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Abstract: Conventional maximum likelihood-based algorithms for 3D Compton image reconstruction
are often stuck with slow convergence and large data volume, which could be unsuitable for some
practical applications, such as nuclear engineering. Taking advantage of the Bayesian framework,
we propose a fast-converging iterative maximum a posteriori reconstruction algorithm under the
assumption of the Poisson data model and Markov random field-based convex prior in this paper.
The main originality resides in developing a new iterative maximization scheme with simultaneous
updates following the line search strategy to bypass the spatial dependencies among neighboring
voxels. Numerical experiments on real datasets conducted with hand-held Temporal Compton
cameras developed by Damavan Imaging company and punctual 0.2 MBq 22Na sources with zero-
mean Gaussian Markov random field confirm the outperformance of the proposed maximum a
posteriori algorithm over various existing expectation–maximization type solutions.

Keywords: 3D image reconstruction; line search maximization; maximum a posteriori; Markov
random field; real Compton data; simultaneous update

1. Introduction

Compton reconstruction is a method to locate gamma ray sources by measuring a
Compton scatter and a photoelectric absorption for each radioactive decay, in terms of
positions and deposited energies. The literature of 3D Compton reconstruction methods
has been extensively developed following two main streams: (i) analytical inversion [1], and
(ii) iterative model-based [2]. The first stream relies mostly on the relationship between a
function and its line integrals. Although it typically leads to fast reconstruction algorithms
such as filtered back-projection [3], the accuracy of the resulting reconstructed image is
usually limited because of approximations needed in the line-integral model and the inabil-
ity to take account of uncertainties inherent in photon-limited detection. On the contrary,
iterative reconstruction algorithms in the second stream exhibit significant accuracy thanks
to the explicit modeling of statistical variations in the photon detection process and the
progressive refining of reconstructed images through repetitive calculations. However, the
price of this added refinement is the substantially higher computation cost.

In the current state of the art, great interest has put in 3D Compton reconstruction using
statistical iterative algorithms [4]. The maximum-likelihood expectation–maximization
(MLEM) algorithm and its variants have been the leading statistical iterative reconstruction
algorithms for several years. Being applicable for Poisson Compton data in both the bin-
mode [5] and list-mode [6], the conventional MLEM algorithm exhibits attractive properties,
including consistent and predictable convergence behavior, guaranteed non-negativity, and
count preservation at each iteration. Nevertheless, it converges slowly, and requires a large
number of Compton events for noise reduction. These two issues are, however, of great
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concern for various practical applications, especially in nuclear engineering [7]. A potential
solution to these issues is to formulate the 3D reconstruction in the Bayesian framework
with a Markov random field (MRF)-based prior, reflecting the smoothness in the expected
image. Accordingly, the reconstructed image can be seen as a maximum a posteriori
(MaP) estimate from Compton data [2]. Equivalent to the Gibbs distribution [8], the MRF
framework provides a simple, yet consistent and highly flexible, formalism for describing
the image local structure, where neighboring voxels tend to share similar values [9]. The
main difficulty for the MaP estimation with MRF priors is the inseparable neighboring
voxels in a so-called energy function that makes a direct application of the conventional
EM algorithm generally impossible. To remedy this, the one-step-late method [10] could be
used at the risk that the EM algorithm converges to the MAP solution for only certain MRF
priors [11]. Another alternative is to replace the energy function by a surrogate enabling
separable neighboring voxels [12]. If properly chosen, it can lead to a closed-form update
of the EM algorithm even for non-quadratic energies [13]. Additionally, we can also adopt
a greedy pixel-wise maximization scheme such as iterative coordinate ascent (ICA) [14]
to break interactions among neighboring voxels. Nevertheless, such a sequential greedy
maximization is often time consuming due to the large number of voxels considered in
3D reconstruction.

Motivated by the Bayesian framework advantages, our aim is to develop a fast-
converging iterative MaP reconstruction algorithm called LMMRFMaP under the assump-
tion of the list-mode Poisson data model and MRF-based convex prior. This LMMRFMaP
algorithm separates interactive voxels in a similar way as the ICA [14]; however, in the
maximization process, a new simultaneous update with line search is proposed for all
voxels, rather than sequentially updating voxels one by one. This improvement allows
us to very quickly locate radioactive sources from the list-mode Compton data space,
especially when compared with the extended LMMLEM (eLMMLEM) algorithm [15] and
the so-called LMMaPEM algorithm developed in [12].

The remainder of the paper is organized as follows. On the basis of the Poisson data
model, in Section 2, we develop the LMMRFMaP algorithm for MRF-based convex priors.
Numerical experiments and comparative studies conducted with hand-held Temporal
Compton cameras developed by Damavan Imaging company and punctual 0.2 MBq 22Na
sources are next introduced and analyzed in Section 3. Finally, the paper ends with some
conclusions and perspectives in Section 4.

2. LMMRFMaP Algorithm

This section is dedicated to formulating a new MaP algorithm for 3D reconstruction
from a list-mode Compton data-space L. For convenience, we first conduct the formulation
under the bin-mode data, as in [16], then derive the model of interest by considering
list-mode data as a limiting case of bin-mode data when the bin-widths tend to zero. Thus,
we define, for the bin-mode data, a vector of measurements g, where each element gi, i ∈ I ,
describes the random number of counts in a virtual bin i corresponding to the event Ai of
L. When gi → 1, ∀i ∈ I , then the bin-mode data return to the list-mode ones [17].

We denote f the source distribution in the considered image volume V , where each
element f j, ∀j ∈ J , characterizes the emission intensity of the voxel vj in V . Under the
Bayesian framework, the 3D reconstruction reduces to find the MaP estimate f̂map of f,
such that

f̂map = arg max
f≥0
{L(g | f) + L(f)}, (1)

where L(f) and L(g | f) are the log-prior and log-likelihood functions.
Through a MRF model, we introduce the image smoothness as prior knowledge in

estimating f. We thus define a neighborhood system δj of the voxel vj, ∀j ∈ J , such that

• vj cannot be a neighbor of itself (i.e., vj /∈ δj);
• If vj is a neighbor of vl , then vl must be a neighbor of vj (i.e.,vj ∈ δl ⇔ vl ∈ δj).
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Each system δj corresponds to a set of pair-wise cliques Cj ,
{(

vj, vl
)

: vj ∈ δl
}

consist-
ing of all unordered neighboring voxels pairs

(
vj, vl

)
satisfying vj ∈ δl . Using these notions,

we can formulate the log-prior function as [18]

L(f) = −
J

∑
j=1

∑
(vj ,vl)∈Cj

β jl · ρ
(

f j − fl
)
, (2)

where β jl denotes the model parameter, and ρ(·) is a convex potential function (see [19] for
a detailed discussion about different choices of ρ(·), and their meanings and properties).
Assuming now the Poisson event-counting model for gi, we arrive at the log-likelihood
function [2]

L(g | f) =
I

∑
i=1

(
−

J

∑
j=1

tij f j + gi ln

(
J

∑
j=1

tij f j

)
− ln(gi!)

)
, (3)

where tij denotes an element of the system response matrix indexed on the event Ai and
on the voxel vj [15]. Obviously, inseparable f j, ∀j ∈ J in L(f) and L(g | f) make a direct
resolution of (1) mathematically intractable. A well-known technique to overcome this
obstacle is to replace L(f) and L(g | f) by surrogate functions [12,13]. While an efficient log-
likelihood surrogate can be easily found thanks to the common assumption of the Poisson
data model, a relevant choice for log-prior surrogate is not always straightforward and
closely dependent on the specific adopted prior [20]. That is why we propose substituting
only L(g | f) by an appropriate surrogate, keeping L(f) as it is, and then developing an
iterative scheme to maximize the new objective function.

In [20], Bouman proved that the Q-function in the E-step of the EM algorithm could be
an appropriate log-likelihood surrogate for the Poisson data. Sharing their viewpoint, we
adapt the Q-function in our eLMMLEM algorithm [15], and obtain a surrogate of L(g | f)
in list-mode (i.e., gi → 1, ∀i ∈ I) as

Ql
(
f; f′
)
=

I

∑
i=1

J

∑
j=1

 tij f
′
j

∑J
s=1 tis f ′s

ln
(
tij f j

)
− tij f j

, (4)

where f
′

denotes any possible information from earlier iterations, and f
′
j , ∀j ∈ J , are

elements of f
′
. Using (2) and (4), equivalences of (1) for the list-mode data are obtained by

f̂map = arg max
f≥0

{
Lmap(f)

}
, (5)

Lmap(f) =
I

∑
i=1

J

∑
j=1

 tij f
′
j

∑J
s=1 tis f ′s

ln
(
tij f j

)
− tij f j

− J

∑
j=1

∑
(vj ,vl)∈Cj

β jl · ρ
(

f j − fl
)
. (6)

It is easy to verify that Lmap(f) is a concave function when the potential function is convex.
This leads to the line search maximization scheme with simultaneous update as follows.

Theorem 1. If Lmap(f) is concave, then the following iterative schema converges to its maximum

f̂(k+1) ← f̂(k) +
J

∑
j=1

a(k)j e(k)j , (7)

where e(k)j ∈ RJ is vector whose j-th component is 1, remainders are 0, and a(k)j is given by

a(k)j ← arg max
aj∈R

{
Lmap

(
f̂(k) + aje

(k)
j

)}
, ∀j ∈ J . (8)
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Proof. This theorem is easily proved by applying the Taylor expansion to the Lmap(f)
concave function.

The above iterative maximization scheme requires a starting point f̂(0). As in [21], a
potential choice for f̂(0) is such that f̂ (0)j = ∑I

i=1 tij, ∀j ∈ J .

3. Numerical Experiments and Comparative Studies

To assess the performance of the proposed LMMRFMaP algorithm, we set up an
experimental system with a punctual 0.2 MBq 22Na source and a hand-held Temporal
Compton camera developed by the Damavan Imaging company.

The camera is sequentially deployed at three different view-angles, as in Figure 1: the
two first views are set perpendicularly on a same horizontal plane H of the punctual source, and
the third view is placed vertically above. The distance between the camera and the source is
500 mm, and the whole system is located 500 mm from the ground. We conducted the
acquisition within 15 min to constitute different list-mode data-spaces L for comparative
studies among the eLMMLEM, LMMaPEM, and LMMRFMaP algorithms.

y3

z1

x1

y1

500 mm

5
0

0
 m

m

0.2 MBq
22Na

z2

x2
y2

ground

view 1view 2

500 mm

5
0

0
 m

m

z3

x3

view 3

O3

O2 O1

H +

Figure 1. Experiment setting for Compton data acquisition.

Assuming the uniform sensitivity for the camera system, the eLMMLEM algorithm
always admits the closed-form update at the (k + 1)-st iteration as

f̂ (k+1)
mle,j ← f̂ (k)mle,j

I

∑
i=1

tij

∑J
s=1 tis f̂ (k)mle,s

, ∀j ∈ J , k ∈ N. (9)

Unlike the eLMMLEM algorithm, the update form of the LMMaPEM and LMMRFMaP algo-
rithms depends closely on the choice of prior model. To enable their closed-form update, we
choose the zero-mean Gaussian MRF with the potential function ρ

(
f j − fl

)
= 1

2
(

f j − fl
)2

for describing the local smoothness of the expected reconstructed image. This choice gives
the updates at the (k + 1)-st iteration as
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• For the LMMaPEM algorithm:

f̂ (k+1)
mapem,j ←

1
8

√√√√√
1− 2

 f̂ (k)mapem,j + ∑
(vj ,vl)∈Cj

β jl f̂ (k)mapem,l

2

+ 16
I

∑
i=1

tij f̂ (k)mapem,j

∑J
s=1 tis f̂ (k)mapem,s

−1
8

1− 2

 f̂ (k)mapem,j + ∑
(vj ,vl)∈Cj

β jl f̂ (k)mapem,l

, ∀j ∈ J , k ∈ N, (10)

• For the LMMRFMaP algorithm:

f̂ (k+1)
mrfmap,j ←

1
2

√√√√√
1− ∑

(vj ,vl)∈Cj

β jl f̂ (k)mrfmap,l

2

+ 4
I

∑
i=1

tij f̂ (k)mrfmap,j

∑J
s=1 tis f̂ (k)mrfmap,s

− 1
2

1− ∑
(vj ,vl)∈Cj

β jl f̂ (k)mrfmap,l

, ∀j ∈ J , k ∈ N, (11)

where ∑(vj ,vl)∈Cj
β jl = 1, and the pair-wise clique Cj is chosen as in [22] (i.e., Cj consists of

the eight nearest voxels from the same slice and the single nearest voxels of the upper and
lower slices). The updates (9)–(11) also require a probabilistic model for tij. In this work,
we adapt Maxim et al.’s model [23] for Compton data by adding different measurement
uncertainties related to the spatial and energy resolution of detectors, as well as the Doppler
broadening effect to make the model more flexible.

To see how fast the LMMRFMaP algorithm is when compared to the eLMMLEM and
LMMaPEM algorithms, we fix the number of events at I = 20 events/view and observe the
evolution of the associated reconstructed 3D images at the k-th iteration with k = 1, 3, 5, 7.
Visually, we can find from Figure 2 that the point cloud returned by the LMMRFMaP
algorithm converges to true punctual source (marked by the red cross) much faster than
the one returned by the two other algorithms.

Quantitatively, we propose using the so-called sum of weighted distances (SWD) between
the reconstructed point cloud and the true source as a measure for the quality assessment
at the k-th iteration

SWD(k) =
J

∑
j=1

f̂ (k)j

∥∥Pj − PS
∥∥

2, (12)

where f̂ (k)j is given either from (9), (10) or (11); Pj and PS are, respectively, the coordinate
vectors of the voxel vj and the punctual source; and ‖·‖2 standards for the Euclidean
norm. The SWD exhibits a compromise between the intensity of the voxels and their
accuracy with respect to the source location. The lower the value of SWD(k), the nearer
the reconstructed 3D image is to the true source. Fixing the number of events at I = 20
events/view, we randomly build 100 list-mode data-spaces, reconstruct the images of
punctual source following (9)–(11), and compute the associated SWD following (12). Next,
we sketch the evolution of the mean and the standard deviation of these SWD with respect
to the iteration number k in Figure 3a. Clearly, the proposed LMMRFMaP algorithm
exhibits a higher convergence speed and higher reconstruction quality than the LMMaPEM
and eLMMLEM algorithms. Similarly, we fix the iteration number at k = 5, and vary the
number of events/view from 4 to 20 with step 4 to evaluate the impact of the events number
on the reconstruction performance. Indeed, for each of these configurations, we also build
100 list-mode data-spaces, compute the associated SWD for the considered algorithms,
then sketch in Figure 3b the evolution of their mean and standard deviation.
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(a) (b)

(c)

Figure 2. Evolution of point clouds returned by the considered algorithms (20 events/view):
(a) eLMMLEM algorithm, (b) LMMaPEM algorithm, (c) LMMRFMaP algorithm.

(a) (b)

Figure 3. Evolution of the mean and the standard deviation of SWD: (a) evolution with respect to the
number of iterations, (b) evolution with respect to the number of events/view.
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We can remark that the mean values of SWD given by the LMMRFMaP algorithm
are more-or-less constant when the number of events/view varies, while the ones given
by the LMMaPEM and eLMMLEM algorithms present a growing trend. This means that
the LMMRFMaP algorithm does not require as large a number of events/view to obtain
as good a convergence as the two other algorithms. Of course, as shown by the curve
of SWD standard deviation, the higher the number of events/view, the more precise the
reconstruction results are.

4. Conclusions and Perspectives

Using the Bayesian framework, in this paper, we proposed the LMMRFMaP algorithm
for 3D reconstruction from list-model Compton data. Various comparative studies with
more classical statistical reconstruction algorithms on three-view real Compton data confirm
that the algorithm can very quickly return an accurate image of a punctual radioactive
source with a small number of events/view. These advantages are gained thanks to a
novel line search maximization scheme with simultaneous updates developed for MRF-
based convex priors. Based on these promising results, ongoing work is devoted to more
exhaustive testing of the algorithm performances with other kinds of radioactive sources,
such as multiple point sources and extended sources. Another perspective is to extend the
proposed algorithm for other kinds of MRF-based priors (e.g., non-convex, mixtures, etc.).
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