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Abstract: This study aimed to investigate the antimicrobial effect of cold atmospheric plasma on
microbially contaminated liquid films and dried surfaces. Additionally, the contribution of plasma-
generated UV radiation to total inactivation was assessed. Experiments were performed using the
nearfield module of the relyon piezobrush PZ3 plasma pen on Staphylococcus carnosus, Pseudomonas
fluorescens, Streptococcus vestibularis and Candida auris. It was observed that in liquid, there seemed to
be no obvious general sensitivity differences between Gram-positive and Gram-negative bacteria.
However, all bacteria in liquids were clearly more susceptible to plasma than the yeast. In contrast,
there was no significant difference between C. auris and S. carnosus on dried surfaces. The plasma
emissions exhibited strong UVA and UVB radiation and only weak emissions in the UVC range. The
antimicrobial impacts of the UVA and UVB emissions were negligible. However, an estimation based
on two simplifications revealed that the UVC radiation probably contributed considerably to the
inactivation properties of the plasma. This might be a special feature of near-field plasma application
on thin liquid samples.

Keywords: cold atmospheric plasma; disinfection; Staphylococcus carnosus; Pseudomonas
fluorescens; Streptococcus vestibularis; Candida auris; UVA; UVB; UVC

1. Introduction

More than 25 years ago, it was first observed that so-called cold or nonthermal plasma
can inactivate microorganisms without damaging materials and some biological tissues [1].
This plasma is (partially) ionized gas or air in which free electrons have a high temperature
while the heavier gas molecules remain relatively cold. The plasma emits UV radiation
and visible light, but the observed antimicrobial effect of cold atmospheric plasma is not
attributed to UV radiation but mainly to reactive oxygen and nitrogen species such as O,
1O2, O2

−, O3, OH, NO, NO2, . . . [2–5]. The reactive species attack cell structures and lead
to the death of the cell, and different cells or microorganisms can have different sensitivities.
For example, it is assumed that Gram-negative and Gram-positive bacteria differ in their
sensitivity and that fungi are generally less sensitive than bacteria [6–9].

Plasma is applied in the cleaning and disinfection of surfaces and liquids, e.g., in the
health and food sector [5–8,10]. Often, dry surfaces are examined, but liquids are also
examined in different volumes.

In the study presented here, the inactivation of Gram-positive and Gram-negative
bacteria is investigated in comparison to a yeast. Surrogates of significant pathogens are
selected for this purpose. The specimens are microorganisms in small liquid volumes with
defined thickness, such as liquid layers on wounds or washed hands or food, which are
compared to dried microorganisms. In addition, the importance of UV emissions from
plasma is assessed. Therefore, microorganisms whose UV sensitivity is known are selected.

Biol. Life Sci. Forum 2024, 31, 6. https://doi.org/10.3390/ECM2023-16475 https://www.mdpi.com/journal/blsf

https://doi.org/10.3390/ECM2023-16475
https://doi.org/10.3390/ECM2023-16475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/blsf
https://www.mdpi.com
https://orcid.org/0000-0002-1831-9859
https://orcid.org/0000-0002-6608-8741
https://orcid.org/0000-0002-4859-2864
https://ecm2023.sciforum.net
https://doi.org/10.3390/ECM2023-16475
https://www.mdpi.com/journal/blsf
https://www.mdpi.com/article/10.3390/ECM2023-16475?type=check_update&version=1


Biol. Life Sci. Forum 2024, 31, 6 2 of 6

2. Materials and Methods
2.1. Microbiology

For the inactivation experiments, different microorganisms were cultivated. The yeast
Candida auris was selected as a representative fungus. C. auris was cultivated in liquid
YEPG (yeast extract peptone glucose) and on M129 agar plates. As a Gram-negative
bacterium, Pseudomonas fluorescens (DSM 4358) was chosen, and as Gram-positive bacteria,
Staphylococcus carnosus (DSM 20501) and Streptococcus vestibularis (DSM 5636) were chosen.
P. fluorescens was cultivated in M535, S. carnosus was cultivated in M92 and S. vestibularis
was cultivated in a brain heart infusion (BHI) medium at a temperature of 37 ◦C, with the
exception of the 30 ◦C cultivation of P. fluorescens. Descriptions of all media can be found
in [11].

After reaching the mid-exponential phase of the cultivation procedure, samples were
taken from each culture and centrifuged at 7000× rpm for 5 min. The resulting pellet was
then resuspended with PBS (phosphate-buffered saline), and the centrifugation process
was repeated. The washed samples were diluted until a population density of 8 × 106 to
1 × 108 colony-forming units per ml (CFU/mL) was reached.

2.2. Plasma Source and Sample Treatment

For the inactivation experiments, a piezobrush PZ3 pen from relyon plasma GmbH
(Regensburg, Germany) was equipped with its nearfield nozzle, and it generated a cold
atmospheric air plasma. The plasma emission was measured using a spectrophotometer, a
CAS 140D unit from Instruments Systems (Munich, Germany), by placing the plasma pen
and a grounded wire directly in front of the aperture of an integrating sphere, as illustrated
in Figure 1. The distance between the pen and wire was about 2 mm. Together with
published log-reduction doses and an antimicrobial action spectrum, the plasma emission
was used to assess the UV contribution to the total antimicrobial impact of the plasma.
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Figure 1. Left: schematic setup of the measurement of the plasma emission. Right: schematic setup
of the plasma treatment of samples in 10 mm wells. Both are unscaled representations! Right bottom:
photograph of the plasma-treated sample.

For the plasma treatment of small liquid volumes with defined thickness, an array
of wells with a diameter of 10 mm and a height of 2 mm was printed in resin using
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BioMed Clear Resin from Formlabs (Berlin, Germany). Samples with a volume of 100 µL
(sample height: 1.6 mm) could be placed in it beforehand. To perform suspension experi-
ments, the liquid samples were treated directly with cold plasma. To perform experiments
with a contaminated dry surface, the suspension was dried for three hours prior to the
plasma treatment.

The plasma was applied for periods of up to 7 min for liquid samples and up to
2 min for dried ones. For liquid samples, the temperature was measured using an infrared
thermometer, a Raynger MX from Raytek (Berlin, Deutschland). Ozone and pH were
measured using Water Test test strips from Tytlyworth (unknown origin) and Dosatest pH
test strips for a pH of 4.5–10.0 from VWR (Darmstadt, Germany), respectively.

The respective liquid samples were directly removed after the plasma treatment and
spread on agar plates in different dilutions. For the recovery of the dried sample, 100 µL of
PBS was added to the well containing the dried microorganisms. Then, the sample volume
was agitated with a pipette tip for 15 s before the sample was removed and plated out
again. Incubation was carried out at the same temperature as during cultivation, and after
48 h, the grown colonies were counted and evaluated. The determined log reduction values
referred to a starting value which was an untreated sample that was filled in a well and
recovered as all the plasma-treated samples were.

3. Results

The experiments revealed that all microorganisms (liquid and dried samples) were
reduced by several orders of magnitude within a few minutes. The plasma application
durations required for a log reduction can be found in Table 1. In the semi-logarithmic
representation in Figure 2, the measured data lie more or less on a straight line, which is
indicative of an approximate exponential reduction in the microorganisms. The measured
physical and chemical properties in the liquid samples are listed in Table 2 as functions of
time. They are not assumed to have a large influence on the bacteria and yeast reductions.

Table 1. Plasma log reduction times for different microorganisms and conditions.

Microorganism Log Reduction Time for
Microorganisms in a Suspension

Log Reduction Time for
Dried Microorganisms

S. carnosus (Gram +) 58.1 s 36.4 s
P. fluorescens (Gram −) 64.9 s -
S. vestibularis (Gram +) 84.0 s -

C. auris (yeast) 212.8 s 34.5 s

Table 2. Ozone concentration, pH and temperature in liquid samples as functions of plasma applica-
tion duration.

Plasma Application
Duration [s] Ozone [mg/L] pH Temperature [◦C]

0 <4 7.0 23.8
60 <4 7.0 30.7

120 <4 7.0 35.1
180 <4 7.0 37.2
240 <4 6.7–7.0 38.5
300 <4 6.7 40.0
360 <4 6.4–6.7 40.2
420 <4 6.4–6.7 41.3
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Therefore, UVB and UVA did not play a significant role in the antimicrobial impact of the 
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ductions that would be expected due to UVC application only, with the simplification that 
UVC photosensitivities can be approximated using published 254 nm values. 

Figure 2. Log change for the microbial concentrations for the different microorganisms and conditions
as functions of time and fitted trend lines.

Figure 3 gives the short-wavelength plasma emission spectrum. In the UV region, UVA
(315–400 nm) is the strongest with 28.4 µW, followed by UVB (280–315 nm) with 7.0 µW
and UVC with 5.4 µW. However, if the antimicrobial action spectrum [12] is considered, the
photoinactivation impact of the UVC emissions is about 11x times higher than that of the
UVB emissions and 111x times higher than that of the plasma’s UVA emissions. Therefore,
UVB and UVA did not play a significant role in the antimicrobial impact of the plasma.
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To assess the contribution of the plasma’s UVC emissions, the average UVC irradiation
intensity inside the 10 mm well was determined to be 6.9 µW/cm2. The UVC doses
applied during the plasma log-reduction time (90% reduction) are given in Table 3 together
with known UVC (254 nm) log-reduction doses. Also given are the microbial reductions
that would be expected due to UVC application only, with the simplification that UVC
photosensitivities can be approximated using published 254 nm values.

Table 3. Applied UVC doses during plasma log-reduction times (see Table 1) for different microor-
ganisms, published UVC (254 nm) log-reduction doses, and assumed reductions based only on
UVC irradiation.

Microorganism
Applied Dose during
Log-Reduction Time

[mJ/cm2]

Published UVC
Log-Reduction Doses

[mJ/cm2]

Expected Reduction Just by
UVC [%]

S. carnosus (Gram +) 0.40 1.26 [13] 52
P. fluorescens (Gram −) 0.44 1.59 [13] 47
S. vestibularis (Gram +) 0.57 1.7 [14] 54

C. auris (yeast) 1.45 13.2 [15] 22

4. Discussion

The cold atmospheric plasma from the piezobrush PZ3 reduced all three bacteria and
the yeast C. auris within minutes by orders of magnitude, and the decreases appear to be
approximately exponential. A three-phase behavior, as suggested in [3,5], was not observed.
In the liquid samples, the yeast was clearly more resistant than the bacteria, but in the dried
state, C. auris and S. carnosus appear to be equally susceptible.

The observed differences between the bacteria in liquids were small. The Gram-
negative representative lay between the two Gram-positive bacteria in its sensitivity to
plasma. Therefore, in this study, there is no evidence of general differences in plasma
sensitivity due to bacterial cell wall structure (Gram +/Gram −).

Reactive oxygen and nitrogen species, which attack cell structures, are usually cited as
the most important mechanisms in the antimicrobial action of cold plasma. UV radiation is
assumed to play a very minor role at atmospheric pressure. Although this study confirms
that UVA and UVB radiation do not cause any relevant inactivation, the UVC emissions
from the plasma could account for a large contribution to the antimicrobial effect of the
plasma in this particular near-field application on small liquid volumes with defined
thickness. However, this quantitative statement is not certain because two assumptions
were implied that affected the calculated strength of the UVC effect.

First, for simplicity, it was assumed that the photosensitivity of each microorganism
in the spectral range 200–280 nm does not vary substantially from its photosensitivity at
254 nm. Second, the plasma emissions were not measured over the sample wells as in
the real application but in a special arrangement in front of the integrating sphere of the
spectrometer in combination with a grounded wire. Therefore, the UV emissions in this
setup might have been higher than in inactivation experiments. On the other hand, the UV
intensities of the piezobrush PZ3 with a near-field nozzle measured herein seem to be in
the range of the results of Timmermann et al. [9]. This statement is based on the UVA and
UVB emissions only as Timmermann et al. published no data below 280 nm.

Both assumptions may lead to an overestimation of UVC’s influence, but the error will
probably not be of an order of magnitude and it can thus be assumed that UVC emissions
from plasma contribute clearly to the antimicrobial effect of plasma, at least under these
particular conditions.
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