Land-Atmosphere Interactions

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Biosphere/Hydrosphere/Land–Atmosphere Interactions".

Deadline for manuscript submissions: 30 August 2024 | Viewed by 438

Special Issue Editors

Department of Geography, Western Michigan University, Kalamazoo, MI 49008, USA
Interests: inter-annual variability of snowfall land–atmosphere interactions; droughts; soil moisture; climate variability; climate models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Land–atmosphere interactions involve complex surface processes that exchange energy and matter between surfaces and the atmosphere, and they significantly contribute to weather forecasting and climate predictivity. Evapotranspiration is the key to the connection between surfaces and the atmosphere. Challenges still exist in understanding spatial and temporal variations in land–atmosphere interactions due to limited observations in evapotranspiration. Land surface conditions, including soil moisture, vegetation cover, and snow cover, could significantly affect atmospheric processes at local, regional, and global scales. Both temperature and precipitation variations are strongly influenced by the strength of land–atmosphere interactions.

We invite the submission of original research articles and reviews on any aspect of land–atmosphere interactions, including (but not limited to) soil moisture–atmosphere interactions, vegetation–atmosphere interactions, and so on, as well as their variations across space and time. We encourage studies that use modern technology, such as remote sensing datasets, to address such issues. Numerical studies that focus on the specific role of land surface features (soil, vegetation, and snow cover) in the climate system are especially welcome. We are also interested in studies using observational and reanalysis data to address spatial and temporal changes in land–atmosphere interactions.

Dr. Lei Meng
Dr. Yaqian He
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • land–atmosphere interactions
  • evapotranspiration
  • soil moisture
  • vegetation dynamics
  • snow cover
  • numerical simulations
  • remote sensing

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

20 pages, 7942 KiB  
Article
Interannual Variability of Water and Heat Fluxes in a Woodland Savanna (Cerrado) in Southeastern Brazil: Effects of Severe Drought and Soil Moisture
by Lucas F. C. da Conceição, Humberto R. da Rocha, Nelson V. Navarrete, Rafael Rosolem, Osvaldo M. R. Cabral and Helber C. de Freitas
Atmosphere 2024, 15(6), 668; https://doi.org/10.3390/atmos15060668 (registering DOI) - 31 May 2024
Abstract
The Brazilian Cerrado biome is known for its high biodiversity, and the role of groundwater recharge and climate regulation. Anthropogenic influence has harmed the biome, emphasizing the need for science to understand its response to climate and reconcile economic exploration with preservation. Our [...] Read more.
The Brazilian Cerrado biome is known for its high biodiversity, and the role of groundwater recharge and climate regulation. Anthropogenic influence has harmed the biome, emphasizing the need for science to understand its response to climate and reconcile economic exploration with preservation. Our work aimed to evaluate the seasonal and interannual variability of the surface energy balance in a woodland savanna (Cerrado) ecosystem in southeastern Brazil over a period of 19 years, from 2001 to 2019. Using field micrometeorological measurements, we examined the variation in soil moisture and studied its impact on the temporal pattern of energy fluxes to distinguish the effects during rainy years compared to a severe drought spell. The soil moisture measures used two independent instruments, cosmic ray neutron sensor CRNS, and FDR at different depths. The measures were taken at the Pé de Gigante (PEG) site, in a region of well-defined seasonality with the dry season in winter and a hot/humid season in summer. We gap-filled the energy flux measurements with a calibrated biophysical model (SiB2). The long-term averages for air temperature and precipitation were 22.5 °C and 1309 mm/year, respectively. The net radiation (Rn) was 142 W/m2, the evapotranspiration (ET) and sensible heat flux (H) were 3.4 mm/d and 52 W/m2, respectively. Soil moisture was marked by a pronounced negative anomaly in the 2014 year, which caused an increase in the Bowen ratio and a decrease in Evaporative fraction, that lasted until the following year 2015 during the dry season, despite the severe meteorological drought of 2013/2014 already ending, which was corroborated by the two independent measurements. The results showed the remarkable influence of precipitation and soil moisture on the interannual variability of the energy balance in this Cerrado ecosystem, aiding in understanding how it responds to strong climate disturbances. Full article
(This article belongs to the Special Issue Land-Atmosphere Interactions)
Show Figures

Figure 1

Other

Jump to: Research

9 pages, 254 KiB  
Opinion
Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches
by Xin-Min Zeng, Congmin Li, Ning Wang and Irfan Ullah
Atmosphere 2024, 15(6), 650; https://doi.org/10.3390/atmos15060650 - 29 May 2024
Viewed by 153
Abstract
Previously, the types of impacts of land–atmosphere interactions have scarcely been clarified systematically. In this article, we present a classification of these impacts based on modeling boundary layer variables/parameters, which is grouped into local, regional, and remote impacts. In the narrow sense, land [...] Read more.
Previously, the types of impacts of land–atmosphere interactions have scarcely been clarified systematically. In this article, we present a classification of these impacts based on modeling boundary layer variables/parameters, which is grouped into local, regional, and remote impacts. In the narrow sense, land surface processes (LSPs) influence the atmospheric state via vertical land–atmosphere coupling at local scales, which is referred to as local LSP impacts. However, local LSP impacts can lead to the advection effect due to the horizontal heterogeneity in the parameters over a region, which can be defined as regional LSP impacts. Furthermore, remote LSP impacts on the regional atmospheric state are induced by some land/sea surface variables/parameters over remote key areas of the Earth’s surface, which are conventionally taken as strong signals of climate variation. Of the three impacts, local impacts are the most important essential, as the other two types of impacts are derived from these impacts. We describe the quantification of local impacts based on our previous studies from the perspective of modeling approaches, and we discuss some issues related to these impacts. Previous investigations showed that local LSP impacts are mostly stronger than regional LSP impacts, e.g., the diabatic process is dominant in the physical processes responsible for daily maximum temperatures, and two first-order physical processes including vertical diffusion largely induce changes in surface wind speed in China. Finally, some aspects for future research are noted. This study provides insights into the research on land–atmosphre interactions at different scales. Full article
(This article belongs to the Special Issue Land-Atmosphere Interactions)
Back to TopTop