

= 1 +

ln(1−exp(−Y2
(n)/λ2))

ln(1−exp(−Y2
(j)/λ2))

+ ∑n
r=j+1

ln(1−exp(−Y2
(r)/λ2))

ln(1−exp(−Y2
(j)/λ2))

− (n − j)

∑
j
r=1

ln(1−exp(−Y2
(r)/λ2))

ln(1−exp(−Y2
(j)/λ2))

+ (n − j)
. (A5)

Lemma 1 implies that the numerator of (A2) increases with respect to λ1 and the
denominator of (A4) decreases with respect to λ1. Hence, PX is an increasing function.
Moreover, Lemma 1 also implies that PY is increasing.

Appendix F. Complete Shasta Reservoir Water Capacity per Month

Table A1. The water capacity of Shasta reservoir from 1981 to 1985.

Date Storage AF Date Storage AF Date Storage AF

01/1981 3,453,500 09/1982 3,486,400 05/1984 4,294,400
02/1981 3,865,200 10/1982 3,433,400 06/1984 4,070,000
03/1981 4,320,700 11/1982 3,297,100 07/1984 3,587,400
04/1981 4,295,900 12/1982 3,255,000 08/1984 3,305,500
05/1981 3,994,300 01/1983 3,740,300 09/1984 3,240,100
06/1981 3,608,600 02/1983 3,579,400 10/1984 3,155,400
07/1981 3,033,000 03/1983 3,725,100 11/1984 3,252,300
08/1981 2,547,600 04/1983 4,286,100 12/1984 3,105,500
09/1981 2,480,200 05/1983 4,526,800 01/1985 3,118,200
10/1981 2,560,200 06/1983 4,471,200 02/1985 3,240,400
11/1981 3,336,700 07/1983 4,169,900 03/1985 3,445,500
12/1981 3,492,000 08/1983 3,776,200 04/1985 3,546,900
01/1982 3,556,300 09/1983 3,616,800 05/1985 3,225,400
02/1982 3,633,500 10/1983 3,458,000 06/1985 2,856,300
03/1982 4,062,000 11/1983 3,395,400 07/1985 2,292,100
04/1982 4,472,700 12/1983 3,457,500 08/1985 1,929,200
05/1982 4,507,500 01/1984 3,405,200 09/1985 1,977,800
06/1982 4,375,400 02/1984 3,789,900 10/1985 2,083,100
07/1982 4,071,200 03/1984 4,133,600 11/1985 2,173,900
08/1982 3,692,400 04/1984 4,342,700 12/1985 2,422,100

Appendix G. R Codes for the Estimation Methods

library(nleqslv)
#
# Functions for Burr X distribution
# 1. Probability density function: dur
# 2. Cumulative distribution function: pbur
# 3. Quantile function: qbur
# 4. Random sample: rbur
dbur<-function(x,alpha,lambda)
{

return(2*x*alpha/lambda*exp(-x^2/lambda)*(1-exp(-x^2/lambda))^(alpha-1) )
}

pbur<-function(x,alpha,lambda)
{
return((1 - exp(-x^2/lambda))^alpha)
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}

qbur<-function(p,alpha,lambda)
{
return(sqrt(-lambda*log(1-p^(1/alpha))))
}

rbur<-function(nn,alpha,lambda)
{
return( qbur(p=runif(nn, min=0,max=1),alpha=alpha,lambda=lambda) )
}

#######################################
# Maximum likelihood estimate (MLE)
# based on complete data
#######################################
mle.burX=function(x)
{
obj.MLE=function(parm){
alpha=parm[1]
lambda=parm[2]
logL = log(dburX(x,alpha,lambda))
return(-sum(logL))
} # End of the obj.MLE function
pa=rep(0,length=2)
pa[1]=runif(1,0,1)
pa[2]=runif(1,0,1)
nlminb(pa, obj.MLE, gradient = NULL, hessian = NULL,
lower =c(0.001,0.001), upper =c(Inf,Inf))
}

mle.bur2=function(x)
{
obj.MLE=function(parm)
{
alpha=parm[1]
lambda=parm[2]
logL = log(dburX(x,alpha,lambda))
return(-sum(logL))
} # End of the obj.MLE function
par=rep(0,length=2)
par[1]=runif(1,0,1)
par[2]=runif(1,0,1)
optim(par, obj.MLE, method="L-BFGS-B",
lower =c(0.001,0.001), upper =c(Inf,Inf))
}

mle.burf=function(x)
{
objLam=function(lambda)
{
return(-length(x)*lambda + sum(x^2) -
(- length(x)/sum(log(1 - exp(-x^2/lambda))))*
sum((x^2*exp(-x^2/lambda))/(1-exp(-x^2/lambda))))
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}
unrt=nleqslv(x=lambda,objLam, jac=NULL,method =
c("Newton"),global = c("hook"),xscalm = c("auto"),control = list())
hlam=unrt$x
halp= - length(x)/sum(log(1 - exp(-x^2/hlam)))
return(list(halp=halp,hlam=hlam))
}

###############################################
# All strength observations x
# All stress observations y
##############################################
x=c(0.4238,0.5579,0.7262,0.8112,0.8296,0.2912,0.3634,0.3719,0.4637,
0.4785,0.5381,0.5612,0.7226,0.7449,0.7540,0.5249, 0.6060, 0.6686,
0.7159, 0.7552,0.3451, 0.4253, 0.4688, 0.7188, 0.7420,0.2948,
0.3929, 0.4616, 0.6139,0.7951 )

y=c(0.7009,0.6532,0.4589,0.7183,0.5310,0.7665)

#-------------------------------------------------
# Test of Kolmogorov--Smirnov for the Burr X distribution
# data set for the strength obervations x and~
# data set for the stress observations y.
# Plot empirical and Burr X CDFs
#----------------------------------------------------------
ksBurX=function(x,alternative = "two.sided", plot = FALSE)
{
est=mle.burf(x)
lambda=est$hlam
alpha=est$halp
x=sort(x)
mini <- min(x)
maxi <- max(x)
res <- ks.test(x, pburX, alpha,lambda, alternative = alternative)
ye=numeric(length(x))
ye[1] = 1/length(x)
for(i in 2:length(x)) ye[i] = ye[i-1] + ye[1]
if (plot == TRUE)
{
plot(x,ye,ylim =c(0,1),xlim=c(mini,maxi),
type="S",main = "Empirical DF and Burr X CDF", xlab = "Strength",
ylab = "Probability")

t <- seq(mini, maxi, by~= 0.01)
y <- pburX(t, alpha, lambda)
lines(t,y, lwd = 2)
}
return(res)
}
###############################################
# For P-P plots
#
###############################################
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CDFX<-function(x,alternative="two.sided",plot=TRUE)
{
est=mle.burf(x)
lambda=est$hlam
alpha=est$halp
x=sort(x)
mini <- min(x)
maxi <- max(x)
res <- ks.test(x, pburX, alpha,lambda, alternative = alternative)
ye=numeric(length(x))
ye[1] = 1/length(x)
xe=numeric(length(x))
xe[1]=pburX(x[1],alpha,lambda)
for(i in 2:length(x))
{ ye[i] = ye[i-1] + ye[1]
xe[i] =pburX(x[i],alpha,lambda)
}
fit=lm(ye~xe)
summary(fit)
if (plot == TRUE)
{
plot(xe,ye,ylim =c(min(ye),max(ye)),xlim=c(min(xe),max(xe)),
type="p",col="blue",main = "Empirical CDF-Burr X CDF plot",
xlab = "Fitted Burr X CDF for Strength",ylab = "Empirical CDF")
abline(fit,col="blue")
}
return(fit)
}
#####################################################
# For Q-Q plots
#
#####################################################

quantX<-function(x,alternative="two.sided",plot=TRUE)
{
est=mle.burf(x)
lambda=est$hlam
alpha=est$halp

x=sort(x)
mini <- min(x)
maxi <- max(x)
res <- ks.test(x, pburX, alpha,lambda, alternative = alternative)
ye=x
n=length(x)
xe=numeric(n)
xe[1]=qburX((1-0.5)/n,alpha,lambda)
for(i in 2:length(x)) xe[i] =qburX((i-0.5)/n,alpha,lambda)

fit=lm(ye~xe)
summary(fit)
if (plot == TRUE)
{
plot(xe,ye,ylim =c(min(ye),max(ye)),xlim=c(min(xe),max(xe)), type="p",
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col="blue",main = "Empirical quantile-Burr X quantile plot",
xlab = "Fitted Burr X quantile for Strength", ylab = "Empirical quantile")
abline(fit,col="blue")
}
return(fit)
}

# Data set
k=5
s=3

# The 3 out of 5 G system data set
# xL=matrix(nrow=6,ncol=s)
# y is the corresponding stress data set
x=matrix(nrow=6,ncol=s)
x[1,]=c(0.4238,0.5579,0.7262)
x[2,]=c(0.2912,0.3634,0.3719)
x[3,]=c(0.5381,0.5612,0.7226)
x[4,]=c(0.5249,0.6060,0.6686)
x[5,]=c(0.3451,0.4253,0.4688)
x[6,]=c(0.2948,0.3929,0.4616)
y=c(0.7009,0.6532,0.4589,0.7183,0.5310,0.7665)

n=dim(x)[1]

# The partition set over [0, 1] for evaluating integral
u =numeric(1000)
du = 1/1000
u[1] = du/2
for(i in 2:1000) u[i] = u[i-1] + du

##################################################
# Find maximum likelihood estimator of
# reliability for multicomponent system
# assuming equal scale parameter
######################################

# Log-likelihood function for equal rate parameter
# Based on type II strength data set and the
# corresponding stress data set
#
obj<-function(par)
{
lambda=par[1]; alpha1=par[2]; alpha2=par[3]
temp1=sum(log(dbur(x,alpha1,lambda)))
temp2=(k-s)*sum(log(1-pbur(x[,s],alpha1,lambda)))
temp3=sum(log(dbur(y,alpha2,lambda)))
tTemp = temp1+temp2+temp3
return(-tTemp)
}
# Reliability of system
#
Relibyks3=function(alpha1,alpha2)
{
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tempa = 0
# cat("s =", s, "k =",k,"\n")
for(i in s:k)
{
ch1=choose(k,i)
temp= 0
for(j in 0:(k-i))
{
ch2 =choose(k-i,j)
temp=temp + ch2 *((-1)^j)* (alpha2/(alpha1*(j+i) + alpha2))
}
temp=temp*ch1
tempa = tempa + temp

}
return(tempa)
}
# Calculating gradient of reliability function
#
gradient3 = function(lambda,alpha1,alpha2)
{
tempaL1 = 0; tempaL2=0
for(i in s:k)
{
ch1=choose(k,i)
temp1= 0; temp2=0
for(j in 0:(k-i))
{
ch2 =choose(k-i,j)
temp1=temp1 + ch2 *((-1)^j)* (alpha2*(j+i)/(alpha1*(j+i) + alpha2)^2)
temp2=temp2 +ch2*((-1)^j)*(alpha1*(j+i)/(alpha1*(j+i) + alpha2)^2 )
}
temp1=temp1*ch1
temp2 = temp2*ch1
tempaL1 = tempaL1 + temp1
tempaL2 =tempaL2 + temp2
}
dRdL = 0
return(list(dRdL=dRdL, dRda1=(-1)*tempaL1, dRda2 = tempaL2))
}

#
# Main program is given as follows
#
# Maximum likelihood estimates for three parameters
par=c(0.06,0.1,0.5)
out= optim(par,obj,method="L-BFGS-B",lower=c(0.05,0.05,0.05),
hessian="TRUE")
hlambda =out$par[1]
ha1 = out$par[2]
ha2 = out$par[3]
hRsk=Relibyks3(alpha1=ha1,alpha2=ha2)

# 2. Bootstrap procedure
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Bha1 = numeric(BOOT)
Bha2 = numeric(BOOT)
Bhlambda = numeric(BOOT)
BhRsk = numeric(BOOT)
# 2. generating bootstrap sample and get bootstrap MLE
for(iB in 1:BOOT)
{
y = rbur(nn=n,alpha=ha2,lambda=hlambda)
for(ii in 1:n)
{
x[ii,]= sort(rbur(nn=k,alpha =ha1,lambda=hlambda))[1:s]
}
Bpar=c(0.5,1.2,2.5)
BBpar= optim(par,obj,method="SANN")$par
Bhlambda[iB]=BBpar[1]
Bha1[iB] = BBpar[2]

Bha2[iB] = BBpar[3]
BhRsk[iB]=Relibyks(alpha1=Bha1[iB],alpha2=Bha2[iB])
cat(iB, "th run","\n")
}
conf=quantile(BhRsk, probs=c(0.025,0.975), type = 1)

# find ACI
zq = abs(qnorm(0.025))
Fm=out$hessian
Covar=solve(Fm)

## Find confidence interval of reliability
gRadlist=gradient3(lambda=hlambda,alpha1=ha1,alpha2=ha2)
gRad=numeric(3)
gRad[1]=gRadlist$dRdL; gRad[2]=gRadlist$dRda1;gRad[3]=gRadlist$dRda2

varRsk = t(gRad)%*%Covar%*%t(t(gRad))
varlnRsk = varRsk/hRsk
CL =hRsk/exp(zq*sqrt(varlnRsk))
CU =hRsk*exp(zq *sqrt(varlnRsk))
#Output results
cat("Simulation results: LBRsk = ",conf[1]," UBRsk = ",conf[2]," hRsk = ",
hRsk,"\n")
cat("ACI is", CL, " ", CU,"\n")

# end of the case for equal rate~parameter

##################################################
# Find maximum likelihood estimator of
# reliability for multicomponent system
# assuming different scale parameters (four parameters)
#
######################################

# log-likelihood function
obj<-function(par)
{
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lambda1=par[1];alpha1=par[2];lambda2=par[3]; alpha2=par[4]
temp1=sum(log(dbur(x,alpha1,lambda1)))
temp2=(k-s)*sum(log(1-pbur(x[,s],alpha1,lambda1)))
temp3=sum(log(dbur(y,alpha2,lambda2)))
tTemp = temp1+temp2+temp3
return(-tTemp)
}
#
#
Relibyks4=function(lambda1,alpha1,lambda2,alpha2)
{
tempa = 0
# cat("s =", s, "k =",k,"\n")
for(i in s:k)
{
ch1=choose(k,i)
temp= 0
for(j in 0:(k-i))
{
ch2 =choose(k-i,j)
v=du*sum( (1 - u^(lambda2/lambda1))^(alpha1*(i+j))*(1-u)^(alpha2-1))

temp=temp + alpha2*ch2 *((-1)^j)*v
}
temp=temp*ch1
tempa = tempa + temp

}
return(tempa)
}

#
# gradient of reliability function under four parameters
gradient4 = function(lambda1,alpha1,lambda2,alpha2)
{
tempaL1 = 0; tempaL2=0;tempaL3=0;tempaL4=0
for(i in s:k)
{
ch1=choose(k,i)
temp1= 0; temp2=0;temp3=0;temp4=0
for(j in 0:(k-i))
{
ch2 =choose(k-i,j)*(-1)^j
temp1=temp1 + ch2*alpha2*alpha1*(j+i)*lambda2/lambda1^2*sum((1-u^(lambda2/
lambda1))^(alpha1*(i+j)-1)*
(1-u)^(alpha2-1)*u^(lambda2/lambda1)*log(u))*du

temp2=temp2 +ch2*(j+i)*alpha2*sum((1-u^(lambda2/lambda1))^(alpha1*(i+j))*
log(1-u^(lambda2/lambda1))*
(1-u)^(alpha2-1))*du

temp3=temp3 +ch2*alpha2*alpha1*(j+i)/lambda1*sum((1-u^(lambda2/lambda1))^
(alpha1*(i+j)-1)*
(1-u)^(alpha2-1)*(-u^(lambda2/lambda1))*log(u))*du
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temp4=temp4 +ch2*du*(sum((1-u^(lambda2/lambda1))^(alpha1*(j+i))*(1-u)^
(alpha2-1))+
alpha2*sum((1-u^(lambda2/lambda1))^(alpha1*(j+i))*(1 -u)^(alpha2-1)*
log(1-u)))
}
temp1=temp1*ch1
temp2 = temp2*ch1
temp3 =temp3*ch1
temp4 =temp4*ch1
tempaL1 = tempaL1 + temp1
tempaL2 =tempaL2 +temp2
tempaL3 =tempaL3 + temp3
tempaL4 =tempaL4 + temp4
}
return(list(dRdL1=tempaL1, dRda1=tempaL2, dRdL2 = tempaL3, dRda2 =
tempaL4))
}

#
# Pivotal quantity method for three parameters
#
#
xL=matrix(nrow=n,ncol=s)
p1X= numeric(n)
p1Y = numeric(n)

whRsk=numeric(BOOT)

library(HDInterval)

obj<-function(par)
{
lambda=par[1]; alpha1=par[2]; alpha2=par[3]
temp1=sum(log(dbur(x,alpha1,lambda)))
temp2=(k-s)*sum(log(1-pbur(x[,s],alpha1,lambda)))
temp3=sum(log(dbur(y,alpha2,lambda)))
tTemp = temp1+temp2+temp3
return(-tTemp)
}

gRad = numeric(3)
zq = abs(qnorm(0.025))
par=c(2.5,2.5,2.5)
out= optim(par,obj,method="L-BFGS-B",lower=c(0.5,0.5,0.5),hessian="TRUE")
hlambda =out$par[1]
ha1 = out$par[2]
ha2 = out$par[3]
hRsk=Relibyks3(ha1,ha2)

for(jq in 1:BOOT)
{
# 1. generating data sets for x and y
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y = rbur(nn=n,alpha=ha2,lambda=hlambda)

for(i in 1:n)
{
x[i,]= sort(rbur(nn=k,alpha = ha1,lambda=hlambda))[1:s]
}

par=c(2.5,2.5,2.05)
out= optim(par,obj,method="L-BFGS-B",lower=c(0.5,0.5,0.5))
whla = out$par[1]
log(1 - exp(-y^2/whla))
wha1 = - rchisq(1,df=2*n*s)/(2*((k-s)*sum(log(1 - exp(-x[,s]^2/whla))) +
sum(log(1 - exp(-x^2/whla)))))
wha2 = - rchisq(1, df=2*n)/(2*sum(log(1 - exp(-y^2/whla))))
whRsk[jq]=Relibyks(wha1,wha2)
}
conf=hdi(whRsk, credMass = 0.95)
Lbconf = conf[1]
Ubconf = conf[2]

BhRsk = mean(whRsk)

lnw1 = mean(log((1+whRsk)/(1-whRsk)))
hRskF = (exp(lnw1) - 1)/(exp(lnw1) +1)

#
# Pivotal quantity method with four parameters
#
xL=matrix(nrow=n,ncol=s)
p1X= numeric(n)
p1Y = numeric(n)

whRsk=numeric(BOOT)

library(HDInterval)

obj<-function(par)
{
lambda1=par[1]; alpha1=par[2];lambda2=par[3]; alpha2=par[4]
temp1=sum(log(dbur(x,alpha1,lambda1)))
temp2=(k-s)*sum(log(1-pbur(x[,s],alpha1,lambda1)))
temp3=sum(log(dbur(y,alpha2,lambda2)))
tTemp = temp1+temp2+temp3
return(-tTemp)
}

zq = abs(qnorm(0.025))
par=c(2.5,2.5,2.5,2.5)
out= optim(par,obj,method="L-BFGS-B",lower=c(0.5,0.5,0.5,0.5),
hessian="TRUE")
hlambda1 =out$par[1]
ha1 = out$par[2]
hlambda2 =out$par[3]
ha2 = out$par[4]
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for(jq in 1:BOOT)
{
par=c(1.5,1.5,1.05,1.05)
out= optim(par,obj,method="L-BFGS-B",lower=c(0.5,0.5,0.5,0.5))
whla1 = out$par[1]
wha1=out$par[2]
whla2=out$par[3]
wha2 =out$par[4]

wha1 = rchisq(1,df=2*n*s)/(-2*((k-s)*sum(log(1 - exp(-x[,s]^2/whla1)))) )
wha2 =rchisq(1, df=2*n)/(-2*sum(log(1 - exp(-y^2/whla2))))
whRsk[jq]=Relibyks4(whla1,wha1,whla2,wha2)
cat(" Boot Run at ",jq,"\n")
}
conf=hdi(whRsk, credMass = 0.95)
Lbconf = conf[1]
Ubconf = conf[2]

BhRsk = mean(whRsk)

lnw1 = mean(log((1+whRsk)/(1-whRsk)))
hRskF = (exp(lnw1) - 1)/(exp(lnw1) +1)
cat(BhRsk," ",hRskF,"\n")
cat("GCI = ",Lbconf," GCU = ",Ubconf,"\n")
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