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Abstract: Vision-language models (VLMs) have demonstrated increasing potency in solving complex
vision-language tasks in the recent past. Visual question answering (VQA) is one of the primary
downstream tasks for assessing the capability of VLMs, as it helps in gauging the multimodal
understanding of a VLM in answering open-ended questions. The vast contextual information
learned during the pretraining stage in VLMs can be utilised effectively to finetune the VQA model
for specific datasets. In particular, special types of VQA datasets, such as OK-VQA, A-OKVQA
(outside knowledge-based), and ArtVQA (domain-specific), have a relatively smaller number of
images and corresponding question-answer annotations in the training set. Such datasets can be
categorised as data-scarce. This hinders the effective learning of VLMs due to the low information
availability. We introduce SemIAug (Semi-Supervised Implicit Augmentation), a model and dataset
agnostic strategy specially designed to address the challenges faced by limited data availability in the
domain-specific VQA datasets. SemIAug uses the annotated image-question data present within the
chosen dataset and augments it with meaningful new image-question associations. We show that
SemIAug improves the VQA performance on data-scarce datasets without the need for additional
data or labels.

Keywords: visual question answering; vision-language models; semi-supervised augmentation

1. Introduction

Visual question answering (VQA) is the task of answering a given question, with the
question asked conditioned on the associated image. Even though the task of answering a
question for a given image is fairly simple for humans, it is very difficult for a model to
provide an accurate answer to the question. In the process, the model encounters sub-tasks
like understanding the unimodal context of the given image and question, cross-modal
understanding, and predicting the most suitable answer. The two major factors that have
the potential to enhance the effectiveness of VQA are the model architecture and the
data. VQA is a data-intensive task that requires substantial amounts of labelled training
data. A good dataset must span an exhaustive set of scenarios in both the vision and
language domains so that the model has enough examples to learn the correct associations
between the image and text. Standard benchmark datasets like [1,2] are used for general-
purpose VQA tasks. However, in the recent past, new VQA datasets have been proposed
to challenge VQA models in various ways. They include out-of-domain [3], additional
knowledge-based [4,5], and application-specific [6,7] datasets. The quantity of annotated
data in the context of specialised or challenging VQA, and VQA on application-specific
datasets is far lesser, which can affect the performance of the model on the VQA task.

Dataset annotation is time-consuming, expensive, and can occasionally be susceptible
to errors. Data augmentation is an alternate strategy to enhance the dataset [8] by applying
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transformations to the existing dataset. The main purpose of data augmentation is to intro-
duce variations in the input data that the model might encounter in real-world scenarios
for generalisation. This process makes the model more robust and reduces the chances of
overfitting small-scale datasets. For the purpose of the VQA task, augmentations in the
vision modality, such as geometric and photometric transformations, are not ideal since
they distort the information in the scene. Text-based augmentation techniques like [9,10] are
generation-based, which suffer from quality and diversity issues. The recent rapid improve-
ments and adaptation of language models have given a boost to vision-language research.
There has been tremendous progress in multimodal VLMs in recent years. Some of the
popularly used VLMs are Vilbert [11], VisualBERT [12], CLIP [13], ALBEF [14], BLIP [15],
BLIP-2 [16], BridgeTower [17], ALPRO [18], etc. Current VLMs demonstrate exceptional
zero-shot performance with the help of large-scale pretraining [19,20], improved pretrain-
ing strategies, and better architectures. Using task-specific finetuning, the knowledge in the
pretrained VLM is used for downstream tasks, such as image captioning, VQA, multimodal
feature extraction, etc.

We propose a VLM-based image-question augmentation since VLMs are adept at
understanding natural language descriptions for the visual data. In this work, we propose
an augmentation strategy and a method to improve the VQA task on special types of
datasets like [4,5,7], which are data-scarce, i.e., they have a fewer amount of annotated
question-answer pairs per image. This augmentation approach uses VLMs by harnessing
the implicit information present in the dataset in the form of unmatched but relevant
image-question pairs.

After pairing a relevant question to an image, the answer has to be obtained to
complete the VQA triplet. We adopt pseudo-labelling [21], a semi-supervised learning
(SSL) strategy to obtain the answer for the augmented VQA triplets. Pseudo-labelling is
a technique used in SSL to utilise the training on the labelled data to generate labels for
the unlabelled data. These new labels are termed ‘pseudo-labels’ as they are labelled by
the model. Multiple recent works in semi-supervised learning (SSL) related to the vision
domain, such as [22–24], consider pseudo-labelling for the improvement of the performance
of the model. We set up our augmentation technique as a semi-supervised problem that
uses pseudo-labels (i.e., answers) from a downstream VQA model, finetuned on the original
VQA dataset to help in the augmentation. We show that the relevance of the augmented
questions for that image using the SemIAug strategy is almost on par with the originally
annotated questions.

The major contributions of our work are as follows:

• We introduce SemIAug, a non-generative model, as well as a dataset-agnostic data
augmentation approach that performs augmentation by only using the images and
questions from within a dataset;

• We propose a simple and effective technique that employs VLMs for matching new
images and questions and reuses the same VLM for answering. This helps improve
the performance of VQA tasks on datasets with relatively fewer question-answer pairs,
i.e., data-scarce datasets;

• We propose a computationally efficient image-question matching strategy by extract-
ing the image and question features using frozen VLMs.

2. Related Works

Most of the augmentation strategies in the text modality for VQA are generation-
based, where image-grounded questions are generated. Such augmentations can broadly
be classified into the following two categories: template-based and free-form generation.
Ref. [10] benchmarks compositional spatio-temporal reasoning where questions are gen-
erated based on preset templates. The templates are created from various scenarios and
filled with objects and their properties, which are detected from the image using scene
graphs (a hierarchical representation of a scene that can express the objects, attributes, and
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relationships in the scene) to create questions for various scenarios. The answer is also
obtained from the scene graph.

Ref. [9] proposes the use of automated speech recognition models to transcribe
videos with narrations. Candidate answers are then chosen from these transcriptions,
and free-form questions are generated conditioned on these answers. The problem with
generation-based augmentation is that the quality of the generated data is not as good as
human annotations, and the generated data may not accurately represent the underlying
data distribution. Additionally, generative models are computationally expensive to train
and require large amounts of data to produce good-quality results.

Some works that are not generation based are SimpleAug [25] and KDDAug [26].
SimpleAug works on the principle that many of the “unknowns” are indeed “known”
within the dataset. It uses object detectors to recognise objects in the image. It uses a strict
matching criterion to match new questions to images based on the detected objects and their
attributes. KDDAug uses less stringent conditions than SimpleAug and further explores
the approach proposed by SimpleAug. After obtaining all reasonable image-question pairs,
KDDAug leverages multi-teacher knowledge distillation (KD) to generate “soft” labels.
This approach was proposed not only to avoid human annotations but also to be more
robust to both in-domain and out-of-domain settings. These works utilise off-the-shelf
object detectors and bounding boxes for detecting objects or counting instances of an object,
etc., to match questions and obtain the answers. This requires the use of external modules,
which are limited by their performance and are also at risk of propagating errors, which
lead to performance bottlenecks.

The work of Zaid Khan et al. [27] is the most closely related to our work in terms of
using large VLMs for data augmentation in visual question answering. It proposes SelTDA,
a framework for self-improving large VLMs on small-scale VQA tasks with unlabelled
data. SelTDA uses VLMs and the target dataset to build a teacher model that can generate
question-answer pseudo-labels as captions directly conditioned on the image alone. This
work is generation-based, which creates new data from existing data, which can introduce
challenges such as quality and diversity issues. The work is centred around using additional
unlabelled images for performance improvement, which requires images from outside the
dataset of interest.

What distinguishes our proposed approach, SemIAug, as unique and elegant, first,
is its utilisation of the versatile nature of VLMs, both to extract representations for the
images and questions (used as a uni-modal extractor). Second is its flexibility of reusing
the same or different VQA model by finetuning on a VQA dataset for use as an answering
model. Unlike generation-based augmentation techniques, our work augments images
with human-quality questions since it intelligently uses the questions within the dataset,
which are human-annotated. It is also self-contained as it does not need external modules
like object detectors, scene graphs, or the curation of additional image/question data.

3. Methodology

To achieve the goal of expanding a dataset with human annotation level quality and
diversity, we harness the vast amount of implicit information present within the dataset,
which forms the fundamental premise of SemIAug. We find this information as potential
pairs of images and questions {I, Q′}, which can be matched from images depicting similar
scenes or objects. As the first step of SemIAug, we systematically match such potential
positive pairs and expand the dataset to a more densely matched version of itself. After
matching the new pairs, we obtain the answer to these pairs using an answering model
to complete the augmented triplet {I, Q′, A′}. Figure 1 shows the complete setup of the
augmentation strategy. It highlights the reusability of VLMs for feature extraction and
the finetuned VQA model as the answering model for the newly matched pairs. We next
describe, in detail, image-question matching and answering tasks as part of SemIAug.
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Figure 1. The block on the left depicts how the augmented {I, Q′, A′} triplets are obtained. The block
at the top right depicts the finetuning of VLMs using the original data, and the block at the bottom
right shows finetuning the VLMs with augmented data.

3.1. Image-Question Matching

We pose the image-question {I, Q′} matching exercise as a question retrieval problem,
i.e., use image and question embeddings and find the most relevant questions for the image
using cosine-similarity. We use state-of-the-art VLMs to obtain these embeddings. Next,
we explain the different building blocks of the image-question matching task.

3.1.1. Noun-Based Filtering

For a typical VQA dataset, the number of images and questions will be high. For
example, if there are p images and q questions per image, then there are a total of p · q
questions. In such a scenario, similarity-based retrieval between each image and all of the
p · q questions will be very inefficient. We devise a simple yet effective filtering technique
to reduce the potential set of questions Q to a more relevant and filtered set Q f . From the
set of questions annotated for a particular image, we extract all the nouns using the Python
module NLTK [28], and use these as filters to restrict the set of possible augmentations
to only those questions that contain these nouns. This helps in reducing the matching
complexity from O(MN) to O(MK) where K << N.

3.1.2. Segregating Rephrased and Diverse Questions

In the filtered set of questions Q f , there is the concern of rephrased questions for
example, ‘What is the man with the black hat doing?’ and ‘What is the person wearing the black
hat doing?’. Though these are valid questions, they do not add any new information. Of
course, they can be utilised to test for robustness since the answers to both questions must be
the same. Note that our aim is to remove the rephrased versions of the originally annotated
questions from Q f . The embeddings obtained using the VLM feature extractor for the
rephrased questions are expected to be similar. For separating the rephrased questions,
we find the similarity between the feature vectors of annotated questions and the set of
filtered questions Q f (instead of every filtered question with one another). This reduces the
complexity from O(K2) to O(KP) where P << K. Questions with high cosine similarity
with the original annotation are filtered out by setting an appropriate threshold (t). Thus,
the questions that are left for matching are diverse questions Qd that are best suited for
augmentation.

3.1.3. Handling Multiplicity

Even after obtaining the diverse set of questions Qd from the set of filtered questions
Q f , the number of potential questions to be augmented will typically still be large. For
practical purposes, we require limiting the number of questions further. We can truncate the
number of questions in two ways. One method is to apply a hard truncation common to all
images such that the number of annotations n per image is 2× or 3× of the original count to
obtain the final set of augmented questions Qn per image. For example, if we are working
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with OK-VQA or A-OKVQA datasets have been annotated with around one question
per image in the training set, augmenting them with two or three questions will suffice.
Another method would be a soft truncation to allocate the required question multiplicity
image-wise. This approach dynamically assigns the count of augmentations per image
in contrast to the previous setting, where we mandate a fixed number of augmentations
to all images. This can be achieved by normalising the similarity score corresponding to
all questions for an image with the highest similarity score. Then, a question relevance
threshold can be applied, which will set the truncation count for the number of questions to
be annotated for that image. This relevance threshold will set the augmentation multiplicity
per image. For computational purposes, we set a minimum and maximum limit on how
many questions can be dynamically allocated for an image.

3.2. Answering Model

After applying noun-based filtering, separating diverse questions, and truncating the
number of augmented questions per image as part of image question matching, we end up
with a combination of original and augmented image-question pairs. We have the human
annotated answer {A} for the original pairs {I, Q} in the target dataset. To answer the
newly matched question {Q′}, for the image {I}, we use the VLM trained on the same
dataset as the VQA model. This is how our setup is analogous to a semi-supervised problem
with the new dataset containing both the original (part of the dataset with labels) and new
image-question pairs (part of the dataset without the answer labels). The answering model
is trained on the original dataset, and using the trained model, we obtain the answers
{A′} (pseudo-labels) for the new image-question pairs. Then the original triplets {I, Q, A}
together with augmented triplets {I, Q′, A′} are used to form the new dataset for training.
Finally, the VQA model is re-trained with the augmented dataset with the new triplets,
which results in improved VQA accuracy.

4. Experimental Results

In this work, we utilised VLMs for both matching new questions and for answering.
We used BLIP [15] and BLIP-2 [16], which are state-of-the-art VLMs, to obtain the unimodal
embeddings of images and questions. We used frozen BLIP-2/BLIP image-text retrieval
model checkpoint [15] pretrained on large amounts of data. We experimented with datasets
OK-VQA and A-OKVQA as they are data-scarce (also requiring external knowledge) and,
hence, good candidates to evaluate the efficacy of our proposed model. We re-used BLIP as
the answering model, and all the other hyperparameters were kept the same as mentioned
in [15]. We used 4 NVIDIA 3090 GPUs, each with 24GB RAM, to conduct our experiments.

First, we grouped all the training images and all the unique questions in the dataset and
used BLIP-2/BLIP to extract the features. The feature extractor produces a 256-dimensional
feature vector for each individual input image or question. For noun-based filtering, we
adopted NLTK (as mentioned in Section 3.1.1) since it was faster. We then calculated the
question-to-question cosine similarity using the question embeddings to analyse the effect
of having rephrased questions versus a diverse set of augmented questions. We then set the
threshold t such that all the questions that have a similarity score above t are considered
to be rephrased versions of the original annotated questions. The rest constitute a diverse
set of questions. We set t to be 0.8 based on our observations (please refer to the ablation
Section 4.3). We calculated the image-question similarity and chose the top-k questions
where k is a parameter that specifies the number of questions per image in the augmented
dataset, which yields the augmented image-question pairs.

We used a semi-supervised setup for answering the augmented image-question pairs.
As a strong baseline VQA model, we used the ViT-B/16 version of BLIP [15] pretrained on
129M image-text pairs and finetuned on VQA datasets like VQAv2 [2], Visual genome [29],
provided by [15].



Comput. Sci. Math. Forum 2024, 9, 3 6 of 15

4.1. Quantitative Analysis

We finetuned the BLIP [15] baseline VQA model on the dataset of interest (OK-VQA
or A-OKVQA) and re-used the finetuned model for answering the augmented image-
question pair (obtained from BLIP-2 or BLIP). We finetuned the baseline VQA model for
10 epochs with an initial learning rate 2 × 10−6. After obtaining the augmented triplets,
we finetuned the same baseline VQA model but on the augmented dataset. We evaluated
OK-VQA on its test set and, similarly, A-OKVQA on its designated val set. We observed
that SemIAug improves VQA performance on both OK-VQA and A-OKVQA datasets
over the baseline. We compared the accuracies of the BLIP VQA [15] baseline model
with SemIAug with multiple fixed augmentation multiplicity, as presented in Table 1, and
dynamic multiplicity, as presented in Table 2. We can observe that for all experiments with
various multiplicities and both dynamic and fixed augmentation variants, SemIAug shows
considerable performance gain over the baseline when using both BLIP-2 and BLIP as
retrieval models. In Tables 1 and 2, we can observe close to or more than 1% improvement
in the VQA accuracy on both the OK-VQA and A-OKVQA datasets using SemIAug, when
using both BLIP-2 and BLIP. One critical observation across the fixed number and dynamic
number of augmentations for comparable multiplicity when using BLIP retrieval, like ×2
for OK-VQA in Table 1 and ×1.83 for OK-VQA in Table 2, is that the dynamic augmentation
has better performance, even with a slightly lower multiplicity, because the model chooses
new questions when it passes the relevance threshold of 0.95. Hence, we can consider that
it allows only relevant questions. A similar example can be found for A-OKVQA, where
the accuracy of the model with a multiplicity ×3 in Table 1 is lower than the multiplicity
×2.48 in Table 2. With the higher relevance score, there is a higher chance of obtaining
good image-question matches, but the number of newly matched image-question pairs will
be reduced. Similar observations can be found when using BLIP-2 as the retrieval model.
For example, for the OK-VQA dataset, a dynamic multiplicity of ×1.64 is better than a
multiplicity of ×2, and for the A-OKVQA dataset, a dynamic multiplicity of ×2.18 is better
than a multiplicity of ×3.

Table 3 provides a comparison of accuracy with various multimodal models on OK-
VQA dataset. Using SemIAug, we can observe an improvement of 1.18% in accuracy when
using BLIP as the retrieval model and an improvement of 0.96% in accuracy when using
BLIP-2 as the retrieval model (both using finetuned BLIP for answering). We can also use
the finetuned VQA checkpoint provided along with the VLMs for answering whenever
available instead of finetuning the same. This would slightly deviate from the idea of SSL,
as the provided checkpoint may be trained on more than just the target dataset.

Table 1. We compare the performance of SemIAug for various multiplicities with a fixed number
of augmentations per image using BLIP 2 and BLIP as retrieval models and BLIP as the common
VQA model.

Dataset Model Ques Count Multiplicity
BLIP Retrieval BLIP-2 Retrieval

Accuracy % Gain Accuracy % Gain

OK-VQA Finetuned
Baseline [15] 9000 ×1 55.29 - 55.29 -

(evaluated on
test set)

SemIAug
(Ours) 18,000 ×2 55.74 0.45 55.78 0.49

27,000 ×3 56.27 0.98 55.83 0.54
36,000 ×4 56.47 1.18 56.25 0.96

A-OKVQA Finetuned
baseline [15] 17,000 ×1 54.35 - 54.35 -

(evaluated on
val set)

SemIAug
(Ours) 34,000 ×2 54.96 0.61 55.77 1.42

51,000 ×3 55.48 1.13 54.49 0.14
68,000 ×4 55.31 0.96 55.02 0.67
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Table 4 provides a comparison of accuracy with various multimodal models on the
A-OKVQA dataset. The assessment of A-OKVQA can be performed in two ways, either
on direct answer (DA) or on multiple choice (MC) type, and here we chose DA. SemIAug
with BLIP as retrieval improves the accuracy on the A-OKVQA dataset by 1.37% over the
baseline implementation, whereas it shows an improvement of 1.42% when using BLIP-2
for retrieval. We have also experimented with sampled versions of the VQAv2 [2] dataset
to simulate data-scarce settings, and this can be found in Appendix A.

Table 2. We compare the performance of SemIAug for various multiplicities with a dynamic number
of augmentations per image using BLIP 2 and BLIP as retrieval models and BLIP as the common
VQA model.

Dataset Relevance
Threshold

Lower
Limit

Upper
Limit

BLIP Retrieval BLIP-2 Retrieval

Multiplicity Accuracy % Gain Multiplicity Accuracy % Gain

OK-VQA - - - ×1 55.29 - ×1 55.29 -

(evaluated
on test set) 0.95 1 3 ×1.83 56.14 0.85 ×1.55 55.64 0.35

0.9 1 3 ×2.39 56.06 0.77 ×2.02 55.72 0.43

0.95 1 5 ×2.10 55.60 0.31 ×1.64 55.83 0.54
0.9 1 5 ×3.27 56.09 0.8 ×2.45 56.01 0.72

A-
OKVQA - - - ×1 54.35 - ×1 54.35 -

(evaluated
on val set) 0.95 1 3 ×1.95 55.05 0.7 ×1.67 55.08 0.73

0.9 1 3 ×2.48 55.72 1.37 ×2.18 55.37 1.02
0.95 1 5 ×2.32 55.57 1.22 ×1.82 55.02 0.67
0.9 1 5 ×3.56 55.66 1.31 ×2.79 55.22 0.87

Table 3. Comparison of the accuracy of large multimodal models on OK-VQA. ⋆ indicates accuracy
obtained by our implementation of the BLIP VQA baseline.

Model Accuracy (Test)

(a) KAT (single) [30] 53.10
(b) REVIVE (single) [31] 56.60
(c) Unified-IO (2.8B) [32] 54.00
(d) ALBEF [14] 54.70
(e) BLIP [15] 55.40
(f) BLIP [15] ⋆ 55.29

(g) BLIPretrieval + BLIPVQA (SemIAug) 56.47
% gain w.r.t our baseline implementation (f) +1.18

(h) BLIP-2retrieval + BLIPVQA (SemIAug) 56.25
% gain w.r.t our baseline implementation (f) +0.96

Table 4. Comparison of the accuracy of large multimodal models on A-OKVQA. ⋆ indicates accuracy
obtained by our implementation of the BLIP VQA baseline.

Model Accuracy (Val)

(a) ViLBERT [11] 30.60
(b) LXMERT [33] 30.70
(c) GPV-2 [34] 48.60
(d) ALBEF [14] 54.50
(e) BLIP [15] 56.20
(f) BLIP [15] ⋆ 54.35

(g) BLIPretrieval + BLIPVQA (SemIAug) 55.72
% gain w.r.t our baseline implementation (f) +1.37

(h) BLIP-2retrieval + BLIPVQA (SemIAug) 55.77
% gain w.r.t our baseline implementation (f) +1.42
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4.2. Qualitative Analysis

We conducted a user study to validate our claim that our image-question matching
strategy provides new, good-quality, and relevant augmentations by utilising the existing
information within the dataset. We designed a survey for assessing the relevance of newly
matched image-question pairs, which were obtained by using BLIP image-text matching,
against the originally annotated ones both on OK-VQA and A-OKVQA datasets. A total of
20 users participated in the study. We explained the nature of OK-VQA and A-OKVQA
datasets to the user and asked them to rate the relevance of the questions for each image. For
every participant, we sampled 20 images from each dataset and randomly picked a question
corresponding to the image from the augmented dataset. We ensured that each user gets
random image-question pairs and the information, whether the question was originally
annotated or newly matched, is hidden. For the survey, each user had to rate the relevance
of the question to the images on a scale of 1–5, with 5 being the best match and 1 being
the poor match. Later, we found the weighted average relevance score by accounting for
the number of originally annotated questions and newly matched questions that appeared
for each user in the sampled data. Then, the average image-question relevance score is
calculated over all the users for each OK-VQA and A-OKVQA dataset.

The results of the user study are shown in Figure 2. For the OK-VQA dataset, the
average user relevance ratings for the originally annotated questions was 4.19, with a
standard deviation of 0.42 and an average rating of 3.72 with a standard deviation of 0.47
for the newly matched image-question pairs. Similarly, for the A-OKVQA dataset, the
average ratings for the original questions was 4.06, with a standard deviation of 0.27 and
3.61, with a standard deviation of 0.41 for the newly matched image-question pairs. We
performed an one-sided analysis of variance (ANOVA) on the results obtained from the
user study conducted on the OK-VQA and A-OKVQA datasets. The ANOVA yielded an
F-statistic of 8.18 with a p-value of 0.0079 on OK-VQA user study results, and an F-statistic
of 11.13 with a p-value of 0.0025 on A-OKVQA user study results, indicating that the results
are statistically significant.

OK-VQA A-OKVQA
Dataset

1.0
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2.0

2.5

3.0
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4.5

5.0
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er
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Figure 2. Results from the user study showing the average question relevance rating on OK-VQA
and A-OKVQA datasets between the original and augmented image-question pairs obtained using
our image-question matching strategy.

4.3. Ablation Study

Table 5 depicts an ablation study to find the significance of separating out rephrased
questions from the diverse ones. These diverse questions add value to the retrieval training
since they contain new information and hence can cover new scenarios in the image. Hence,
we can observe a clear increase in performance when only diverse questions (with question
similarity threshold t ≤ 0.8) are used for augmentation instead of both rephrased and
diverse questions on both the OK-VQA and A-OKVQA datasets. This confirms that the
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additional augmentations, which are merely rephrased versions of originally annotated
questions, do not add extra useful information.

Table 5. Comparison of the accuracy with and without the rephrased questions, controlled by the
threshold t.

Dataset Multiplicity With Threshold (t) AccuracyRephrased?

OK-VQA ×2 ✗ 0.8 55.74
(evaluated on test set) ×2 ✓ - 55.62

×3 ✗ 0.8 56.27
×3 ✓ - 55.97

A-OKVQA ×2 ✗ 0.8 54.96
(evaluated on val set) ×2 ✓ - 54.64

×3 ✗ 0.8 55.48
×3 ✓ - 55.28

4.4. Qualitative Visual Results

Figure 3 shows some visual examples that depict the newly matched questions for
some images, which are obtained from SemIAug using BLIP retrieval. Note that in Figure 3,
our image-question matching strategy, SemIAug, provides new question annotations that
are relevant to the image. These questions can sometimes also cover objects that are not part
of the original set of annotated questions, thus aiding in expanding the scene understanding
while reducing the need for human annotators. Additional examples with BLIP-2 retrieval
can be found in the Appendix A.

What are the item beside the
sandwich called?

croissant

(a)

What type of event are these
people at?

equestrian

What type of activity will these
people do?

rafting

What breed of dog is near the
cow pasture?"

husky

(b)

What are the players in this
picture doing with the ball?

headbutt

What country is this street
located in?

united state

Figure 3. Qualitative visual results of BLIP retrieval with BLIP VQA. (a) Examples of newly matched
questions {Q′} and the corresponding answers {A′} from the augmented OK-VQA dataset. (b) Ex-
amples of newly matched questions {Q′} and the corresponding answers {A′} from the augmented
A-OKVQA dataset.

5. Discussion

In this work, we discuss a novel dataset augmentation technique, SemIAug, which
utilises the implicit information in the dataset available in the form of unmatched but rele-
vant image-question pairs. We draw parallels between this technique and semi-supervised
learning approaches. We demonstrate the approach on data-scarce datasets OK-VQA and
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A-OKVQA (which are also outside knowledge-based datasets) and show that the model
performance can be enhanced without the need for any additional data/annotations or
external knowledge sources. We show how the matched image-questions pairs are relevant
and close to the original using a Qualitative user study. We compare the results of SemIAug
with existing works that utilise additional data or require additional sophisticated models
for data augmentation. We provide empirical arguments and ablation studies on how the
different hyper-parameters were selected. SemIAug is a framework built around VLMs
and their reusability. Hence, this technique can remain relevant in the future as it can
adapt to any VLM and VQA dataset and will be usable as more powerful VLMs and more
challenging datasets are developed.

6. Limitations and Future Work

An observation from the qualitative user study reveals that the additional annotations
are not optimal but still reasonably pertinent to the image, while our augmentation strategy
contributes significant performance enhancement, determining the optimal parameters for
achieving the highest accuracy remains challenging due to the model dependency of both
augmentation and the answering process.

Though our focus is on using SemIAug to produce new annotations for data-scarce
VQA datasets, when applied to large datasets like VQAv2 [2], we did not see significant
improvements in performance. This may be attributed to the fact that large datasets
are already self-contained. Potential future directions would be to broaden the scope of
SemIAug from the present model and data-agnostic setup to a task-agnostic setup.
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Appendix A

This appendix provides additional details, results, and analyses of the SemiAug
augmentation method proposed in the main paper. In Appendix A.1, we provide details
of the dynamic multiplicity of question augmentation. In Appendix A.2, we experiment
with the pretrained and finetuned models provided by the vision-language models (VLMs)
owners. In Appendix A.3, we provide some more visual results of our augmentation on
the OK-VQA and A-OKVQA datasets. In Appendix A.4, we provide some discussion and
additional results of augmentation on sampled VQAv2 dataset, with our proposed method.

Appendix A.1. Dynamic Number of Question Augmentation

The number of questions annotated per image is limited in the case of data-scarce
datasets, like OK-VQA and A-OKVQA. When additional annotations are incorporated
into the model’s training, there exists the potential for enhanced model performance in
downstream tasks. However, it is not always guaranteed due to multiple reasons, such
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as noisy annotations, rephrased questions, and the model’s architecture and capability.
As mentioned in the Section 3.1.3 in the main paper, we can set the number of potential
questions matched for an image with hard or soft truncation. The soft truncation helps
in matching the dynamic number of questions per image. The advantage of this is when
many potentially good questions can be matched to an image, soft truncation allows all of
the questions, unlike hard truncation. Similarly, it will not match a question just for the
sake of matching if there is no additional good question match.

As we automatically annotate (using VLMs) more questions per image without the
need for human efforts, there will be a problem of noisy annotations. It’s very hard
or impossible to eliminate the noisy annotations. However, with the dynamic number
of question augmentation, we can attempt to reduce the possibility of noisy labels by
selectively choosing the questions for an image.

After segregating rephrased and diverse questions as mentioned in the Section 3.1.2
of the main paper, the potential questions are sorted based on cosine similarity between
images and those questions. We always consider originally annotated questions in the
final augmented set as it is considered to be of good quality. The remaining questions
are added to the original to obtain the augmented set. In the case of a fixed number
of question matching, the additional required question for the image is taken from the
potential questions set sorted based on cosine similarity. In the case of a dynamic number
of augmentation, the number of questions to be considered is based on the predefined
relevance threshold. The cosine similarities of the sorted questions are normalised, and
only the questions whose normalised similarities are higher than the relevance threshold
are considered for the further step. For the computational purpose, we set a lower and an
upper limit for having a bound for the dynamic number of augmentation.

Appendix A.2. Pretrained and Finetuned Model Checkpoints

Recent advancements in the performance of vision-language tasks are due to improved
vision-language pretraining. Large VLMs [13–17,35] use datasets with noisy image-text
pairs collected from the web. BLIP [15] effectively utilises the noisy web data by boot-
strapping the captions. Such pretrained models have very good zero-shot capabilities
on downstream tasks like visual question answering (VQA), image-text matching, image
captioning, video-text retrieval, etc. To assess the practical performance in downstream
tasks, pretrained models are finetuned using task-specific datasets in advance, enabling
their adaptation to the specific domain.

For SemIAug, as the starting point of model training or initialising weights, we
considered the finetuned BLIP VQA checkpoint, in which the pretrained BLIP model was
finetuned on VQAv2 [2], and visual-genome [29] datasets. Since BLIP has provided a
finetuned VQA model on OK-VQA and A-OKVQA datasets, we used the same as the
answering model for assessing the performance and did not see significant differences as
compared to our finetuned versions of the same.

Appendix A.3. More Visual Results

Additional results on OK-VQA and A-OKVQA are provided in Figure A1. We can
observe from the figure that the augmented questions are of decent quality, and the answers
obtained using a pseudo-labelling approach are valid; however, the proposed augmentation
is still noisy in many cases. With the human-in-the-loop, the bad augmentations can be
removed, and we can obtain a good augmented dataset.
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officeWhat location does this man work in?

The man looks like he is headed to what kind of
job?

office
worker

tomatoWhat vegetable might you find on this dish?

What type of meat fruit or vegetable is most
popular on pizza?

pepperoni

restaurantWhat type of counter is shown?

Why are the men behind the counter? talking

A-OKVQA

crew cutWhat kinds of haircuts to these men have?

What are these men about to do? tie tie

neon
What is the style of paint that the police force

seen in the photo use to demarcate their
vehicles?

In what city does this police man work? london

OK-VQA

cookWhat profession deos the man have?

What is the long wooden object that man is
holding used for?

cut

Figure A1. Examples of OK-VQA (top 3 rows) and A-OKVQA (bottom 3 rows), showing originally
annotated question Q, answers A and newly matched question Q′ and answer A′ using SemiAug
(using BLIP-2 as retrieval model and answered using BLIP VQA.

Appendix A.4. Results of Augmentation on VQAv2-Sampled Dataset

We conducted experiments involving our augmentation approach, SemIAug, using
a subset of the VQAv2 dataset as our testing ground [2]. To mimic the behaviour of a
data-scarce dataset, we randomly sampled 10% images (approximately 8000 images) from
the VQAv2 dataset, and for each image, we chose two labelled annotations per image.
Following this method, we created the VQAv2-sampled dataset, which resembles data-scarce
datasets, for our experimentation purpose.
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We experimented with the dataset by initialising the model with two different weights.
Table A1 shows the set of experiments where the weights are initialised with a BLIP [15]
pretrained checkpoint, and in Table A2 experiments, the model weights are initialised
with the BLIP VQA checkpoint. We also conducted experiments where augmentation is
performed with a fixed number of questions and with a dynamic number of questions per
image. For the dynamic number of questions, we set the relevance threshold to 0.95, the
lower limit to 2 and the upper limit to 5. The answering models for augmented questions
are experimented with our semi-supervised approach and by directly utilising the BLIP
VQA answering model.

We can see from Table A1 that the model initialised with BLIP pretrained model,
finetuned on a small subset of VQAv2, yields poor performance with our augmentation
strategy if answering is completed using our semi-supervised approach. This could be due
to the fact that the model trained with a small amount of data is ineffective in answering
the diverse questions from the VQAv2 validation set. However, if the newly augmented
questions are answered using a finetuned BLIP VQA checkpoint, we can see good improve-
ment in percentage gain, even though the absolute accuracy value is less. This indicates the
effectiveness of augmentation with our Image-Question matching strategy.

We can observe a marginal improvement in accuracy when we initialise the model
with a finetuned BLIP VQA checkpoint from Table A2. This is because of the strong weight
initialisation and the amount of augmentation is much less compared to the data used
for obtaining good finetuned weights used for initialisation. The table shows that with
the dynamic number of good quality questions augmented, we can obtain similar or even
better performances, sometimes with a lesser number of total questions for training. Instead
of a sampled VQAv2 dataset, if we consider a full-scale VQAv2 dataset, the performance of
the VLMs may be marginal or may not improve with the augmentation due to the fact that
the dataset in itself has a sufficient amount of human labelled augmentations. With the use
of automatically annotated noisy question-answers, there is a possibility of degradation in
performance. Hence, augmentation is well suited for data-scarce datasets, and with the
help of a good augmentation strategy, the performance of the VLMs can be improved by a
good margin.

Table A1. Comparison of the performance of parameters using SemIAug, with the model initialized
with a BLIP pretrained checkpoint. The model is evaluated on the VQAv2 validation (val) set.

Dataset Type Answering Setup Ques. Aug-
mentation

Ques
Count Multiplicity Accuracy

(%) Gain (%)

VQAv2-
sampled

original - - 16,000 ×1 35.35 −

augmented semi-supervised dynamic 23,817 ×1.48 33.29 −2.06
augmented semi-supervised fixed 32,000 ×2 35.09 −0.26

augmented finetuned BLIP VQA dynamic 23,817 ×1.48 37.70 +2.35
augmented finetuned BLIP VQA fixed 32,000 ×2 39.12 +3.77

Table A2. Comparison of the performance of parameters using SemIAug, with the model initialized
with a finetuned BLIP VQA checkpoint. The model is evaluated on the VQAv2 validation (val) set.

Dataset Type Answering Setup Ques. Aug-
mentation

Ques
Count Multiplicity Accuracy

(%) Gain (%)

VQAv2-
sampled

original - - 16,000 ×1 66.41 −

augmented semi-supervised dynamic 23,817 ×1.48 66.58 +0.17
augmented semi-supervised fixed 32,000 ×2 66.53 +0.12

augmented finetuned BLIP VQA dynamic 23,817 ×1.48 66.62 +0.21
augmented finetuned BLIP VQA fixed 32,000 ×2 66.61 +0.2
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