
Citation: Karamanis, M.; Seljak, U.

Preconditioned Monte Carlo for

Gradient-Free Bayesian Inference in

the Physical Sciences. Phys. Sci.

Forum 2023, 9, 23. https://doi.org/

10.3390/psf2023009023

Academic Editor: Udo von Toussaint

and Roland Preuss

Published: 9 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Preconditioned Monte Carlo for Gradient-Free Bayesian
Inference in the Physical Sciences †

Minas Karamanis 1,2,* and Uroš Seljak 1,2

1 Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720, USA;
useljak@berkeley.edu

2 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
* Correspondence: mkaramanis@berkeley.edu
† Presented at the 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in

Science and Engineering, Garching, Germany, 3–7 July 2023.

Abstract: We present preconditioned Monte Carlo (PMC), a novel Monte Carlo method for Bayesian
inference in complex probability distributions. PMC incorporates a normalizing flow (NF) and an
adaptive Sequential Monte Carlo (SMC) scheme, along with a novel past resampling scheme to
boost the number of propagated particles without extra computational costs. Additionally, we utilize
preconditioned Crank–Nicolson updates, enabling PMC to scale to higher dimensions without the
gradient of target distribution. The efficacy of PMC in producing samples, estimating model evidence,
and executing robust inference is showcased through two challenging case studies, highlighting its
superior performance compared to conventional methods.

Keywords: Bayesian inference; sequential Monte Carlo; normalizing flows; gradient free

1. Introduction

Bayesian inference (BI) is a crucial tool in the physical sciences, offering a mathematical
framework for quantifying uncertainty [1–5]. BI rests on three core elements: prior and
posterior distributions, and the likelihood function. The prior distribution encapsulates our
initial understanding of a problem, representing our beliefs before any data are observed.
The likelihood function signifies how likely it is our observed data are under varying model
parameters. Posterior distributions emerge from Bayes’ theorem, combining the prior and
likelihood to update our beliefs after data observation.

However, most BI analyses are analytically intractable, demanding numerical methods
such as Markov chain Monte Carlo (MCMC). These techniques approximate the posterior,
generating samples from it. State-of-the-art MCMC methods hinge on the knowledge of the
gradient of the target probability density, which is often intractable in the physical sciences.
Moreover, MCMC faces other challenges: its inherently serial nature makes parallelization
difficult, it struggles with multimodal or highly correlated distributions, and it is generally
unable to compute the marginal likelihood, a critical component for model comparison.
These limitations underscore the need for more flexible and efficient computational tools.

Sequential Monte Carlo (SMC) is a Monte Carlo method designed to address these
challenges [6–8]. SMC distinguishes itself with straightforward parallelization, an ability
to handle multimodal posteriors, and the provision of a marginal likelihood estimate.
In SMC, MCMC acts as a tool for moving the particles, typically utilizing gradient-free
MCMC variants, such as random-walk metropolis (RWM) [9] and slice sampling (SS) [10].
Despite its advantages, the SMC based on these MCMC methods still struggles to scale to
high-dimensional problems and handle highly correlated and multimodal posteriors.

To overcome these challenges, we introduce preconditioned Monte Carlo (PMC),
a refined variant of SMC. PMC employs a normalizing flow (NF) [11] to Gaussianize
the target distribution, simplifying MCMC sampling [12–14]. In contrast to canonical
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SMC, PMC includes a novel resampling scheme termed past resampling (PR), enhancing
the number of propagated particles without incurring additional computational costs.
Furthermore, PMC departs from the reliance on RWM or SS for sampling, instead choosing
preconditioned Crank–Nicolson (pCN) updates [15,16]. As such, PMC can scale to higher
dimensions without requiring the gradient of the target distribution, enhancing the overall
sampling performance.

2. Methods
2.1. Sequential Monte Carlo
2.1.1. Background

Sequential Monte Carlo (SMC) propagates a set of particles, drawn from a known
distribution ρ(θ), through multiple intermediary distributions towards a target distribution
p(θ). The transition speed depends on the number of intermediary distributions. Like
annealed importance sampling (AIS), SMC uses multiple MCMC steps per iteration to
balance particles towards each stage’s equilibrium distribution. SMC differentiates from
AIS by employing resampling to avoid weight degeneracy, where a few particles hold high-
importance weights. The resampling equalizes the weights to manage their high variance.

2.1.2. Bridging the Prior and Posterior

To develop a series of intermediate distributions that help the transition from a known
initial distribution ρ(θ) to the desired posterior distribution p(θ), a method of interpolation
is typically employed as follows:

pt(θ) ∝ ρ1−βt(θ)pβt(θ), t = 1, . . . , m (1)

where βt refers to a sequence of annealing temperatures, arranged such that

0 = β1 < β2 < · · · < βm = 1 (2)

In a Bayesian setting, the prior is naturally chosen as the auxiliary density ρ(θ) =
p(θ|M), and the posterior as the target density p(θ) = p(θ|d,M). In this case, Equation (1)
simplifies to:

pt(θ) ∝ pβt(d|θ,M)p(θ|M) (3)

2.1.3. Key Steps

The process of transitioning from one distribution to the next, pt−1(θ) to pt(θ), is
performed in three primary steps: correction, selection, and mutation. These steps are
encapsulated in a single SMC iteration, which is repeated until the target distribution is
adequately approximated.

• Correction—The importance weights wi
t of the particles θi

t−1 are calculated as:

wi
t =

pt(θi
t−1)

pt−1(θ
i
t−1)

(4)

and then they are used to estimate the normalizing constant (i.e., marginal likelihood)
of pt(θ):

Zt = Zt−1 ×
1
N

N

∑
i=1

wi
t (5)

Initially, all weights are equal such that wi
1 = 1/N ∀i ∈ {1, 2, . . . , N} with Z1 = 0.

• Selection—the particles θi
t−1 are resampled according to their importance weights.

The goal is to retain those particles that are highly represented in the new distribution
pt(θ), while eliminating those that are less represented. Particles with high weights
are more likely to be selected, thus forming the resampled set θi

t.
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• Mutation—The resampled particles θi
t are perturbed to generate diversity and explore

more of the parameter space. This step uses a transition kernel Kt(θi
t, θ′). In practice,

Kt takes the form of an MCMC kernel (e.g., several steps of an Metropolis–Hastings
(MH) transition). The careful design of the transition kernel is required to ensure that
the SMC sampler maintains good mixing properties and computational efficiency.

2.1.4. Adaptive Temperature Schedule

The effective sample size (ESS) measures the number of statistically independent
samples in the weighted ensemble. It provides an estimate of the “quality” of the samples
and is given by:

ESS =
1

∑N
i=1(w

i
t)

2
, (6)

where the weights wi
t are normalized to sum to one. In practice, a constant ESS is maintained

throughout the run by determining each βt adaptively by setting the next temperature
level as:

βt+1 = arg min
β

{
β : ESSβ ≥ ESStarget

}
, (7)

where ESSβ represents the effective sample size at a temperature of β, N is the total
number of samples, and ESStarget is the target ESS. The algorithm proceeds with the new
temperature until the final target distribution (i.e., the posterior) is achieved. This adaptive
temperature selection scheme, guided by ESS, is a common feature of SMC. This enables
the efficient bridging of the gap between the prior and posterior while ensuring a diverse
set of samples.

2.2. Past Resampling

In the canonical formulation of SMC, the new particles are resampled from the pre-
vious generation of particles with probabilities proportional to their importance weights
given by Equation (4). However, this scheme exhibits several limitations. First, the number
of particles, N, of a generation needs to be large enough to effectively capture the character-
istics of the tempered distribution of the Equation (1). This effect is further exaggerated
in higher dimensions. Secondly, the ESStarget needs to amount to a significant fraction
of N (i.e., 80–99%) to suppress the high variance of the importance weights. Third, even
when the N and ESStarget are large, the resampled particles will include many copies of the
same particles. This requires running MCMC longer during the mutation stage to diversify
these particles.

To address these challenges without increasing the computational cost of the method,
we propose to resample particles from all past generations, instead of just the last one. We
refer to this modification of SMC as past resampling (PR). As the number of resampled par-
ticles is substantially lower than that of the particles of past generations, N′, the former are
effectively independent and do not include copies of the same particle. This addresses the
third challenges of the canonical approach. Furthermore, the target ESS, which determines
the convergence rate of the algorithm, can be significantly higher than in the canonical
formulation, addressing the first and second issues.

PR requires the computation of importance weights for the particles of all (or a subset
of) past iterations. In the tth iteration, the weights of the particles of the t′th iteration can be
written as:

wi
tt′ = Λtt′W̃

i
tt′ , (8)

where W̃i
tt′ are the normalized importance weights:

W̃i
tt′ =

w̃i
tt′

∑N
i=1 w̃i

tt′
, (9)
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where:

w̃i
tt′ =

pt(θt′)

pt′(θt′)
. (10)

The coefficients Λtt′ determine the influence of past iterations on the current one.
Generally, the further in the past t′ is, the less significant its influence. The estimation of
Λtt′ can be formulated as the variational calculus problem of maximizing the total ESS. The
solution of this problem leads to:

Λtt′ =
λtt′

∑t
t′=1 λtt′

, (11)

where:
λtt′ =

1

∑N
i=1
(
W̃i

tt′
)2 . (12)

In other words, the importance weights of the particles of the t′th iteration with respect
to the current tth iteration are adjusted by the normalized ESS given by Equation (11).
Equations (8)–(12) are related to the recycling scheme proposed by [17,18] and applied at
the end of the run. The main difference is that PR is applied to every iteration of SMC,
instead of just the last one. In practice, only the iterations with λtt′ > 10 are used to avoid
noisy contributions.

The weights of Equation (8) can be employed to design a lower-variance estimate of
the normalizing constant of pt(θ), which generalizes Equation (5):

Zt =
t−1

∑
t′=1

(
Λtt′Zt′

1
N

N

∑
i=1

w̃i
tt′

)
(13)

2.3. Preconditioning
2.3.1. Background

The mutation step of SMC typically involves the use of the MH algorithm. MH
comprises a general class of MCMC methods that generate samples, in the form of a
Markov chain, from the target distribution pθ(θ) by iterating a proposal and acceptance
step. In the proposal step, a new state θ′ is sampled from the proposal distribution qθ(θ

′|θ),
that is, conditioned on the current state θ in the Markov chain. In the acceptance step, the
new state is added to the Markov chain with a probability given by:

α = min
{

1,
pθ(θ

′)qθ(θ|θ′)
pθ(θ)qθ(θ′|θ)

}
(14)

If the new state is rejected, then the current state θ is added to the Markov chain instead
and the process is repeated until a sufficient number of samples have been collected. The
form of the acceptance probability of Equation (14) is designed to ensure detailed balance,
a sufficient condition for the Markov chain to have pθ(θ) as its invariant distribution. In
the case of SMC, the MH algorithm is employed during the mutation step targeting the
current tempered distribution pt.

The choice of a proposal distribution qθ(θ
′|θ) is crucial as it determines the overall

sampling efficiency of the method. Generally, a good proposal distribution needs to balance
exploration and exploitation, by generating states that are sufficiently different from the
current one while maintaining a high acceptance rate. A common choice for qθ(θ

′|θ) is
the normal distribution N(θ′|θ, C) leading to the RWM algorithm. The efficiency of RWM
can be substantially improved by setting C = 2.382/D × Σ, where D is the number of
dimensions and Σ is the covariance matrix describing the target distribution pθ(θ).

However, if the target distribution pθ(θ) is significantly non-Gaussian, then the simple
choice of qθ(θ

′|θ) = N(θ′|θ, C) is insufficient and a more sophisticated proposal distribution
is required. Designing advanced proposal distributions is an active field of research within
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the statistics community. The problem is further exaggerated in higher dimensions where
the 2.382/D factor leads to vanishingly small steps in parameter space. We argue that the
method of preconditioning coupled with the appropriate proposal distribution has the
potential to address both of these issues.

The basic idea behind preconditioning is to transform the target distribution pθ(θ)
into the simpler distribution pz(z) using a bijective transformation z = f (θ). The two
probability densities are linked through the following transformation:

pz(z) = pθ(θ)

∣∣∣∣det
∂ f−1(z)

∂z

∣∣∣∣ (15)

Sampling from pz(z) is generally easier than pθ(θ) due to its higher symmetry and
simpler geometry. For instance, one may choose z = f (θ) such that pz(z) is approximately
a standard normal distribution N (z|0, 1). The MH algorithm is trivially generalized to the
latent space of the preconditioning transformation with a proposal distribution qz(z′|z)
and an acceptance probability of:

α = min
{

1,
pz(z′)qz(z|z′)
pz(z)qz(z′|z)

}
(16)

2.3.2. Normalizing Flows

Normalizing flows (NFs) are a natural choice for the preconditioning transformation
z = f (θ). NFs are bijective transformations typically parameterized using a neural network
(NN) architecture. Generally, the forms of NN and NF have to be chosen carefully to main-
tain the reversibility of the transformation and the tractability of the Jacobian determinant
in Equation (15). Recent developments have led to flexible NFs that are easily trained using
samples from pθ(θ). Although not limited to this, NFs typically aim to map pθ(θ) to a
standard normal distribution N (θ|0,1D). The NF can be trained to approximate a certain
probability density by minimizing the forward Kullback–Leibler (KL) divergence as the
loss function:

L = − 1
N ∑ wi log p(θi) (17)

2.3.3. Preconditioned Crank–Nicolson

In principle, any MH method can be applied in the latent space of z targeting pz(z).
Refs. [12–14] utilized RWM, whereas [19] employed the No U-Turn Sampler (NUTS).
Despite their performance, those methods do not take full advantage of the symmetries
of pz(z).

Preconditioned Crank–Nicolson (pCN) provides a more suitable alternative [15,16].
Assuming that the target density can be decomposed as:

p(θ) ∝ L(θ)N (θ|0, Σ) (18)

where L(θ) is the likelihood function andN (θ|0, Σ) is the normal prior density, a new state
is proposed as follows:

θ′ =
√

1− ε2θ + εv (19)

where v ∼ N (θ|0, Σ) and 0 < ε < 1. In the limit that ε→ 1, θ′ is a sample from the prior,
whereas when ε→ 0, θ′ = θ. For values between 0 and 1, the proposed states shift towards
zero. For a weak likelihood function, θ′ is shifted along the direction of the gradient, leading
to higher acceptance rates. The acceptance criterion takes the form:

α = min
{

1,
L(θ′)
L(θ)

}
, (20)
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where the term corresponding to the prior density is missing, as the latter is already
included in the proposal.

The main limitations of pCN are the assumptions of a normal prior and of a weak
likelihood function. For pCN to be efficient, the prior density needs to dominate any con-
tributions from the likelihood, thus maintaining the symmetry of the normal distribution.
Preconditioned pCN (p2CN) allows us to bypass these difficulties. Given the approximately
standard normal target density pz(z), the p2CN proposal is:

z′ =
√

1− ε2z + εv , (21)

where v ∼ N (v|0, 1). The acceptance probability of the new state is:

α = min
{

1,
L̃(z′)
L̃(z)

}
, (22)

where L̃(z) = pz(z)/N (z|0, 1) is the pseudo-likelihood function, which reduces to the
proper target density pz(z) in latent space when multiplied with the pseudo-priorN (v|0, 1).

Unlike RWM, p2CN can scale to high dimensions. In fact, for a sufficiently precondi-
tioned target distribution, p2CN exhibits a non-zero acceptance rate for ε > 0, even in a very
high D. The efficiency of the method solely relies on the capacity of the preconditioning
transformation to map the target distribution to a standard normal density and the value
of ε.

2.4. Preconditioned Monte Carlo

PMC seamlessly integrates the SMC framework, PR, and p2CN into a comprehensive
algorithm, as illustrated in Algorithm 1. A noteworthy feature is the use of an NF as a
preconditioner. PMC is primarily characterized by three key hyperparameters. The first
is the ESS, which regulates the algorithm’s convergence rate, and is implicitly tied to the
number of beta levels. The second is the number of resampled particles, a value that
should ideally be lower than the ESS. The algorithm’s performance shows a relatively low
sensitivity to variations in this parameter, provided that the number of resampled particles
remains below half the ESS value. Lastly, the number of p2CN steps per iteration is set to:

M =
D
2
×min

(
1,

2.38/
√

D
ε

)3/2

(23)

where ε was adjusted at the beginning of each iteration to yield an acceptance rate of 40%.

Algorithm 1 Preconditioned Monte Carlo

1: input Number of particles N and desired ESS
2: t← 1, β1 ← 0, Z1 ← 1, {θk

1}N
k=1 ∼ π(θ)

3: while βt 6= 1 do
4: t← t + 1
5: βt ← solution to Equation (7)
6: compute weights

{
{wi

tt′}
t
t′=1

}N
i=1 using Equation (8)

7: compute evidence Zt using Equation (13)
8: train θ = f (u) on

{
{θi

t′ , wi
tt′}

t
t′=1

}N
i=1 using Equation (17)

9: {θ̃i}N
i=1 ← resample N particles from

{
{θi

t′ , wi
tt′}

t
t′=1

}N
i=1

10: {θk
t }N

k=1 ← propagate {θ̃i}N
i=1 according to Kt

(
{θi

t}N
i=1 ← {θ̃i

t−1}N
i=1 ; f

)
11: end while
12: return weighted samples

{
{θi

t′ , wi
tt′}

t
t′=1

}N
i=1 and estimate of the marginal likelihood Zt
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3. Results

To verify the sampling performance of our approach, we perform an ablation study
comparing PMC with PR and p2CN (PMC-PR-p2CN) to the following SMC variants: SMC
with PR and RWM updates (SMC-PR-RWM), SMC with no PR and RWM updates (SMC-
RWM), PMC with PR and RWM (PMC-PR-RWM), PMC with no PR and RWM (PMC-RWM),
and PMC with no PR and p2CN (PMC-p2CN). The combinations of SMC with pCN were
not included due to the low performance of pCN in the non-preconditioned setting. The
total cost of each method in terms of likelihood evaluations along with the estimate of the
logarithm of the marginal likelihood, logZ , subtracted from the exact value, are shown in
Table 1. In all cases, the variance of logZ was computed based on 20 independent runs.
The number of MCMC steps per iteration was determined using Equation (23) for p2CN.
In RWM, the proposal covariance λ2Σ was tuned to yield an acceptance rate of 23.4% and
the number of MCMC steps was set to D/2× [(2.38/

√
D)/λ]2.

For methods employing PR, we set the ESS target to 1500 and the number of resampled
particles to 500. When PR was not employed, the total number of particles was 2000 and
the ESS was 1500. A masked autoregressive flow (MAF) with six blocks of transformations
featuring 3× 128 hidden units was employed as the NF preconditioner [20]. The flow was
trained using the Adam optimizer with a learning rate of 10−3, until no further improve-
ment was observed in the validation loss function for at least 50 training iterations [21].
The training batch size was 1000 and the validation fraction was 30%. The same NF was
trained in all iterations without resetting its weights.

Table 1. Computational cost in terms of the number of likelihood evaluations and marginal likeli-
hood estimates.

Algorithm Rosenbrock-10 Sonar-61 Rosenbrock-10 Sonar-61
(Calls×106) (Calls×106) (∆logZ) (∆logZ)

PMC-PR-p2CN 0.11 0.32 0.09± 0.21 −0.08± 0.12
PMC-PR-RWM 0.23 2.31 0.18± 0.27 0.36± 0.69

PMC-p2CN 0.21 1.21 −0.33± 0.66 0.27± 0.38
PMC-RWM 0.48 6.41 −0.39± 0.72 0.30± 0.58

SMC-PR-RWM 0.62 4.20 0.15± 0.33 −0.18± 0.63
SMC-RWM 1.12 9.81 −0.28± 0.41 −0.32± 0.93

3.1. Rosenbrock Distribution in 10-D

To evaluate the performance of PMC in sampling strongly correlated target distri-
butions, we utilized the Rosenbrock distribution in 10-D, with a log-likelihood function
given by:

logL(θ) = −
D/2

∑
i=1

[
10(θ2

2i−1 − θ2i)
2 + (θ2

2i−1 − 1)2
]

, (24)

where D = 10, and a N (θ|0, 32 × 1D) is the prior density. The value of the marginal
likelihood for this example is logZ = −21.39, as computed using an extensive run and
verified using all methods. Figure 1 depicts the 2D marginal posterior sampled using PMC-
PR-p2CN and SMC-RWM. Although the other methods produced an indistinguishable
contour, they are not shown for the sake of clarity. As shown in Table 1, PMC-PR-p2CN is
the least computationally expensive algorithm, requiring an order of magnitude with fewer
likelihood calls compared to the other SMC/PMC variants. The values for the number
of likelihood calls per method shown in Table 1 demonstrate that both PR and p2CN
substantially improve the sampling efficiency. In terms of the estimate of the marginal
likelihood, PMC-PR-p2CN exhibits the highest accuracy and precision. Although less
significant than in the case of computational cost evaluation, both PR and p2CN aid in
reducing the uncertainty of the marginal likelihood estimate.
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Figure 1. Two-dimensional marginal posteriors of 10-D Rosenbrock (left) and 61-D logistic regression
with sonar data (right) as obtained using PMC-PR-p2CN (blue) and SMC-RWM (orange).

3.2. The 61-D Logistic Regression with Sonar Data

To demonstrate the favorable scaling of PMC with the number of dimensions, as
opposed to SMC/PMC variants employing RWM proposals, we used the 61-D problem of
logistic regression with sonar data [22–24]. In this case, the likelihood function is:

L(θ) =
N

∏
i=1

σ
[
yi

(
θ1 + xT

i θ2:D

)]
, (25)

where σ(t) = (1 + e−t)−1 is the sigmoid function, N is the number of datapoints, xi are
the predictor variables, and yi ∈ [−1,+1] are the labels. Following standard practice, each
predictor is re-scaled to have a mean of zero and a standard deviation of 0.5. The prior distri-
bution is π(θ1) = N (θ1|0, 202) for the intercept and π(θ2:D) = N (θ2:D|0, 52 × 1D−1) for all
other parameters. The value of the marginal likelihood for this example is logZ = −125.46.
Figure 1 depicts the 2D marginal posterior sampled using PMC-PR-p2CN and SMC-RWM.
Table 1 highlights that PMC-PR-p2CN is the most efficient algorithm from a computational
perspective, requiring significantly fewer likelihood calls than its SMC/PMC counterparts.
Table 1 also underscores the key role of both PR and p2CN in enhancing the sampling
efficacy, as evidenced by the number of likelihood calls per method. Furthermore, when
evaluating the marginal likelihood, PMC-PR-p2CN displays the highest accuracy and
precision. Similarly to the Rosenbrock example, PR and p2CN contribute to reducing the
estimate’s uncertainty of the marginal likelihood.

4. Discussion

In this study, we developed and thoroughly tested PMC, a novel variant of SMC.
Our key innovation is the incorporation of a PR scheme and p2CN updates in the PMC
methodology. The resulting method displayed remarkable efficiency, outperforming other
variants of PMC and conventional SMC in terms of total computational cost, measured
by the total number of likelihood evaluations. The use of p2CN enabled superior scaling
with the number of dimensions compared to RWM, as shown in the logistic regression
example. Furthermore, PMC demonstrated improved precision and accuracy in estimating
the marginal likelihood, a critical component of Bayesian model comparison.

The performance of PMC represents a promising stride forward in making Bayesian
computation more feasible in the physical sciences, particularly in scenarios where the
models are not easily differentiable and the gradient of the target posterior is intractable.
Our work lays the groundwork for more sophisticated computational tools for tackling
problems in the physical sciences. Looking to the future, we envision further refining
PMC by developing more advanced tuning procedures, such as determining the optimal
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number of MCMC steps per iteration. Additionally, we plan to undertake a comprehensive
comparison of PMC with nested sampling, a method widely adopted in astronomy and
cosmology. This will solidify the position of PMC within the Bayesian computational
toolkit and explore its potential to bring new insights into the physical world. PR, p2CN,
and new developments will be integrated in the pocoMC Python package version 1.0.0 [13]
available in https://pocomc.readthedocs.io, accessed on 16 July 2023.
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