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Abstract: Implantable microelectrodes arrays are used to record electrical signals from surrounding
neurons and have led to incredible improvements in modern neuroscience research. Digital signals
resulting from conditioning and the analog-to-digital conversion of neural spikes captured by micro-
electrodes arrays have to be elaborated in a dedicated DSP core devoted to a real-time spike-sorting
process for the classification phase based on the source neurons from which they were emitted. On-
chip spike-sorting is also essential to achieve enough data reduction to allow for wireless transmission
within the power constraints imposed on implantable devices. The design of such integrated circuits
must meet stringent constraints related to ultra-low power density and the minimum silicon area,
as well as several application requirements. The aim of this work is to present real-time hardware
architecture able to perform all the spike-sorting tasks on chip while satisfying the aforementioned
stringent requirements related to this type of application. The proposed solution has been coded
in VHDL language and simulated in the Cadence Xcelium tool to verify the functional behavior
of the digital processing chain. Then, a synthesis and place and route flow has been carried out to
implement the proposed architecture in both a 130 nm and a FD-SOI 28 nm CMOS process, with a
200 MHz clock frequency target. Post-layout simulations in the Cadence Xcelium tool confirmed the
proper operation up to a 200 MHz clock frequency. The area occupation and power consumption of
the proposed detection and clustering module are 0.2659 mm2/ch, 7.16 µW/ch, 0.0168 mm2/ch, and
0.47 µW/ch for the 130 nm and 28 nm implementation, respectively.

Keywords: neural spike sorting; digital integrated circuits; implanted ASIC; low-voltage; low-power

1. Introduction

In the last decade, there has been a growing interest in the development of implanted
neural interfaces for monitoring brain activity with very high temporal and spatial resolu-
tion. Implantable microelectrodes arrays, implemented in microelectromechanical system
(MEMS) technology, are used to record electrical signals from surrounding neurons and
have led to outstanding and innovative results in recent neuroscience research. These
electrodes are able to detect action potentials (APs) from individual neurons, which are
very important not only for studying individual neurons but networks of neurons in order
to understand how the activity of interconnected neurons results in higher-order functions
such as perception, understanding, movement, and memory [1–3].

In neural microsystems, neural signals, captured from MEMS microelectrodes, are
passed to the analog front-end chain, which is devoted to signal conditioning, and whose
first stage is a front-end amplifier, followed by an additional filter/amplification stage
that drives an analog-to-digital (ADC) converter. The overall bandwidth of the neural
recording interfaces typically ranges from 0.1 Hz up to 10 kHz. The high-frequency content
(about 200 Hz to 5000 Hz) is referred to as single unit action potentials (AP), while the
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low-frequency signal content (below about 200 Hz) is referred to as local field potentials
(LFP) [4].

This processing chain is replicated many times to achieve a multichannel acquisition
system, which is essential for monitoring several neurons belonging to different brain
regions. The information acquired through such neural microsystems can be used for the
prevention and treatment of many neurological diseases (such as epilepsy or Parkinson’s)
and in the so-called brain–machine–interfaces (BMI) [5,6]. Therefore, the system is com-
posed of a network of MEMS sensors which are devoted to the acquisition of neural signals,
known as “action potentials” or “spikes”, for the realization of implantable multi-electrodes
arrays (MEA). Then, the acquired very weak neural signals, with amplitudes in the order of
10 µV to 100 µV, are amplified and filtered before the A/D conversion process takes place
because different cellular mechanisms are responsible for different frequency components
of the recorded signals, as mentioned above. This chain is usually replicated several times
in order to obtain a multi-channel system able to monitor wide brain regions and collect
information from a high number of neurons. Communications between neurons happen
through the aforementioned spike signals. Each microelectrode captures neural activity
from multiple surrounding neurons. These extracellular recordings are called multi-unit
activities because they involve spikes from different source neurons and are useful only in
specific cases. However, several applications, ranging from clinical diagnostic and medi-
cal technology to BMI, which are used to control external devices such as neural robotic
prosthesis and so on, require single-unit activity, that is, classification of spikes based on
source neurons from which they were emitted. The process of classifying spikes with the
corresponding source neurons, namely, the process of separating multi-unit activity into
groups of single-unit activity, is called “spike sorting”, and it consists of three main phases:
“Detection and Alignment”, “Features Extraction”, and “Clustering” [7–12].

Reducing the output sorting data rate while minimizing the latency between spike
detection and spike classification is the primary objective of real-time spike-sorting solu-
tions. This is due to the fact that stimulating neurons during certain temporal windows is
necessary to cause synaptic change. Different types of synaptic modifications are produced,
for instance, by stimulation that occurs 20 ms before or after pre-synaptic activation [7].
Therefore, in closed-loop BMI applications, the sorting latency is a critical consideration.

Hardware design solutions to implement the different algorithms for each task of the
spike-sorting chain are currently being investigated in order to obtain optimal performance
for the entire neural spike-sorting system. Several techniques and digital architectures,
able to achieve a reduction of hardware resources, have been presented in the literature in
order to process a higher and higher number of neurons with minimal hardware resources
and power consumption [7–12]. Indeed, integrated circuits of such complexity have to
satisfy stringent requirements related to power density since it has been demonstrated
that the power density has to be less than 277 µW/mm2 to be safe because high power
values generate heat that damages the surrounding brain tissue [13]. Another important
requirement is to avoid circuits with heat flux over 40 mW/mm2, which may damage
the brain tissue [14]. Finally, the minimization of the silicon area is very important for
implantable devices devoted to the processing of signals coming from a larger and larger
number of neurons.

Moreover, real-time processing of neural data is essential to control neural robotic ap-
plications and for several experiments which cannot be performed otherwise. Sorted results
are preferably wirelessly transmitted to avoid issues such as risk of injury and infection
as well as the degradation of the signal quality. For instance, among the previous spike-
sorting digital signal processing (DSP) cores proposed in the literature, a single-channel
real-time spike-sorting chip with a silicon area of 2.57 mm2 and a power consumption of
2.78 µW from a 1.16 V power supply has been presented in [7]. A 16-channel spike-sorting
chip, which occupies 0.07 mm2 of area per channel (i.e., a total of 1.23 mm2) with a power
consumption of 4.68 µW per channel (i.e., a total of 75 µW) from a 0.27 V supply voltage
implemented in a 65-nm CMOS process, has been reported in [12].
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From the perspective of the design of integrated circuits dedicated to these applica-
tions, the miniaturization of these systems presents many challenges. Indeed, modern
neural recording microsystems involve different trade-offs between the area and power
consumption constraints on one side, and performance requirements in terms of accuracy,
speed, and latency of the sorting operations on the other side.

The aim of this work is to develop the processing chain of a CMOS-integrated cir-
cuit for implantable neural spike-sorting systems, able to operate with ultra-low power
consumption as well as with minimum silicon area footprint. The focus is oriented on a
fixed-point digital architecture for the detection and clustering phases in which the tradeoff
between performance parameters (such as accuracy, maximum number of clusters, and
maximum number of waveforms to be stored) and silicon area and power consumption
constraints has to be optimized.

The paper is organized as follows. Section 2 summarizes the background of spike-
sorting systems and discusses the selection of the algorithms which have been implemented.
Section 3 provides simulation and synthesis results both for detection and clustering block,
which allow us to identify the digital architecture to be implemented. In Section 4, the
digital architecture and its hardware implementation on two different CMOS processes is
described, and finally, Section 5 is devoted to the conclusion.

2. Background and Algorithms Selection

The main blocks of a typical spike-sorting signal processing chain are shown in
Figure 1, where the different phases are highlighted. The digitized neural signals, available
at the output of the ADC block, are sent through the “Detection and Alignment” module,
where spikes are extracted from background noise and aligned to a common temporal
reference point relative to the spike waveform.
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These aligned spikes are sent to the “feature extraction” module, where the latter are
processed to extract a set of features of the spike shape to allow for a better separation of
the different spike classes. At this point, some sort of dimensionality reduction process
takes place, whose target is the identification of feature coefficients that best separate spikes.
More specifically, starting from all the samples used to represent the spike waveform,
the most discriminative features are extracted, thus reducing the dimensionality of the
neural waveform and allowing for a simpler discrimination process between the different
spikes. Finally, based on the extracted features coefficients, spikes are mapped into different
groups associated to the different neurons; this process is known as “clustering”. The
result of the whole process is the train of spike times for each neuron, namely, the desired
single-unit activity.

Accurate selection of the most suitable state-of-the-art algorithms for each of the main
tasks in the spike-sorting process is crucial. Indeed, algorithms directly affect hardware
resources, and consequently, different trade-offs are involved, principally in terms of
silicon area and power consumption, bearing in mind that another essential factor lies in
the accuracy of the results that can be achieved with a given type of algorithm, which,
among other things, has to be unsupervised and real-time. Moreover, neuronal activity
produces a dynamic environment; thus, in order to identify clusters of arbitrary shape and
size, adaptability is another important characteristic. Therefore, complexity/accuracy of
algorithms must be taken into account in order to find the optimal trade-off.
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2.1. Detection Strategies

The detection phase is very critical, and since it is the first step in the processing of
the neural spikes, it has to be performed with high accuracy. Indeed, the aim of this task
is to discriminate the neural spike signals from the background noise. Moreover, since
neuronal activity produces a dynamic environment, the detection algorithms have to be
able to overcome non-ideality issues, such as non-Gaussian noise, non-stationarities, and
overlapping spikes.

There are different thresholding methods for the detection phase [15–17]:

• Absolute value.
• Non-linear energy operators (NEOs):

# Conventional NEO;
# KNEO;
# Smoothed NEO (SNEO).

The absolute value technique performs better than applying a simple thresholding
technique, but it is still weak in handling different SNR scenarios and other non-idealities
such as non-Gaussian noise. The non-linear energy operators are very attractive techniques
with which to process the neural data coming from the ADC in order to emphasize the
high-frequency and high-energy content (related to neural spikes) and to attenuate the
low-frequency and low-energy content (related to noise). Indeed, the first refers to the
presence of a spike signal which is characterized by a rapid variation in the time domain of
the waveform, which is a high-frequency event in the frequency domain. Moreover, the
energy of the spike is higher than the energy of the noise; therefore, these techniques are
very helpful for detection purposes. In this context, by defining ψ[x(n)], the output of the
conventional NEO method applied on the current sample x(n), the following formulation
can be defined [17]:

ψ[x(n)] = x2(n)− x(n + 1)x(n − 1). (1)

The threshold can be computed as a simple average on the NEO waveform, weighted
by a constant C to be found empirically from the processing of different datasets [16].

THR = C
1
N ∑N

n=1 ψ[x(n)] (2)

The KNEO method is very similar to the conventional NEO, except for the k parameter
used as shift factor; indeed, in the standard NEO, k = 1, but in the general case, any value
of k can be chosen. The formulation is very straightforward, and with the same convention
used before, the output of the KNEO processing can be defined as [16]

ψK[x(n)] = x2(n)− x(n + k)x(n − k), (3)

where k can be any integer value (coherent with the application). The thresholding method
is the same as the NEO.

The SNEO is based on the application of a smoothing window to the neural data pro-
cessed with the KNEO method. In particular, once the KNEO is performed, a convolution
of the entire sequence with a suitable filter window is performed. The approach can be
defined as [16]

ψSNEO[x(n)] = ψK[x(n)] ⊗ w(n), (4)

where ψK represents the output of the KNEO process, and w(n) is a given filtering win-
dow selected with a proper length and type (for instance, a Hamming window of length
25 samples). The thresholding technique is selected to be the same as the other NEO
variants, and it is reported in the following equation [16]:

THR = C
1
N ∑N

n=1 ψSNEO[x(n)]. (5)
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In this work, the focus is on the non-linear energy operator algorithm and its variants
because of their simple hardware implementation (which is suitable for applications with
stringent area and power consumption requirements) and their ability to guarantee good
detection accuracy. This point will be better assessed in the next section, where the three
NEO variants will be compared both in terms of detection accuracy and hardware resources.

2.2. Features Extraction Approaches

The step of feature extraction within the spike-sorting system is used in order to select,
among all the samples collected to represent the spike waveform, the more discriminative
ones, which are used to obtain a sort of dimensionality reduction of the data, to be used in
the following clustering phase. The main features extraction approaches adopted in the
literature are [18] as follows:

• Principal component analysis (PCA);
• Wavelet transform (WLT);
• Discrete derivatives (DD);
• Samples windowing (SW).

In the PCA technique, the signal samples are processed in order to build the orthogonal
basis (i.e., the principal components (PC)), which are used to address the directions in the
data with the largest variation. This orthogonal bases are calculated through the eigenvalue
decomposition of the covariance matrix of the data and then each spike is represented with
coefficients [18].

The wavelet transform approach is used to decompose the signal into shifted and
scaled version of a so called “wavelet”; this method, unlike the Fourier analysis, which
uses decomposition of the signal through a sine wave, is able to detect abrupt changes in
the signal which cannot be appreciated with sinusoidal decomposition. Indeed, a wavelet,
unlike a sine wave, is a rapidly decaying wave-like oscillation. There are different types
of “mother wavelet”, each with different shapes in order to select the one that best fits the
particular changes in the signals under analysis [18].

The DD method is based on the computation of the slope at each sample point with
different time scales:

ddδ[n] = x[n]− x[n − δ] , (6)

where δ is the time shift used for the processing and can be an integer, like the following:

δ =


±3,±5

±1,±3,±7
±2,±4,±6

. (7)

The samples windowing approach simply involves the selection of a window of Nspk
samples of the signal waveform around the peak identified with the NEO operator. This
last technique can be successfully applied when adopting the OSort clustering algorithm, as
in [7], and provides the advantage that the average of each cluster is itself a spike waveform
representing the whole cluster.

2.3. Clustering

Clustering, in the general meaning of the word, is related to the identification of
common characteristics of the data within a particular set and it is very widely used in
the field of data science to analyze very large datasets. In particular, different data are
evaluated in order to separate them into the corresponding membership groups. In the field
of neural spike sorting, only some subsets of this type of algorithm are used to separate the
multi-unit activity into single-unit activities. These single units are a better approximation
of neuronal activity than unclustered data. The spike analysis is heavily dependent on
the clustering phase which allows us to obtain the separation of groups of neurons based
on the spatiotemporal behavior of the single spike signal. One of the most discriminative
characteristics of choosing one clustering algorithm rather than another one is the possibility
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to perform it in a real-time environment. Indeed, not all the clustering algorithms can be
used in real-time (unsupervised) applications, since some of them require the knowledge
of some information before the scenario can be analyzed and processed. The latter are
called offline or supervised, and in the context of neural spike-sorting systems, dedicated
to real-time processing they cannot be used. Clearly, another key factor is the classification
accuracy that can be reached with a given type of algorithm, and in this respect, the offline
algorithms are most attractive.

Clustering algorithms are categorized based on the nature of their working mechanism,
such as partitional, hierarchical, probabilistic, graph-theory, fuzzy logic, density-based,
and learning-based. For a complete comprehension of each of the latter, the reader can
refer to [19–33].

In order to choose the most suitable algorithm for our hardware implementation, we
analyzed the literature with a particular focus on algorithms suitable to be implemented in
real time. The results of this literature survey are reported in Table 1, where a comparison of
the key parameters involved in the selection phase of the clustering algorithm is provided.
Data summarized in Table 1 have been extracted mainly from [18,24,25,29,30].

Table 1. Comparison of clustering algorithms commonly used in spike-sorting systems.

Clustering Algorithm Accuracy Complexity Autonomous Training
Phase

K-Means [24,25] High Medium No Yes

OSort [24–30] Medium Low Yes No

Self-organizing maps [24] High Medium Yes Yes

Support Vector Machine [24] High High No Yes

Template Matching [18] High Medium Yes Yes

Binarized Neural Network [29] High Medium Yes Yes

The OSort algorithm was chosen for our implementation because it is able to work
in real time and its hardware implementation is much simpler than the other machine
learning implementations that have been recently presented.

Osort is a very attractive approach since its working mechanism is very intuitive and
simple. It is a clustering algorithm used in real-time application which uses an iterative
process based on a comparison of “distances” between the extracted features or the time
domain, windowed, spike waveforms. In fact, it can work properly with or without an
explicit feature extraction process; indeed, it can also be used directly to process a window
of Nspk samples of the dataset (SW feature extraction approach).

The algorithm flow graph is shown in Figure 2. The incoming spike waveform is used
as input, and the Euclidean distance is calculated between the incoming spike waveform
with samples s(n) and the mean waveform of the existing clusters with samples c(n):

d = ∑
Nspk
n=1 [s(n)− c(n)]2, (8)

where Nspk represents the number of samples in the spike window. The parameter “d” is
calculated for all the available existing clusters (clearly, if no clusters have been generated
yet, the spike is assigned to the first generated one, and it coincides also with the mean
value of the cluster since no other spikes are present within the cluster). If more clusters
are present, different Euclidean distances will be calculated, and the minimum ones are
used to be compared with a given threshold parameter THR, extracted as the variance of
the noise of the dataset.

When a given spike is assigned to a given cluster, the mean value of the latter will be
updated with the information contained in the new spike, and the updating of the mean
value is performed according to the following equation:
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c′(n) =
(N − 1)c(n) + s(n)

N
, (9)

where N defines the number of spikes present in the particular cluster. When this process is
terminated, a further check is performed in which the distance “k” between the generated
clusters is also computed in order to verify if some clusters can be merged together. If,
again, the minimum one is less than the same threshold, then the clusters can be merged;
otherwise, the algorithm starts again with the first step through an iteration process that
ends only when all the spikes have been processed.
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3. Simulation Framework and Processing Chain Definition
3.1. Simulation Datasets

The datasets used for simulation purposes have been obtained from the University
of Leicester website [34], where simulated datasets that have been widely used in the
evaluation of spike-sorting algorithms are available. These synthetic datasets have been
generated by adding spike waveform templates to background noise of various levels, and
the different datasets have been generated using different spike templates. Examples of
waveforms from three different datasets and two different noise standard deviations are
reported in Figure 3.
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3.2. Automatic Threshold Selection

In our simulation framework, a way to handle the selection of the optimal threshold
to be used for online processing is adopted. This is also very useful in evaluating the
different detection approaches with respect to a realistic environment in order to know
where and when a detection failure occurs. The proposed approach, for the first part of
the implementation, is similar to the one presented in [15], and in choosing the optimal
detection threshold, it consists of different steps:

• Perform different iterations by varying the threshold from 0 to max (ψ[x(n)]) and plot
a graph for the number of detected spikes;

• Calculate and plot the gradient of the number of detected spikes;
• At the point where the number of detected spikes will stop changing drastically, there

will be a drop in the gradient curve;
• Find the peak in the gradient graph.

It has to be noted, however, that as stated in [15], the peak of the gradient does not
always correspond to the optimal point for the threshold selection, and this is due to the fact
that the detection process has to cope with different SNR scenarios and other non-idealities.
Therefore, starting from this peak, the optimal point should be sought in the next few
points of the gradient curve. In this context, we propose a way to select the optimal point.
Indeed, denoting the true times of the spike events which are available from the synthetic
datasets with tSreal , and defining the times of the simulated spike events (which are the
actual times for which the framework has detected a spike) with tSactual , their difference
can be used as a metric to be minimized. More specifically, the optimal threshold can be
defined as the one for which the above metric is minimized:

ThrOpt,i → min
i
(tSreal − tSactual). (10)

Indeed, both tSreal and tSactual are 1-D arrays whose number of elements is the same
as the number of samples of the detected spikes. By performing the difference between
them, another array containing the corresponding difference can be obtained. This array is
computed for each threshold used, and the index i is used to identify the threshold value
selected (extracted from the gradient curve) in the framework. The index corresponding to
the minimum distance between the spike times is the one related to the optimal threshold.
The result of this process can be observed in Figure 4, where the optimal threshold value
is found after four iterations, and with this value, the real and actual spikes times are
almost overlapped.
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3.3. Detection: Simulation and Synthesis Results on the Different NEO Operators

In this subsection, the simulation results achieved with the different spike detection
algorithms based on the NEO and its variants are described. In particular, the comparisons
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are based on the accuracy results obtained with the three techniques discussed in Section 2.1.
The accuracy formulation can be obtained by using the definition of the probability of
detection (PDet) and the probability of false alarm (PFA):

PDet =
TP

TP + FN
, (11)

PFA =
FP

TP + FP
, (12)

where TP, FP, and FN are the true positive, the false positive, and the false negative,
respectively. In this way, is possible to define the accuracy metric as

Accuracy =
PDet

PDet + PFA + (1 − PDet)
. (13)

In Tables 2–5, the different accuracy results for the available datasets are reported.
The numbers in the name of the dataset (such as, for example, 01 in the dataset Noise_01)
are related to the noise standard deviation and therefore to the SNR of the waveform; the
higher the number, the lower the SNR. Normalized noise level ranging from 0.05 to 0.2 are
equivalent to a signal-to-noise ratio (SNR) range decreasing from about 16 to about 3 [18,34].
The above tables show that the best results can be achieved with the SNEO approach over
a wide range of SNR values and different dataset scenarios; although, as expected, the
performance degrades at low SNR for all the simulated methods, the SNEO technique can
achieve better results with respect to the other NEO variants. These improvements can be
related to the filtering process involved in the SNEO by exploiting a smoothing window on
the neural data.

Table 2. Accuracy results for dataset “C_Easy1”.

Noise_01 Noise_015 Noise_02 Noise_025 Noise_03

SNEO 99.72% 97.95% 95.22% 93.57% 87.94%

KNEO 96.26% 95.83% 93.54% 91.68% 87.08%

NEO 95.83% 95.12% 93.48% 91.55% 82.90%

Table 3. Accuracy results for dataset “C_Easy2”.

Noise_005 Noise_01 Noise_015 Noise_02

SNEO 96.27% 97.59% 97.62% 96.05%

KNEO 92.50% 91.05% 92.54% 91.84%

NEO 91.57% 90.01% 91.04% 91.00%

Table 4. Accuracy results for dataset “C_Difficult1”.

Noise_005 Noise_01 Noise_015 Noise_02

SNEO 96.05% 96.13% 96.44% 96.21%

KNEO 91.12% 90.65% 90.25% 91.74%

NEO 90.81% 89.97% 89.83% 90.99%

Table 5. Accuracy results for dataset “C_Difficult2”.

Noise_005 Noise_01 Noise_015 Noise_02

SNEO 96.27% 97.55% 95.40% 95.63%

KNEO 92.50% 90.01% 90.63% 90.87%

NEO 91.57% 89.65% 90.01% 90.61%
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The configurations used for the different techniques are the ones that can lead to the
best achievable accuracy for a certain technique. Therefore, different combinations of “K”
and “C” parameters are used, and in statistical terms, the “best” values are found for

6 ≤ C ≤ 8, (14)

and
3 ≤ K ≤ 6. (15)

Finally, the corresponding hardware resources needed to implement the different
detection techniques are reported in Table 6 after synthesis via the field-programmable gate
array (FPGA), 130 nm, and 28 nm CMOS processes. Both the FPGA and application-specific
integrated circuit (ASIC) hardware resources estimations show that all the tested tech-
niques are very prone to be implemented into synthesizable digital hardware architectures,
although the SNEO variant requires the highest area since it involves the additional step of
the smoothing window process.

Table 6. Synthesis results for the different energy operator detection algorithms on Xilinx Artix 7
FPGA, CMOS 130 nm, and 28 nm standard-cells library.

Xilinx Artix 7
FPGA

ASIC 130 nm
@FCK = 200 MHz

ASIC 28 nm
@FCK = 200 MHz

LUT FF DSP Area (µm2) Area (µm2)

SNEO 321 0 24 114,548 7268

KNEO 52 69 2 26,274 1685

NEO 4 32 2 18,527 1167

The analysis of simulated accuracy and resources usage reported above suggests that
the simple NEO allows us to achieve the best trade-off between accuracy and hardware
resources usage, and it has been chosen for our hardware implementation.

3.4. Features Extraction and Clustering: Simulation Results on the OSort Clustering with DD and
SW Features

We also exploited the simulation framework to compare two different features ex-
traction approaches; the DD and the SW techniques were applied to the OSort clustering
algorithm. More complex approaches, such as PCA and WLT, have not been considered
because the main aim of this work was to develop an ultra-compact processing chain.

In Table 7, the clustering accuracy is calculated for different datasets (first column),
considering as input both the features generated through the DD approach (second column)
and the waveforms samples windowed through the SW technique (third column). The
accuracy is calculated taking into account how many spikes are present in each cluster
compared with the true number of spikes obtained from the simulator datasets. The
accuracy results in Table 7 show that the increase in the level of noise leads to a drop in the
accuracy of the sorting, as expected. Another outcome from these simulations is that the
value of δ in the DD approach has to be changed across the different datasets to achieve
good results (Table 7 reports accuracy data for the best choice of δ for each dataset), whereas
the accuracy using the SW approach is more reliable. For this last reason, we have chosen
the SW strategy for the hardware implementation. Another important advantage of using
the waveforms samples for clustering purposes is that in this way, the average of each
cluster in the OSort algorithm corresponds to a cluster-representative spike waveform.
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Table 7. Accuracy results for clustering process with discrete derivatives and samples windowing as
features extraction approaches.

Dataset Clustering Accuracy (%)
(Discrete Derivatives)

Clustering Accuracy (%)
(Samples Windowing)

δ: ±3, ±5 SW: 32 Samples

C_Easy1_noise005 94.12 93.70

C_Easy1_noise01 95.76 95.21

C_Easy1_noise015 89.96 94.24

C_Easy1_noise02 75.80 83.22

C_Easy1_noise025 54.85 70.08

C_Easy1_noise03 41.40 59.17

δ: ±1, ±3, ±7 SW: 32 Samples

C_Easy2_noise005 95.13 93.41

C_Easy2_noise01 94.98 91.84

C_Easy2_noise015 86.73 82.01

C_Easy2_noise02 58.39 53.65

δ: ±2, ±4, ±6 SW: 32 Samples

C_Difficult1_noise005 94.73 91.80

C_Difficult1_noise01 92.75 74.06

C_Difficult1_noise015 85.12 73.09

C_Difficult1_noise02 71.56 72.28

4. Implementation of Real-Time Detection and Sorting Chain

The proposed architecture for the neural spike detection and sorting channel is re-
ported in Figure 5. The signal conditioning block within the analog front-end is used for
amplification and filtering of the neural signals taken from the MEMS microelectrode array,
which are then converted into the proper binary format by the ADC block for subsequent
digital processing. The digitized neural spikes are passed to the digital processing chain
for detection and alignment operations and are then sent to the spike-sorting unit through
a windowing module. The data flow from the ADC to the digital blocks is managed by
the control and memory unit block. More specifically, the control and memory unit has in
charge the generation of the signals controlling the ADC conversion, the optional storing
of all the incoming waveforms (if needed), and the management of detection and sorting
operations within the digital processing chain.

The operations of NEO detection, alignment, and samples windowing are performed
in the first part of the digital processing chain. NEO is chosen because it involves less
hardware resources and enough accuracy of detection compared to other NEO variants
which are similar in terms of accuracy but require a little bit more resources. To minimize
the area footprint, a window of 32 samples of the detected and aligned spikes is sent to the
OSort unit, as explained in Section 3.

This architecture has been designed in order to enable the simultaneous process-
ing of several channels, which has now become mandatory for future neural recording
applications [31,33].

It has to be noted that when operating in real-time, the OSort algorithm should
continue to accept incoming identified spikes in order to compute fresh cluster averages
and perform cluster merger checks. Using a queue to hold all recently discovered spikes
is one way to solve the problem, but doing so would need a significant amount of silicon
area. As an alternative, we propose to compare incoming spikes to the pre-existing clusters
while simultaneously performing cluster merging and averaging.
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The proposed digital clustering channel is made up of the following blocks:

• Euclidean distance;
• Compare unit;
• Average logic computation;
• Average memory to store the average waveform of a given cluster.

The “Euclidean distance” block is used to compute the Euclidean distance, already
described in (8); it is designed as a simple accumulator which accumulates the results
between the squared distance among the samples of the spike and the samples of the
actual spike average, which is representative of the cluster mean waveform and stores
it in the average memory. This operation is replicated a number of times equal to the
number of clusters present in the memory. The proposed architecture is thought to handle
a maximum of eight clusters. This distance is passed to the “Compare unit” block, which
contains several flip-flops (FFs) used as registers to store the minimum distance among all
the computed distances (one for each cluster); a comparison between the next distance and
the actual stored is performed, and if the new distance is less than the actual one, then it
will be stored into the FFs, overwriting the past data.

The “Compare unit” then sends to its output the cluster ID (a simple number from
0 to 7) for which the distance is the minimum one. The ID is used to perform the write
operation in the proper cluster address into the “Average memory” unit, which takes as
input the new average computed between the old average and the actual spike, present at
the input of the digital core sorter and maintained in a temporary file register for all the
time needed to complete the operations. At the end of the process, the classified spikes can
be stored into the proper cluster address region related to the cluster ID computed by the
compare unit. The merging step of the OSort algorithm is performed as in [7].

The main design parameters assumed for the implementation of the proposed spike-
sorting module are as follows:

• Data Size: 8 bits.
• Memory for average waveforms: 256 locations (8 clusters with 32 samples per spike

window) of 8 bits of data.
• Accumulator size: 24 bits.
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The choice of a data size of only 8 bits is due to the main aim of this work, which is an
aggressive reduction of the area footprint of the spike-sorting module. For this purpose, it
has to be noted that the effective number of bits (ENOB) of most ADCs for neural recording
applications is typically limited to 8–9 bits [34].

Due to its limited size, and to allow for fully parallel access to all locations, the
“Average memory” module has been implemented with conventional D flip-flops from the
standard-cell library.

The synthesis and place and route of the proposed digital processing chain have been
performed using the Cadence Genus Synthesis Solution and the Cadence Innovus tool,
respectively. The spike sampling frequency is 24 kHz, and each detected spike is saved as a
32 samples window, namely, a window of 1.3 ms duration.

The digital verification of the whole architecture was carried out by developing a
dedicated SystemVerilog test for each designed block and performing a simulation in
the Cadence Xcelium tool. Then, the whole architecture was verified with a bit true test
between the RTL and the Simulink architecture developed through SystemVerilog direct
programming interface (DPI) generation, which is an interface between SystemVerilog
and programming languages such as C. The HDL verifier can generate SystemVerilog DPI
components from MATLAB code or Simulink models for use in ASIC verification [35].
Finally, post-layout simulations (PLS) were performed.

The implementation has been carried out in two different technologies: a well-
established bulk 130 nm CMOS technology; and a recently developed 28 nm fully depleted
silicon on insulator (FDSOI) CMOS process. A summary of area requirements is reported
in Table 8, in which the results of the synthesis have been reported for detection with the
SW feature extraction module (second column) and for the clustering block (third column).

Table 8. Summary of area occupation of the single channel of the proposed architecture in 130 nm
and 28 nm CMOS technology from the synthesis tool.

Technology Detection + SW
Area [mm2]

Clustering
Area [mm2]

130 nm 0.01853 0.13663
28 nm 0.00118 0.00862

The area estimation is very low; indeed, only about 0.00862 mm2 is reported for the
single channel, and a clock frequency of about 200 MHz can be reached.

Detection and clustering blocks have then been placed and routed in the Cadence en-
vironment using the Innovus tool and referring to both the 130 nm and 28 nm technologies.
The layout of the single channel digital processing chain implemented within the Cadence
Innovus place and route tool in the 28 nm technology is reported in Figure 6, showing an
area footprint as low as 125 µm × 125 µm.

Since the proposed implementation can be operated with a clock frequency as high as
200 MHz, which is about 8333 times the typical sampling frequency of neural recording
systems, the proposed clustering unit can be time shared between several neural recording
channels. In this case, the main design constraint would be the memory to store all the
neural spikes coming from the different channels. For example, to save a maximum of
16 waveforms made up of 32 8-bit samples for a maximum of eight clusters, 32 kbits of
memory for each channel are needed. If an 8192-channel sorting is considered, the clock
frequency has to be set at 196.6 MHz, which is compatible with the proposed design, but
the memory requirement to store all the spike waveforms would be 256 Mbits, which is
clearly not compatible with conventional on-chip integration.

To save this huge amount of memory, two possible strategies can be devised. The first
approach, which we have considered in our work, is to store on chip only the average wave-
forms of the spikes, with the associated cluster IDs and spike times providing the address
of the clustered spikes to an optional external memory. Another approach, which could be
explored in future research, would be to consider time-division-multiplexed systems, such
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as the high-density CMOS neural probes [36–40], which allow for the recording of a large
number of neurons at single-cell resolution. For example, referring to the system in [38], the
ADC directly converts 1024-time-division-multiplexed channels with a sampling frequency
in the range of 24.6 MHz, allowing for the exploitation of the high clock frequency achieved
by the proposed spike-sorting module in a simpler manner.
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A comparison against the state of the art is reported in Table 9, showing how the
proposed digital processing chain implemented in the 28 nm technology achieves the
lowest silicon area footprint and power consumption per channel.

Table 9. Comparison with the state of the art.

Reference Process [nm] Detection Alignment Clustering Voltage [V] Power/Ch
[µW/Ch]

Area/Ch
[mm2/Ch]

This Work 130 NEO Peak OSort 1.2 7.16 * 0.2659 **

This Work 28 NEO Peak OSort 0.9 0.47 * 0.0168 **

[12] 65 AV Slope OSort 0.27 4.68 ** 0.07 *

[31] 130 NEO No
need DT-based 1.2 0.75 ** 0.023 ***

[32] 180 Sthr&
NEO Peak CSort 1.8 148 ** 2.7 *

[18] 180 AV Peak Correlation 1.8 1.74 * 0.047 **

[7] 32 NEO Peak OSort 1.16 2.78 * 2.57 **

* Implemented chip; ** post-layout estimation; *** post-synthesis estimation.

The closest competitor with the proposed spike-sorting module is the implementation
in [31] based on the binary decision tree (DT) clustering approach. Considering a technology
scaling from a 130 nm process to a 28 nm process, the DT spike-sorting module would
outperform the proposed one in terms of area and power consumption per channel. It has
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to be noted, however, that the area and power consumption estimations provided in [31]
are based on post-synthesis results.

5. Conclusions

In the first part of this work, a comparison and an evaluation of the most used
detection algorithms is performed, and in particular, the focus is oriented towards the
energy operator type, which are very prone to be used in this field of application since
they require very low hardware resources. Indeed, their simple hardware implementation
and its capacity to achieve high accuracy results are very attractive in the context of neural
spike detection applications. Based on the information acquired during the simulation
phase, the SNEO technique seems to be the best candidate for the detection step and can be
used in future design of CMOS integrated circuits for an implantable neural spike-sorting
system framework. However, in this work, the simple NEO algorithm is chosen since the
difference in terms of accuracy results does not justify the extra use of area resources.

Then, two features extraction approaches applied to the OSort algorithm have been
considered in the simulation phase. Since the OSort clustering technique using the SW
features has demonstrated a good accuracy with the most commonly adopted datasets, and
since its implementation is the simplest one, it has been chosen for the implementation of
the digital processing chain developed in this work.

The implementation results have demonstrated an area occupation and power con-
sumption of the proposed detection and clustering module of 0.2659 mm2/ch, 7.16 µW/ch,
0.0168 mm2/ch, and 0.47 µW/ch for the 130 nm and 28 nm implementation, respectively.
The comparison against the state of the art has shown how the proposed spike-sorting
module achieves the lowest silicon area footprint and power consumption per channel. In
fact, even if the proposed architecture moves some functions in the control and memory
unit to simplify the implementation of the clustering module, this results in a strongly
reduced area and power consumption when several digital channels have to be elabo-
rated. The achieved low area occupation is also related to the adopted data size of only
8 bits, which, even if lower than the one adopted in other works, is acceptable for neural
recording applications due to the limited ENOB (in the range of 8–9 bits) of ADCs used in
such systems.

The proposed spike-sorting module could be exploited in time-division-multiplexed
systems, which, in the near future, will rely on ADCs able to convert 8192-time-division-
multiplexed channels directly with a sampling frequency in the range of 196.6 MHz and will
allow us to exploit, fully, the 200 MHz clock frequency achieved by this implementation.

Author Contributions: Conceptualization, A.V. and G.S.; methodology, G.S.; software, A.V. and
R.C.; validation, A.V., R.C. and G.S.; formal analysis, A.V.; investigation, A.V.; resources, A.V.;
writing—original draft preparation, A.V.; writing—review and editing, G.S.; supervision, G.S.; project
administration, G.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Steinmetz, N.A.; Koch, C.; Harris, K.D.; Carandini, M. Challenges and opportunities for large-scale electrophysiology with

Neuropixels probes. Curr. Opin. Neurobiol. 2018, 50, 92–100. [CrossRef]
2. Hong, G.; Lieber, C.M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 2019, 20, 330–345. [CrossRef]

[PubMed]
3. Urai, A.E.; Doiron, B.; Leifer, A.M.; Churchland, A.K. Large-scale neural recordings call for new insights to link brain and behavior.

Nat. Neurosci. 2022, 25, 11–19. [CrossRef] [PubMed]

https://doi.org/10.1016/j.conb.2018.01.009
https://doi.org/10.1038/s41583-019-0140-6
https://www.ncbi.nlm.nih.gov/pubmed/30833706
https://doi.org/10.1038/s41593-021-00980-9
https://www.ncbi.nlm.nih.gov/pubmed/34980926


Chips 2024, 3 47

4. Reich, S.; Sporer, M.; Ortmanns, M. A chopped neural front-end featuring input impedance boosting with suppressed offset-
induced charge transfer. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 402–411. [CrossRef]

5. Lebedev, M.; Nicolelis, A. Brain-Machine Interfaces: Past, present and future. Trends Neurosci. 2006, 29, 536–546. [CrossRef]
[PubMed]

6. Harrison, R.R. The design of integrated circuits to observe brain activity. Proc. IEEE 2008, 96, 1203–1216. [CrossRef]
7. Valencia, D.; Alimohammad, A. Real-time spike sorting system using parallel OSort clustering. IEEE Trans. Biomed. Circuits Syst.

2019, 13, 1700–1713. [CrossRef] [PubMed]
8. Olsson, R., III; Wise, K. A three dimensional neural recording microsystem with implantable data compression circuitry. IEEE J.

Solid-State Circuits 2005, 40, 2796–2804. [CrossRef]
9. Chae, M.; Yang, Z.; Yuce, M.R.; Hoang, L.; Liu, W. A 128-channel 6mW wireless neural recording IC with spike feature extraction

and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 312–321. [CrossRef]
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