materials-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5364 KiB  
Article
Study of the Chemical Vapor Deposition of Nano-Sized Carbon Phases on {001} Silicon
by Teodor Milenov, Dimitar Trifonov, Dobromir A. Kalchevski, Stefan Kolev, Ivalina Avramova, Stoyan Russev, Kaloyan Genkov, Georgi Avdeev, Dimitar Dimov, Desislava M. Karaivanova and Evgenia Valcheva
Materials 2023, 16(22), 7190; https://doi.org/10.3390/ma16227190 - 16 Nov 2023
Cited by 1 | Viewed by 1066
Abstract
Different nano-sized phases were synthesized using chemical vapor deposition (CVD) processes. The deposition took place on {001} Si substrates at about 1150–1160 °C. The carbon source was thermally decomposed acetone (CH3)2CO in a main gas flow of argon. We [...] Read more.
Different nano-sized phases were synthesized using chemical vapor deposition (CVD) processes. The deposition took place on {001} Si substrates at about 1150–1160 °C. The carbon source was thermally decomposed acetone (CH3)2CO in a main gas flow of argon. We performed experiments at two ((CH3)2CO + Ar)/Ar) ratios and observed that two visually distinct types of layers were deposited after a one-hour deposition process. The first layer type, which appears more inhomogeneous, has areas of SiO2 (about 5% of the surface area substrates) beside shiny bright and rough paths, and its Raman spectrum corresponds to diamond-like carbon, was deposited at a (CH3)2CO+Ar)/Ar = 1/5 ratio. The second layer type, deposited at (CH3)2CO + Ar)/Ar = a 1/0 ratio, appears homogeneous and is very dark brown or black in color and its Raman spectrum pointed to defect-rich multilayered graphene. The performed structural studies reveal the presence of diamond and diamond polytypes and seldom SiC nanocrystals, as well as some non-continuously mixed SiC and graphene-like films. The performed molecular dynamics simulations show that there is no possibility of deposition of sp3-hybridized on sp2-hybridized carbon, but there are completely realistic possibilities of deposition of sp2- on sp2- and sp3- on sp3-hybridized carbon under different scenarios. Full article
Show Figures

Figure 1

15 pages, 2984 KiB  
Article
Turning Waste into Treasure: The Full Technological Process and Product Performance Characterization of Flushable Wet Wipes Prepared from Corn Stalk
by Lulu Liu, Yeying Wang, Ziying He, Yang Cai, Kai Meng, Ke-Qin Zhang and Huijing Zhao
Materials 2023, 16(22), 7189; https://doi.org/10.3390/ma16227189 - 16 Nov 2023
Viewed by 1016
Abstract
As a daily consumable, wet wipes are mostly synthetic fibers, which are incinerated or landfilled after use. The nanoplastics generated during this process will lead to environmental pollution. The application of flushable wet wipes, which are dispersible and fully degradable, is of great [...] Read more.
As a daily consumable, wet wipes are mostly synthetic fibers, which are incinerated or landfilled after use. The nanoplastics generated during this process will lead to environmental pollution. The application of flushable wet wipes, which are dispersible and fully degradable, is of great significance. The main raw material for flushable wipes is wood pulp, which has a long growth cycle and high cost. Corn is widely planted and has a short growth cycle. Currently most corn stalk is treated by incineration, which produces a lot of smoke that pollutes the environment. Therefore, using corn stalk as the raw material for flushable wet wipes, replacing wood pulp, is both cost-effective and environmentally friendly. In this study, aiming at industrial production, we explored the full process of producing flushable wet wipes from corn stalk to pulp board, then to the final wipes. The corn stalk was treated using alkali and a bleaching agent to obtain corn stalk pulp, which was then made into pulp board through the nonwoven wet-laid process. The optimal parameters for the alkali treatment and bleaching were obtained. The properties of the corn stalk pulp board were compared with the commercial wood pulp board. Further, we mixed the corn stalk pulp with Lyocell fiber to prepare wet-laid webs, which were then bonded using a chemical binder poloxamer. Then, the evenness of the web, mechanical properties, absorption, and dispersibility of the flushable wipes were characterized. Results showed that the pulp obtained using the optimal treatment process has a high yield and better whiteness. The properties of the corn stalk pulp board are comparable with the commercial wood pulp board, which can therefore potentially be replaced by the corn stalk board prepared in our study. The prepared flushable wet wipes had good evenness and their water absorption rate was more than 600%. The mechanical strength in dry and wet states achieved 595.94 N/m and 179.00 N/m, respectively. Most importantly, the wet wipes can completely disperse under the standardized testing method. A good balance of dispersibility and wet strength of the wet wipes was achieved. Full article
(This article belongs to the Special Issue Advances in High-Performance Functional Nonwovens)
Show Figures

Graphical abstract

19 pages, 6987 KiB  
Article
Research on the Mechanical Model and Hysteresis Performance of a New Mild Steel-Rotational Friction Hybrid Self-Centering Damper
by Debin Wang, Ran Pang, Gang Wang and Guoxi Fan
Materials 2023, 16(22), 7168; https://doi.org/10.3390/ma16227168 - 15 Nov 2023
Cited by 1 | Viewed by 802
Abstract
A mild steel-friction self-centering damper with a hybrid energy-dissipation mechanism (MS-SCFD) was proposed, which consisted of a mild steel, frictional, dual-energy-dissipation system and a disc spring resetting system. The structure and principle of the MS-SCFD were explained in detail while the restoring force [...] Read more.
A mild steel-friction self-centering damper with a hybrid energy-dissipation mechanism (MS-SCFD) was proposed, which consisted of a mild steel, frictional, dual-energy-dissipation system and a disc spring resetting system. The structure and principle of the MS-SCFD were explained in detail while the restoring force model was established. The hysteretic behavior of the MS-SCFD under low-cycle reciprocating loading was modeled. Then, the influence of parameters such as the disc spring preload, the friction coefficient, and the soft-steel thickness on the mechanical properties of the MS-SCFD was investigated. The results indicate that the simulation results are basically consistent with the theoretical prediction results, with a maximum error of only 9.46% for the key points of bearing capacity. Since the MS-SCFD is provided with a hysteretic curve in the typical flag type, it will obtain the capacity of excellent self-centering performance. It can effectively enhance the stiffness, bearing capacity, and self-centering capability of the damper after the pre-pressure of the disc spring is increased. The energy-dissipation capacity of the MS-SCFD increases with the increase in the friction coefficient. However, it also increases the residual deformation of the MS-SCFD. The energy dissipation of the MS-SCFD is particularly sensitive to the thickness of mild steel. After being loaded, all components of the MS-SCFD are not damaged except for the plastic deformation caused by the yielding of the mild steel. The normal function of the MS-SCFD can be restored simply by replacing the mild steel plates after the earthquake. Therefore, it can significantly enhance the economy and applicability of the damper. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Alloys, Volume III)
Show Figures

Figure 1

14 pages, 2807 KiB  
Article
Influence of NF3 Plasma-Treated HfO2 Gate Insulator Surface on Tin Oxide Thin-Film Transistors
by Christophe Avis and Jin Jang
Materials 2023, 16(22), 7172; https://doi.org/10.3390/ma16227172 - 15 Nov 2023
Viewed by 920
Abstract
We studied the impact of NF3 plasma treatment on the HfO2 gate insulator of amorphous tin oxide (a-SnOx) thin-film transistors (TFTs). The plasma treatment was for 0, 10, or 30 s. The HfO2 insulator demonstrated a slightly higher [...] Read more.
We studied the impact of NF3 plasma treatment on the HfO2 gate insulator of amorphous tin oxide (a-SnOx) thin-film transistors (TFTs). The plasma treatment was for 0, 10, or 30 s. The HfO2 insulator demonstrated a slightly higher breakdown voltage, whereas the capacitance value remained almost constant (~150 nF/cm2). The linear mobility slightly increased from ~30 to ~35 cm2/Vs when the treatment time increased from 0 to 10 s, whereas a 30 s-treated TFT demonstrated a decreased mobility of ~15 cm2/Vs. The subthreshold swing and the threshold voltage remained in the 100–120 mV/dec. range and near 0 V, respectively. The hysteresis dramatically decreased from ~0.5 V to 0 V when a 10 s treatment was applied, and the 10 s-treated TFT demonstrated the best stability under high current stress (HCS) of 100 μA. The analysis of the tin oxide thin film crystallinity and oxygen environment demonstrated that the a-SnOx remained amorphous, whereas more metal–oxygen bonds were formed with a 10 s NF3 plasma treatment. We also demonstrate that the density of states (DOS) significantly decreased in the 10 s-treated TFT compared to the other conditions. The stability under HCS was attributed to the HfO2/a-SnOx interface quality. Full article
Show Figures

Figure 1

27 pages, 17279 KiB  
Article
Support Structures Optimisation for High-Quality Metal Additive Manufacturing with Laser Powder Bed Fusion: A Numerical Simulation Study
by Antonios Dimopoulos, Mohamad Salimi, Tat-Hean Gan and Panagiotis Chatzakos
Materials 2023, 16(22), 7164; https://doi.org/10.3390/ma16227164 - 14 Nov 2023
Cited by 3 | Viewed by 1499
Abstract
This study focuses on Metal Additive Manufacturing (AM), an emerging method known for its ability to create lightweight components and intricate designs. However, Laser Powder Bed Fusion (LPBF), a prominent AM technique, faces a major challenge due to the development of high residual [...] Read more.
This study focuses on Metal Additive Manufacturing (AM), an emerging method known for its ability to create lightweight components and intricate designs. However, Laser Powder Bed Fusion (LPBF), a prominent AM technique, faces a major challenge due to the development of high residual stress, resulting in flawed parts and printing failures. The study’s goal was to assess the thermal behaviour of different support structures and optimised designs to reduce the support volume and residual stress while ensuring high-quality prints. To explore this, L-shaped specimens were printed using block-type support structures through an LPBF machine. This process was subsequently validated through numerical simulations, which were in alignment with experimental observations. In addition to block-type support structures, line, contour, and cone supports were examined numerically to identify the optimal solutions that minimise the support volume and residual stress while maintaining high-quality prints. The optimisation approach was based on the Design of Experiments (DOE) methodology and multi-objective optimisation. The findings revealed that block supports exhibited excellent thermal behaviour. High-density supports outperformed low-density alternatives in temperature distribution, while cone-type supports were more susceptible to warping. These insights provide valuable guidance for improving the metal AM and LPBF processes, enabling their broader use in industries like aerospace, medical, defence, and automotive. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 4127 KiB  
Article
Analysis of the Effect of Skew Rolling Parameters on the Surface Roughness of C60 Steel Products Using ML Methods
by Konrad Lis
Materials 2023, 16(22), 7136; https://doi.org/10.3390/ma16227136 - 12 Nov 2023
Viewed by 882
Abstract
This paper presents results from experimental and numerical studies of the skew rolling process used to shape axisymmetric products made of C60-grade steel. An experimental study was carried out to investigate the effect of process parameters described by the forming angle α, [...] Read more.
This paper presents results from experimental and numerical studies of the skew rolling process used to shape axisymmetric products made of C60-grade steel. An experimental study was carried out to investigate the effect of process parameters described by the forming angle α, the skew angle θ, the reduction ratio δ, and the jaw chuck velocity Vu on the surface roughness Ra of the forgings. Stepped forgings made of C60-grade steel were rolled. Based on numerical calculations, a machine learning regression model was developed that uses process parameters to predict the surface roughness of produced parts. The random forest model was found to be the most effective based on the determined metrics (MAE, RMSE, R2). A more detailed analysis of this model was performed using the SHAP library. The application of ML methods will enable optimization of skew rolling through appropriate selection of process parameters affecting improvement in product quality. Full article
(This article belongs to the Special Issue Advanced Manufacturing Processes of Metal Forming)
Show Figures

Figure 1

11 pages, 2303 KiB  
Article
Tailoring the Structure and Properties of Epitaxial Europium Tellurides on Si(100) through Substrate Temperature Control
by Fan Yu, Xiaodong Qiu, Jinming Zhou, Lin Huang, Bin Yang, Junming Liu, Di Wu, Gan Wang and Yi Zhang
Materials 2023, 16(22), 7093; https://doi.org/10.3390/ma16227093 - 9 Nov 2023
Viewed by 871
Abstract
In this study, we improved the growth procedure of EuTe and realized the epitaxial growth of EuTe4. Our research demonstrated a selective growth of both EuTe and EuTe4 on Si(100) substrates using the molecular beam epitaxy (MBE) technique and reveals [...] Read more.
In this study, we improved the growth procedure of EuTe and realized the epitaxial growth of EuTe4. Our research demonstrated a selective growth of both EuTe and EuTe4 on Si(100) substrates using the molecular beam epitaxy (MBE) technique and reveals that the substrate temperature plays a crucial role in determining the structural phase of the grown films: EuTe can be obtained at a substrate temperature of 220 °C while lowering down the temperature to 205 °C leads to the formation of EuTe4. A comparative analysis of the transmittance spectra of these two films manifested that EuTe is a semiconductor, whereas EuTe4 exhibits charge density wave (CDW) behavior at room temperature. The magnetic measurements displayed the antiferromagnetic nature in EuTe and EuTe4, with Néel temperatures of 10.5 and 7.1 K, respectively. Our findings highlight the potential for controllable growth of EuTe and EuTe4 thin films, providing a platform for further exploration of magnetism and CDW phenomena in rare earth tellurides. Full article
Show Figures

Figure 1

39 pages, 5360 KiB  
Review
The Alphabet of Nanostructured Polypyrrole
by Sylwia Golba and Jan Loskot
Materials 2023, 16(22), 7069; https://doi.org/10.3390/ma16227069 - 7 Nov 2023
Viewed by 1076
Abstract
This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation [...] Read more.
This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation of the ordered structure is dictated by the ability of the local forces and effects to induce restraints that help shape the structure. This review covers the aspects of morphology and roughness and their impact on the final properties of the modified electrode activity in selected applications. Full article
Show Figures

Graphical abstract

16 pages, 10763 KiB  
Article
Influence of Long-Term Storage and UV Light Exposure on Characteristics of Polyurethane Foams for Cryogenic Insulation
by Beatrise Sture, Vladimir Yakushin, Laima Vevere and Ugis Cabulis
Materials 2023, 16(22), 7071; https://doi.org/10.3390/ma16227071 - 7 Nov 2023
Viewed by 882
Abstract
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were [...] Read more.
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were produced. Due to climate change, several restrictions have been made regarding the usage of blowing agents used for PUR foam production. Lately, hydrofluoroolefins (HFOs) have been suggested as an alternative for PUR foam production due to their low global warming potential (GWP) and ozone depletion potential (ODP), replacing the hydrofluorocarbons (HFCs) so far used. This change in blowing agents naturally altered the usage of catalysts. Reactive amine-based catalysts are less hazardous because of their low volatility and ability to react successfully with isocyanate or polyols. Spray-applied PUR foams with a potential application for cryogenic insulation were produced and tested for long-term storage, analyzing parameters such as the pH value of polyol composition, foaming kinetics (trise, tcream), etc. Athermal analysis (TG, DSC) was also applied to developed materials, as well as artificial ageing by exposing samples to UV light. It was discovered that PUR foams obtained using reactive amine-based catalysts, such as Polycat 203 and 218, have a higher integral heat capacity, but polyol mixtures containing these catalysts cannot exceed a storage time of more than 4 months. It was also observed from artificial ageing tests of PUR cryogenic insulation by exposure to UV light that the thickness of the degraded layer reached 0.8 mm (after 1000 h), but no significant destruction of cellular structure deeper in the material was observed. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

13 pages, 3240 KiB  
Article
Effect of the Solid Solution and Aging Treatment on the Mechanical Properties and Microstructure of a Novel Al-Mg-Si Alloy
by Yan Chen, Wu Wei, Yu Zhao, Wei Shi, Xiaorong Zhou, Li Rong, Shengping Wen, Xiaolan Wu, Kunyuan Gao, Hui Huang and Zuoren Nie
Materials 2023, 16(21), 7036; https://doi.org/10.3390/ma16217036 - 4 Nov 2023
Cited by 3 | Viewed by 1098
Abstract
A novel Al-Mg-Si aluminum alloy with the addition of the micro-alloying element Er and Zr that was promptly quenched after extrusion has been studied. The solid solution and aging treatment of the novel alloy are studied by observing the microstructure, mechanical properties, and [...] Read more.
A novel Al-Mg-Si aluminum alloy with the addition of the micro-alloying element Er and Zr that was promptly quenched after extrusion has been studied. The solid solution and aging treatment of the novel alloy are studied by observing the microstructure, mechanical properties, and strengthening mechanism. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques are employed to examine the changes in the microstructure resulting from various solid solution treatments and aging treatments. The best strengthening effect can be achieved when the solubility of the MgSi phase and precipitate β″ (Mg2Si phase) is at their maximum. The addition of Er and Zr elements promotes the precipitation of the β″ phase and makes the b″ phase more finely dispersed. The aging strengthening of alloys is a comprehensive effect of the dislocation cutting mechanism and bypass mechanism, the joint effect of diffusion strengthening of Al3(Er,Zr) particles and the addition of Er and Zr elements promoting the precipitation strengthening of β″ phases. In this paper, by adding Er and Zr elements and exploring the optimal heat treatment system, the yield strength of the alloy reaches 437 MPa and the tensile strength reaches 453 MPa after solid solution treatment at 565 °C/30 min and aging at 175 °C/10 h. Full article
Show Figures

Figure 1

12 pages, 7966 KiB  
Article
MOF-808 as an Efficient Catalyst for Valorization of Biodiesel Waste Production: Glycerol Acetalization
by Fátima Mirante, Pedro Leo, Catarina N. Dias, Luís Cunha-Silva and Salete S. Balula
Materials 2023, 16(21), 7023; https://doi.org/10.3390/ma16217023 - 3 Nov 2023
Cited by 2 | Viewed by 1310
Abstract
Glycerol is the main residue in the biodiesel production industry; therefore, their valorization is crucial. The acetalization of glycerol toward fuel additives such as solketal (2,2-dimethyl-1,3-dioxolan-4-methanol) is of high interest, promoting circular economy since it can be added to biodiesel or even fossil [...] Read more.
Glycerol is the main residue in the biodiesel production industry; therefore, their valorization is crucial. The acetalization of glycerol toward fuel additives such as solketal (2,2-dimethyl-1,3-dioxolan-4-methanol) is of high interest, promoting circular economy since it can be added to biodiesel or even fossil diesel to improve their quality and efficiency. Straightforward-prepared metal–organic framework (MOF) materials of the MOF-808 family were applied to the valorization of glycerol for the first time. In particular, MOF-808(Hf) was revealed to be an effective heterogeneous catalyst to produce solketal under moderate conditions: a small amount of the MOF material (only 4 wt% of glycerol), a 1:6 ratio of glycerol/acetone, and a temperature of 333 K. The high efficiency of MOF-808(Hf) was associated with the high amount of acid centers present in its structure. Furthermore, its structural characteristics, such as window opening cavity size and pore diameters, were shown to be ideal for reusing this material for at least ten consecutive reaction cycles without losing activity (conversion > 90% and selectivity > 98%). Remarkably, it was not necessary to wash or activate the MOF-808(Hf) catalyst between cycles (no pore blockage occurred), and it maintained structural integrity after ten cycles, confirming its ability to be a sustainable heterogeneous catalyst for glycerol valorization. Full article
Show Figures

Figure 1

17 pages, 8119 KiB  
Article
Unsupervised Deep Learning for Advanced Forming Limit Analysis in Sheet Metal: A Tensile Test-Based Approach
by Aleksandra Thamm, Florian Thamm, Annette Sawodny, Sally Zeitler, Marion Merklein and Andreas Maier
Materials 2023, 16(21), 7001; https://doi.org/10.3390/ma16217001 - 1 Nov 2023
Viewed by 1172
Abstract
An accurate description of the formability and failure behavior of sheet metal materials is essential for an optimal forming process design. In this respect, the forming limit curve (FLC) based on the Nakajima test, which is determined in accordance with DIN EN ISO [...] Read more.
An accurate description of the formability and failure behavior of sheet metal materials is essential for an optimal forming process design. In this respect, the forming limit curve (FLC) based on the Nakajima test, which is determined in accordance with DIN EN ISO 12004-2, is a wide-spread procedure for evaluating the formability of sheet metal materials. Thereby the FLC is affected by influences originating from intrinsic factors of the Nakajima test-setup, such as friction, which leads to deviations from the linear strain path, biaxial prestress and bending superposition. These disadvantages can be circumvented by an alternative test combination of uniaxial tensile test and hydraulic bulge test. In addition, the forming limit capacity of many lightweight materials is underestimated using the cross-section method according to DIN EN ISO 12004-2, due to the material-dependent occurrence of multiple strain maxima during forming or sudden cracking without prior necking. In this regard, machine learning approaches have a high potential for a more accurate determination of the forming limit curve due to the inclusion of other parameters influencing formability. This work presents a machine learning approach focused on uniaxial tensile tests to define the forming limit of lightweight materials and high-strength steels. The transferability of an existing weakly supervised convolutional neural network (CNN) approach was examined, originally designed for Nakajima tests, to uniaxial tensile tests. Additionally, a stereo camera-based method for this purpose was developed. In our evaluation, we train and test materials, including AA6016, DX54D, and DP800, through iterative data composition, using cross-validation. In the context of our stereo camera-based approach, strains for different materials and thicknesses were predicted. In this cases, our method successfully predicted the major strains with close agreement to ISO standards. For DX54D, with a thickness of 0.8 mm, the prediction was 0.659 (compared to ISO’s 0.664). Similarly, for DX54D, 2.0 mm thickness, the predicted major strain was 0.780 (compared to ISO 0.705), and for AA6016, at 1.0 mm thickness, a major strain of 0.314 (in line with ISO 0.309) was estimated. However, for DP800 with a thickness of 1.0 mm, the prediction yielded a major strain of 0.478 (as compared to ISO 0.289), indicating a divergence from the ISO standard in this particular case. These results in general, generated with the CNN stereo camera-based approach, underline the quantitative alignment of the approach with the cross-section method. Full article
Show Figures

Figure 1

14 pages, 3685 KiB  
Article
Collagen-Coated Hyperelastic Bone Promotes Osteoblast Adhesion and Proliferation
by Andrei Gresita, Iman Raja, Eugen Petcu and Michael Hadjiargyrou
Materials 2023, 16(21), 6996; https://doi.org/10.3390/ma16216996 - 1 Nov 2023
Cited by 1 | Viewed by 963
Abstract
Successfully reconstructing bone and restoring its dynamic function represents a significant challenge for medicine. Critical size defects (CSDs), resulting from trauma, tumor removal, or degenerative conditions, do not naturally heal and often require complex bone grafting. However, these grafts carry risks, such as [...] Read more.
Successfully reconstructing bone and restoring its dynamic function represents a significant challenge for medicine. Critical size defects (CSDs), resulting from trauma, tumor removal, or degenerative conditions, do not naturally heal and often require complex bone grafting. However, these grafts carry risks, such as tissue rejection, infections, and surgical site damage, necessitating the development of alternative treatments. Three-dimensional and four-dimensional printed synthetic biomaterials represent a viable alternative, as they carry low production costs and are highly reproducible. Hyperelastic bone (HB), a biocompatible synthetic polymer consisting of 90% hydroxyapatite and 10% poly(lactic-co-glycolic acid, PLGA), was examined for its potential to support cell adhesion, migration, and proliferation. Specifically, we seeded collagen-coated HB with MG-63 human osteosarcoma cells. Our analysis revealed robust cell adhesion and proliferation over 7 days in vitro, with cells forming uniform monolayers on the external surface of the scaffold. However, no cells were present on the core of the fibers. The cells expressed bone differentiation markers on days 3 and 5. By day 7, the scaffold began to degrade, developing microscopic fissures and fragmentation. In summary, collagen-coated HB scaffolds support cell adhesion and proliferation but exhibit reduced structural support after 7 days in culture. Nevertheless, the intricate 3D architecture holds promise for cellular migration, vascularization, and early osteogenesis. Full article
Show Figures

Figure 1

17 pages, 7395 KiB  
Article
Influence of Surface Preparation on the Microstructure and Mechanical Properties of Cold-Sprayed Nickel Coatings on Al 7075 Alloy
by Wojciech Żórawski, Anna Góral, Medard Makrenek, Lidia Lityńska-Dobrzyńska and Paweł Czaja
Materials 2023, 16(21), 7002; https://doi.org/10.3390/ma16217002 - 1 Nov 2023
Viewed by 750
Abstract
This work presents the effect of surface roughness (Al 7075) on the microstructure and mechanical properties of cold-sprayed nickel coatings. Coating analysis included substrate surfaces and coating geometry, microstructure characterization, microhardness, nanohardness, elastic modulus, and adhesion. The results show that the surface preparation [...] Read more.
This work presents the effect of surface roughness (Al 7075) on the microstructure and mechanical properties of cold-sprayed nickel coatings. Coating analysis included substrate surfaces and coating geometry, microstructure characterization, microhardness, nanohardness, elastic modulus, and adhesion. The results show that the surface preparation had a significant effect on coating adhesion and microstructure. The coating deposited at the highest gas temperature revealed a dense microstructure, showing very good adhesion of the impacting powder particles to the substrate and good bonding between deposited layers. The Ni grains with different shapes (elongated, equiaxed) and sizes of a few dozen to several hundred nanometres were present in the splats. An increase in temperature caused significant growth in coating thickness as a result of the powder grains’ higher velocity. Moreover, higher gas temperature resulted in the enhancement of micro- and nanohardness, elastic modulus, and adhesion. The adhesive bond strength of Ni coatings in the tested temperature ranges from 500 °C to 800 °C increased with the increase in the surface roughness of the substrate. For the Al 7075 coarse grit-blasted (CG) substrate with the highest roughness, the adhesion reached the highest value of 44.6 MPa when the working gas was at a temperature of 800 °C. There were no distinct dependencies of surface roughness and thickness on the mechanical properties of the cold-sprayed nickel coating. Full article
Show Figures

Figure 1

18 pages, 11760 KiB  
Article
Sintered Brake Pads Failure in High-Energy Dissipation Braking Tests: A Post-Mortem Mechanical and Microstructural Analysis
by Alexandre Mege-Revil, Jessie Rapontchombo-Omanda, Itziar Serrano-Munoz, Anne-Lise Cristol, Vincent Magnier and Philippe Dufrenoy
Materials 2023, 16(21), 7006; https://doi.org/10.3390/ma16217006 - 1 Nov 2023
Cited by 2 | Viewed by 995
Abstract
The industrial sintering process used to produce metallic matrix pads has been altered to diminish the amount of copper used. Unfortunately, replacing a large part of the copper with iron seems to have reached a limit. In the high-energy, emergency-type rail braking used [...] Read more.
The industrial sintering process used to produce metallic matrix pads has been altered to diminish the amount of copper used. Unfortunately, replacing a large part of the copper with iron seems to have reached a limit. In the high-energy, emergency-type rail braking used in this study, the materials are put to the very limit of their usage capacity, allowing us to observe the evolution of the microstructure and mechanical properties of sintered, metallic matrix pads. After the braking test, their compressive behaviour was assessed using digital image correlation (DIC), and their microstructure with scanning electron microscopy (SEM). The worn material has three flat layers with different microstructures and compressive behaviours. The bottom layer seems unmodified. Macroscopic and microscopic cracks run through the intermediate layer (2–15 mm depth). The top layer has stiffened thanks to resolidification of copper. The temperature reaches 1000 °C during the braking test, which also explains the carbon diffusion into iron that result in the weakening of iron –graphite interfaces in the pad. Finally, submicronic particles are detected at many open interfaces of the worn and compressed pad. Associated with the predominant role of graphite particles, this explains the weak compressive behaviour of the pads. Full article
Show Figures

Figure 1

13 pages, 4111 KiB  
Article
Synergetic Effect and Phase Engineering by Formation of Ti3C2Tx Modified 2H/1T-MoSe2 Composites for Enhanced HER
by Lei Xiao, Qichao Yang, Xiangyang Zhu, Yang Wei and Jing Wang
Materials 2023, 16(21), 6991; https://doi.org/10.3390/ma16216991 - 31 Oct 2023
Cited by 1 | Viewed by 958
Abstract
The typical semi conductivity and few active sites of hydrogen evolution of 2H MoSe2 severely restrict its electrocatalytic hydrogen evolution performance. At the same time, the 1T MoSe2 has metal conductivity and plentiful hydrogen evolution sites, making it feasible to optimize [...] Read more.
The typical semi conductivity and few active sites of hydrogen evolution of 2H MoSe2 severely restrict its electrocatalytic hydrogen evolution performance. At the same time, the 1T MoSe2 has metal conductivity and plentiful hydrogen evolution sites, making it feasible to optimize the electrocatalytic hydrogen evolution behavior of MoSe2 using phase engineering. In this study, we, through a simple one-step hydrothermal method, composed 1T/2H MoSe2, and then used newly emerging transition metal carbides with several atomic-layer thicknesses Ti3C2Tx to improve the conductivity of a MoSe2-based electrocatalyst. Finally, MoSe2@Ti3C2Tx was successfully synthesized, according to the control of the additional amount of Ti3C2Tx, to form a proper MoSe2/ Ti3C2Tx heterostructure with a better electrochemical HER performance. As obtained MoSe2@4 mg-Ti3C2Tx achieved a low overpotential, a small Tafel slope and this work offers additional insight into broadened MoSe2 and MXenes-based catalyst’s electrochemical application. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Figure 1

11 pages, 4019 KiB  
Article
Study on the Stability of Cu-Ni Cluster Components and the Effect of Strain on Its Structure
by Xiaochuan Zeng, Cuizhu He, Xuejun Li and Qiaodan Hu
Materials 2023, 16(21), 6952; https://doi.org/10.3390/ma16216952 - 30 Oct 2023
Viewed by 785
Abstract
Solute clusters are one of the important mechanisms of irradiation embrittlement of ferritic steels. It is of great significance to study the stability of solute clusters in ferritic steels and their effects on the mechanical properties of the materials. Molecular dynamics was used [...] Read more.
Solute clusters are one of the important mechanisms of irradiation embrittlement of ferritic steels. It is of great significance to study the stability of solute clusters in ferritic steels and their effects on the mechanical properties of the materials. Molecular dynamics was used to study the binding energy, defect energy, and interaction energy of 2 nm-diameter Cu-Ni clusters in the ferritic lattice, which have six categories of Cu-Ni clusters, such as the pure Cu cluster, the core–shell structural cluster with one layer to four layers of Ni atoms and the pure Ni cluster. It was found that Cu-Ni clusters have lower energy advantages than pure Ni clusters. Through shear strain simulation of the three clusters, the structure of 2 nm diameter clusters does not undergo phase transformation. The number of slip systems and the length of dislocation lines in the cluster system are positively correlated with the magnitude of the critical stress of material plastic deformation. Full article
(This article belongs to the Special Issue Key Materials in Nuclear Reactors)
Show Figures

Figure 1

22 pages, 4675 KiB  
Article
Screening Ba0.9A0.1MnO3 and Ba0.9A0.1Mn0.7Cu0.3O3 (A = Mg, Ca, Sr, Ce, La) Sol-Gel Synthesised Perovskites as GPF Catalysts
by Nawel Ghezali, Álvaro Díaz Verde and María José Illán Gómez
Materials 2023, 16(21), 6899; https://doi.org/10.3390/ma16216899 - 27 Oct 2023
Cited by 3 | Viewed by 878
Abstract
Ba0.9A0.1MnO3 (BM-A) and Ba0.9A0.1Mn0.7Cu0.3O3 (BMC-A) (A = Mg, Ca, Sr, Ce, La) perovskite-type mixed oxides were synthesised, characterised, and used for soot oxidation in simulated Gasoline Direct Injection (GDI) [...] Read more.
Ba0.9A0.1MnO3 (BM-A) and Ba0.9A0.1Mn0.7Cu0.3O3 (BMC-A) (A = Mg, Ca, Sr, Ce, La) perovskite-type mixed oxides were synthesised, characterised, and used for soot oxidation in simulated Gasoline Direct Injection (GDI) engine exhaust conditions. The samples have been obtained by the sol-gel method in an aqueous medium and deeply characterised. The characterization results indicate that the partial substitution of Ba by A metal in BaMnO3 (BM) and BaMn0.7Cu0.3O3 (BMC) perovskites: (i) favours the hexagonal structure of perovskite; (ii) improves the reducibility and the oxygen desorption during Temperature-Programmed Desorption (O2-TPD) tests and, consequently, the oxygen mobility; (iii) mantains the amount of oxygen vacancies and of Mn(IV) and Mn(III) oxidation states, being Mn(IV) the main one; and (iv) for Ba0.9A0.1Mn0.7Cu0.3O3 (BMC-A) series, copper is partially incorporated into the structure. The soot conversion data reveal that Ba0.9La0.1Mn0.7Cu0.3O3 (BMC-La) is the most active catalyst in an inert (100% He) reaction atmosphere, as it presents the highest amount of copper on the surface, and that Ba0.9Ce0.1MnO3 (BM-Ce) is the best one if a low amount of O2 (1% O2 in He) is present, as it combines the highest emission of oxygen with the good redox properties of Ce(IV)/Ce(III) and Mn(IV)/Mn(III) pairs. Full article
Show Figures

Figure 1

13 pages, 4155 KiB  
Article
Cyclic Voltammetry of C.I. Disperse Orange 62 in an Aqueous Electrolyte
by Thomas Bechtold, Noemí Aguiló-Aguayo and Tung Pham
Materials 2023, 16(21), 6901; https://doi.org/10.3390/ma16216901 - 27 Oct 2023
Viewed by 796
Abstract
Disperse dyes are an important group of colorants for dyeing polyester fibers. Approximately 30.000 tons of disperse dyes are released into the waste water annually from spent dyebaths. Therefore, methods for decolorizing such dyes are of general interest. The reductive after-treatment of disperse [...] Read more.
Disperse dyes are an important group of colorants for dyeing polyester fibers. Approximately 30.000 tons of disperse dyes are released into the waste water annually from spent dyebaths. Therefore, methods for decolorizing such dyes are of general interest. The reductive after-treatment of disperse dyes using reducing agents, such as Na2S2O4, is a widely used process to improve rub fastness through dye reduction. Electrochemical dye reduction could be an alternative process for reductive dye treatment. In this work C.I. Disperse Orange 62 was used as a representative dye to study the direct cathodic reduction of a disperse dye with cyclic voltammetry. As anticipated for dispersed organic matter, relatively low current densities were observed, which strongly depend on the state of dispersion of the dye. The current density was increased by using dispersions prepared through dye precipitation from DMF solution and by the use of N-cetyl-N,N,N,-trimethyl-ammonium bromide as a cationic surfactant. The results demonstrate the successful cathodic reduction of a dispersed organic dye; however, the low solubility of the reaction products in the aqueous electrolyte hinders an efficient cathodic dye reduction. Full article
(This article belongs to the Special Issue Electrochemistry of Organic Compounds and Their Applications)
Show Figures

Graphical abstract

11 pages, 627 KiB  
Article
Analysis of Stress Concentration in Functionally Graded Plates with Linearly Increasing Young’s Modulus
by Hassan Mohamed Abdelalim Abdalla, Daniele Casagrande and Francesco De Bona
Materials 2023, 16(21), 6882; https://doi.org/10.3390/ma16216882 - 26 Oct 2023
Viewed by 845
Abstract
In this article, the strain and stress analyses of functionally graded plates with circular holes that are subject to a uniaxial far-field traction load are analytically considered. The Young’s modulus is assumed to vary linearly along the radial direction around the hole. The [...] Read more.
In this article, the strain and stress analyses of functionally graded plates with circular holes that are subject to a uniaxial far-field traction load are analytically considered. The Young’s modulus is assumed to vary linearly along the radial direction around the hole. The adoption of such a type of inhomogeneity variation can be justified as follows. Firstly, and among all the possible variations of stiffness, the linear one is indeed the simplest inhomogeneity distribution. Surprisingly however, according to our knowledge extent, the associated elastic fields were not yet addressed in the literature. Secondly, a linearly varying stiffness could reasonably imply a remarkable advantage from a technological point of view. In fact, unlike nonlinearly varying stiffness plates, manufacturing routes are only required to handle constant variations throughout the radial domain. After recalling the basic equations for plane stress elasticity, the displacement, strain, and stress fields around the hole were numerically tackled and discussed for different stiffness ratios. A comparison was also carried out with other Young’s modulus distributions that have been commonly employed in the literature. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 5028 KiB  
Article
Synthesis and Characterization of Bioactive Glass and Zinc Oxide Nanoparticles with Enamel Remineralization and Antimicrobial Capabilities
by Ryota Nagasaki, Keiji Nagano, Takashi Nezu and Masahiro Iijima
Materials 2023, 16(21), 6878; https://doi.org/10.3390/ma16216878 - 26 Oct 2023
Viewed by 995
Abstract
Background: We investigated the effect of bioactive glass and zinc oxide nanoparticles on enamel remineralization, as well as their antimicrobial effect on cariogenic microbes. This is the first study that investigated the properties of bioactive glass and zinc oxide nanoparticles with mixed materials. [...] Read more.
Background: We investigated the effect of bioactive glass and zinc oxide nanoparticles on enamel remineralization, as well as their antimicrobial effect on cariogenic microbes. This is the first study that investigated the properties of bioactive glass and zinc oxide nanoparticles with mixed materials. Methods: Fluoride gel (F), bioactive glass microparticles (µB), bioactive glass nanoparticles (nB), zinc oxide nanoparticles (Z), and a mixed suspension of nB and Z (nBZ) were prepared and characterized by scanning and transmission electron microscopy, zeta potential measurement, X-ray diffraction, and acid buffering capacity testing. Further, we performed a remineralization cycle test of 28 days, and nanoindentation testing was carried out during the immersion period, and then the enamel surfaces were examined using scanning electron microscopy. Additionally, the antimicrobial effects of the sample suspensions were evaluated by measuring their minimum microbicidal concentrations against various cariogenic microbes. Results: Our results revealed that nB had a near-circular shape with an amorphous structure and a considerably large specific surface area due to nanoparticulation. Additionally, nB possessed a rapid acid buffering capacity that was comparable to that of μB. In the remineralization test, faster recovery of mechanical properties was observed on the enamel surface immersed in samples containing bioactive glass nanoparticles (nB and nBZ). After remineralization, demineralized enamel immersed in any of the samples showed a rough and porous surface structure covered with mineralized structures. Furthermore, nBZ exhibited a broad antimicrobial spectrum. Conclusions: These results demonstrated that bioactive glass and zinc oxide nanoparticles have superior demineralization-suppressing and remineralization-promoting effects. Full article
Show Figures

Figure 1

14 pages, 3835 KiB  
Article
Martensitic Phase-Transforming Metamaterial: Concept and Model
by Sosuke Kanegae, Masayuki Okugawa and Yuichiro Koizumi
Materials 2023, 16(21), 6854; https://doi.org/10.3390/ma16216854 - 25 Oct 2023
Viewed by 850
Abstract
We successfully developed a mechanical metamaterial that displays martensitic transformation for the first time. This metamaterial has a bistable structure capable of transitioning between two stable configurations through shear deformation. The outer shape of the unit cell of this structure is a parallelogram, [...] Read more.
We successfully developed a mechanical metamaterial that displays martensitic transformation for the first time. This metamaterial has a bistable structure capable of transitioning between two stable configurations through shear deformation. The outer shape of the unit cell of this structure is a parallelogram, with its upper and lower sides forming the bases of two solid triangles. The vertices from these triangles within the parallelogram are linked by short beams, while the remaining vertices are linked by long beams. The elastic energy of the essential model of the metamaterial was formulated analytically. The energy barrier between these two stable configurations consists of the elastic strain energy due to the tensile deformation of the short beams, the compressive deformation of the long beams, and the bending deformation of the connecting hinges. One example of a novel metamaterial was additively manufactured via the materials extrusion (MEX) process of thermoplastic polyurethane. The metamaterial exhibited deformation behaviors characteristic of martensitic transformations. This mechanical metamaterial has the potential to obtain properties caused by martensitic transformation in actual materials, such as the shape memory effect and superelasticity. Full article
(This article belongs to the Special Issue Acoustic and Mechanical Metamaterials: Recent Advances)
Show Figures

Figure 1

16 pages, 4388 KiB  
Article
Durability Analysis of CFRP Adhesive Joints: A Study Based on Entropy Damage Modeling Using FEM
by Yutong Li, Huachao Deng, Maruri Takamura and Jun Koyanagi
Materials 2023, 16(20), 6821; https://doi.org/10.3390/ma16206821 - 23 Oct 2023
Cited by 2 | Viewed by 968
Abstract
Experimental methodologies for fatigue lifetime prediction are time-intensive and susceptible to environmental variables. Although the cohesive zone model is popular for predicting adhesive fatigue lifetime, entropy-based methods have also displayed potential. This study aims to (1) provide an understanding of the durability characteristics [...] Read more.
Experimental methodologies for fatigue lifetime prediction are time-intensive and susceptible to environmental variables. Although the cohesive zone model is popular for predicting adhesive fatigue lifetime, entropy-based methods have also displayed potential. This study aims to (1) provide an understanding of the durability characteristics of carbon fiber-reinforced plastic (CFRP) adhesive joints by incorporating an entropy damage model within the context of the finite element method and (2) examine the effects of different adhesive layer thicknesses on single-lap shear models. As the thickness of the adhesive layer increases, damage variables initially increase and then decrease. These peak at 0.3 mm. This observation provides a crucial understanding of the stress behavior at the resin–CFRP interface and the fatigue mechanisms of the resin. Full article
Show Figures

Figure 1

30 pages, 5370 KiB  
Article
A Method for Predicting the Creep Rupture Life of Small-Sample Materials Based on Parametric Models and Machine Learning Models
by Xu Zhang, Jianyao Yao, Yulin Wu, Xuyang Liu, Changyin Wang and Hao Liu
Materials 2023, 16(20), 6804; https://doi.org/10.3390/ma16206804 - 22 Oct 2023
Cited by 1 | Viewed by 1388
Abstract
In view of the differences in the applicability and prediction ability of different creep rupture life prediction models, we propose a creep rupture life prediction method in this paper. Various time–temperature parametric models, machine learning models, and a new method combining time–temperature parametric [...] Read more.
In view of the differences in the applicability and prediction ability of different creep rupture life prediction models, we propose a creep rupture life prediction method in this paper. Various time–temperature parametric models, machine learning models, and a new method combining time–temperature parametric models with machine learning models are used to predict the creep rupture life of a small-sample material. The prediction accuracy of each model is quantitatively compared using model evaluation indicators (RMSE, MAPE, R2), and the output values of the most accurate model are used as the output values of the prediction method. The prediction method not only improves the applicability and accuracy of creep rupture life predictions but also quantifies the influence of each input variable on creep rupture life through the machine learning model. A new method is proposed in order to effectively take advantage of both advanced machine learning models and classical time–temperature parametric models. Parametric equations of creep rupture life, stress, and temperature are obtained using different time–temperature parametric models; then, creep rupture life data, obtained via equations under other temperature and stress conditions, are used to expand the training set data of different machine learning models. By expanding the data of different intervals, the problem of the low accuracy of the machine learning model for the small-sample material is solved. Full article
Show Figures

Figure 1

13 pages, 11044 KiB  
Article
Tellurium Corrosion of Type 304/304L Stainless Steel, Iron, Chromium, and Nickel in High-Temperature Liquid Sodium
by Yi Xie
Materials 2023, 16(20), 6798; https://doi.org/10.3390/ma16206798 - 21 Oct 2023
Viewed by 846
Abstract
Investigating tellurium (Te) corrosion on structural materials is crucial for sodium-cooled fast reactors (SFRs) due to radionuclide presence and knowledge gaps. In this study, Type 304/304L stainless steel (SS304), chromium (Cr), iron (Fe), and nickel (Ni) samples were immersed in low-oxygen environments with [...] Read more.
Investigating tellurium (Te) corrosion on structural materials is crucial for sodium-cooled fast reactors (SFRs) due to radionuclide presence and knowledge gaps. In this study, Type 304/304L stainless steel (SS304), chromium (Cr), iron (Fe), and nickel (Ni) samples were immersed in low-oxygen environments with Te in liquid sodium at 773 K for 30 days. At 10 ppm oxygen, SS304 showed multiple oxide layers, including a compact NaCrO2 interlayer and porous Na-Fe-Ni-O outer layers. Tellurium penetrated through the porous layers but was hindered by the NaCrO2 interlayer. At 0.01 ppm oxygen, Cr had no oxide layer, while Fe and Ni had unstable ones. Tellurium-induced pitting was deeper in Fe and Ni compared to Cr. Oxygen levels and Cr composition are critical factors affecting stable oxide compound layer formation and mitigating Te-induced pitting. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

14 pages, 2178 KiB  
Article
Dual-Emissive Monoruthenium Complexes of N(CH3)-Bridged Ligand: Synthesis, Characterization, and Substituent Effect
by Si-Hai Wu, Zhe Zhang, Ren-Hui Zheng, Rong Yang, Lianhui Wang, Jiang-Yang Shao, Zhong-Liang Gong and Yu-Wu Zhong
Materials 2023, 16(20), 6792; https://doi.org/10.3390/ma16206792 - 20 Oct 2023
Viewed by 821
Abstract
Three monoruthenium complexes 1(PF6)23(PF6)2 bearing an N(CH3)-bridged ligand have been synthesized and characterized. These complexes have a general formula of [Ru(bpy)2(L)](PF6)2, where L [...] Read more.
Three monoruthenium complexes 1(PF6)23(PF6)2 bearing an N(CH3)-bridged ligand have been synthesized and characterized. These complexes have a general formula of [Ru(bpy)2(L)](PF6)2, where L is a 2,5-di(N-methyl-N’-(pyrid-2-yl)amino)pyrazine (dapz) derivative with various substituents, and bpy is 2,2′-bipyridine. The photophysical and electrochemical properties of these compounds have been examined. The solid-state structure of complex 3(PF6)2 is studied by single-crystal X-ray analysis. These complexes show two well-separated emission bands centered at 451 and 646 nm (Δλmax = 195 nm) for 1(PF6)2, 465 and 627 nm (Δλmax = 162 nm) for 2(PF6)2, and 455 and 608 nm (Δλmax = 153 nm) for 3(PF6)2 in dilute acetonitrile solution, respectively. The emission maxima of the higher-energy emission bands of these complexes are similar, while the lower-energy emission bands are dependent on the electronic nature of substituents. These complexes display two consecutive redox couples owing to the stepwise oxidation of the N(CH3)-bridged ligand and ruthenium component. Moreover, these experimental observations are analyzed by computational investigation. Full article
(This article belongs to the Special Issue Advanced Materials for Luminescent Applications)
Show Figures

Figure 1

16 pages, 7283 KiB  
Article
Network Structure and Luminescent Properties of ZnO–B2O3–Bi2O3–WO3:Eu3+ Glasses
by Aneliya Yordanova, Margarita Milanova, Reni Iordanova, Margit Fabian, Lyubomir Aleksandrov and Petia Petrova
Materials 2023, 16(20), 6779; https://doi.org/10.3390/ma16206779 - 20 Oct 2023
Cited by 1 | Viewed by 1099
Abstract
In this study, we investigated the influence of Bi2O3 and WO3 on both structure and optical properties of 50ZnO:(49 − x)B2O3:1Bi2O3:xWO3; x = 1, 5, 10 glasses doped with [...] Read more.
In this study, we investigated the influence of Bi2O3 and WO3 on both structure and optical properties of 50ZnO:(49 − x)B2O3:1Bi2O3:xWO3; x = 1, 5, 10 glasses doped with 0.5 mol% Eu2O3. IR spectroscopy revealed the presence of trigonal BØ3 units connecting superstructural groups, [BØ2O] metaborate groups, tetrahedral BØ4 units in superstructural groupings (Ø = bridging oxygen atom), borate triangles with nonbridging oxygen atoms, [WO4]2− tetrahedral, and octahedral WO6 species. Neutron diffraction experimental data were simulated by reverse Monte Carlo modeling. The atomic distances and coordination numbers were established, confirming the short-range order found by IR spectra. The synthesized glasses were characterized by red emission at 612 nm. All findings suggest that Eu3+ doped zinc borate glasses containing both WO3 and Bi2O3 have the potential to serve as a substitute for red phosphor with high color purity. Full article
Show Figures

Figure 1

24 pages, 8416 KiB  
Article
Comparison of Grain-Growth Mean-Field Models Regarding Predicted Grain Size Distributions
by Marion Roth, Baptiste Flipon, Nathalie Bozzolo and Marc Bernacki
Materials 2023, 16(20), 6761; https://doi.org/10.3390/ma16206761 - 19 Oct 2023
Cited by 2 | Viewed by 774
Abstract
Mean-field models have the ability to predict the evolution of grain size distribution that occurs through thermomechanical solicitations. This article focuses on a comparison of mean-field models under grain-growth conditions. Different microstructure representations are considered and discussed, especially regarding the consideration of topology [...] Read more.
Mean-field models have the ability to predict the evolution of grain size distribution that occurs through thermomechanical solicitations. This article focuses on a comparison of mean-field models under grain-growth conditions. Different microstructure representations are considered and discussed, especially regarding the consideration of topology in the neighborhood construction. Experimental data obtained with a heat treatment campaign on 316L austenitic stainless steel are used for the identification of material parameters and as a reference for model comparisons. Mean-field models are also applied to both mono- and bimodal initial grain size distributions to investigate the potential benefits of introducing neighborhood topology in microstructure prediction models. This article demonstrates that improvements in the predictions can be obtained in monomodal cases for topological models. In the bimodal test, no comparison with experimental data was performed as no data were available. But relative comparisons between models indicated few differences in the predictions. Although of interest, the consideration of neighborhood topology in grain-growth mean-field models generally results in only small improvements compared to classical mean-field models, especially in terms of implementation complexity. Full article
(This article belongs to the Special Issue Modeling and Simulation of Solid State Phenomena in Metals and Alloys)
Show Figures

Figure 1

13 pages, 6242 KiB  
Article
Improved Energy Storage Density and Efficiency of Nd and Mn Co-Doped Ba0.7Sr0.3TiO3 Ceramic Capacitors Via Defect Dipole Engineering
by Hyunsu Choi, Srinivas Pattipaka, Yong Hoon Son, Young Min Bae, Jung Hwan Park, Chang Kyu Jeong, Han Eol Lee, Sung-Dae Kim, Jungho Ryu and Geon-Tae Hwang
Materials 2023, 16(20), 6753; https://doi.org/10.3390/ma16206753 - 18 Oct 2023
Cited by 1 | Viewed by 1159
Abstract
In this paper, we investigate the structural, microstructural, dielectric, and energy storage properties of Nd and Mn co-doped Ba0.7Sr0.3TiO3 [(Ba0.7Sr0.3)1−xNdxTi1−yMnyO3 (BSNTM) ceramics ( [...] Read more.
In this paper, we investigate the structural, microstructural, dielectric, and energy storage properties of Nd and Mn co-doped Ba0.7Sr0.3TiO3 [(Ba0.7Sr0.3)1−xNdxTi1−yMnyO3 (BSNTM) ceramics (x = 0, 0.005, and y = 0, 0.0025, 0.005, and 0.01)] via a defect dipole engineering method. The complex defect dipoles (MnTiVO) and (MnTiVO) between acceptor ions and oxygen vacancies capture electrons, enhancing the breakdown electric field and energy storage performances. XRD, Raman, spectroscopy, XPS, and microscopic investigations of BSNTM ceramics revealed the formation of a tetragonal phase, oxygen vacancies, and a reduction in grain size with Mn dopant. The BSNTM ceramics with x = 0.005 and y = 0 exhibit a relative dielectric constant of 2058 and a loss tangent of 0.026 at 1 kHz. These values gradually decreased to 1876 and 0.019 for x = 0.005 and y = 0.01 due to the Mn2+ ions at the Ti4+- site, which facilitates the formation of oxygen vacancies, and prevents a decrease in Ti4+. In addition, the defect dipoles act as a driving force for depolarization to tailor the domain formation energy and domain wall energy, which provides a high difference between the maximum polarization of Pmax and remnant polarization of PrP = 10.39 µC/cm2). Moreover, the complex defect dipoles with optimum oxygen vacancies in BSNTM ceramics can provide not only a high ΔP but also reduce grain size, which together improve the breakdown strength from 60.4 to 110.6 kV/cm, giving rise to a high energy storage density of 0.41 J/cm3 and high efficiency of 84.6% for x = 0.005 and y = 0.01. These findings demonstrate that defect dipole engineering is an effective method to enhance the energy storage performance of dielectrics for capacitor applications. Full article
Show Figures

Figure 1

14 pages, 10278 KiB  
Article
The Characteristic of {101¯2}<101¯1¯> Twin of Ti-10V-2Fe-3Al under Planar Wave Detonation
by Tong Wang, Ping Yang, Jin Zhang and Xin-Fu Gu
Materials 2023, 16(20), 6739; https://doi.org/10.3390/ma16206739 - 18 Oct 2023
Viewed by 792
Abstract
The microstructure evolution of the twin of TB6 (Ti-10V-2Fe-3Al) under planar wave detonation was studied. The initial microstructure of the alloy consists of an α and β phase. It is found that twin deformation is operated in only the α phase due to [...] Read more.
The microstructure evolution of the twin of TB6 (Ti-10V-2Fe-3Al) under planar wave detonation was studied. The initial microstructure of the alloy consists of an α and β phase. It is found that twin deformation is operated in only the α phase due to the limited slip system in this phase. α grains are mainly rotated from {101¯0} to {0002} during the deformation due to the {101¯2}<101¯1¯> twin. Twin variant selection is found in this study, and the orientation of all {101¯2} twins is oriented at {0002} in different α grains with different deformation degrees. The twin variant selection is well explained based on the strain relaxation along the loading axis and the Schmid factor for twinning shear. Full article
Show Figures

Figure 1

14 pages, 2510 KiB  
Article
Machine Learning Prediction of the Redox Activity of Quinones
by Ilia Kichev, Lyuben Borislavov, Alia Tadjer and Radostina Stoyanova
Materials 2023, 16(20), 6687; https://doi.org/10.3390/ma16206687 - 14 Oct 2023
Viewed by 910
Abstract
The redox properties of quinones underlie their unique characteristics as organic battery components that outperform the conventional inorganic ones. Furthermore, these redox properties could be precisely tuned by using different substituent groups. Machine learning and statistics, on the other hand, have proven to [...] Read more.
The redox properties of quinones underlie their unique characteristics as organic battery components that outperform the conventional inorganic ones. Furthermore, these redox properties could be precisely tuned by using different substituent groups. Machine learning and statistics, on the other hand, have proven to be very powerful approaches for the efficient in silico design of novel materials. Herein, we demonstrated the machine learning approach for the prediction of the redox activity of quinones that potentially can serve as organic battery components. For the needs of the present study, a database of small quinone-derived molecules was created. A large number of quantum chemical and chemometric descriptors were generated for each molecule and, subsequently, different statistical approaches were applied to select the descriptors that most prominently characterized the relationship between the structure and the redox potential. Various machine learning methods for the screening of prospective organic battery electrode materials were deployed to select the most trustworthy strategy for the machine learning-aided design of organic redox materials. It was found that Ridge regression models perform better than Regression decision trees and Decision tree-based ensemble algorithms. Full article
Show Figures

Figure 1

12 pages, 9218 KiB  
Article
Characterization of the Metal Fused Filament Fabrication Process for Manufacturing of Pure Copper Inductors
by Philipp Schüßler, Jonas Franke, Steffen Czink, Steffen Antusch, Daniel Mayer, Stephan Laube, Thomas Hanemann, Volker Schulze and Stefan Dietrich
Materials 2023, 16(20), 6678; https://doi.org/10.3390/ma16206678 - 13 Oct 2023
Cited by 3 | Viewed by 1067
Abstract
This work presents a comprehensive investigation into the optimization of critical process parameters associated with metal fused filament fabrication (Metal-FFF) for the production of copper-based components. The study focused on three different commercial and one self-manufactured filament, each with unique chemical compositions. These [...] Read more.
This work presents a comprehensive investigation into the optimization of critical process parameters associated with metal fused filament fabrication (Metal-FFF) for the production of copper-based components. The study focused on three different commercial and one self-manufactured filament, each with unique chemical compositions. These filaments were systematically optimized and the density was characterized for all processing steps, as well as the electrical conductivity on the specimen scale. Remarkably, two of the studied filaments exhibited exceptional properties after sintering with forming gas (up to 94% density and 55.75 MS/m electrical conductivity), approaching the properties measured for established manufacturing methods like metal injection molding. Finally, the research was extended to component-scale applications, demonstrating the successful fabrication of inductors with integrated cooling channels. These components exhibited water tightness and were used in induction hardening experiments, validating the practical utility of the optimized Metal-FFF process. In summary, the results show great promise in advancing the utilization of Metal-FFF in industrial contexts, particularly in the production of high-performance copper components. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 2179 KiB  
Article
Anisotropic Properties of Epitaxial Ferroelectric Lead-Free 0.5[Ba(Ti0.8Zr0.2)O3]-0.5(Ba0.7Ca0.3)TiO3 Films
by Nicholas Cucciniello, Alessandro R. Mazza, Pinku Roy, Sundar Kunwar, Di Zhang, Henry Y. Feng, Katrina Arsky, Aiping Chen and Quanxi Jia
Materials 2023, 16(20), 6671; https://doi.org/10.3390/ma16206671 - 13 Oct 2023
Viewed by 995
Abstract
As the energy demand is expected to double over the next 30 years, there has been a major initiative towards advancing the technology of both energy harvesting and storage for renewable energy. In this work, we explore a subset class of dielectrics for [...] Read more.
As the energy demand is expected to double over the next 30 years, there has been a major initiative towards advancing the technology of both energy harvesting and storage for renewable energy. In this work, we explore a subset class of dielectrics for energy storage since ferroelectrics offer a unique combination of characteristics needed for energy storage devices. We investigate ferroelectric lead-free 0.5[Ba(Ti0.8Zr0.2)O3]-0.5(Ba0.7Ca0.3)TiO3 epitaxial thin films with different crystallographic orientations grown by pulsed laser deposition. We focus our attention on the influence of the crystallographic orientation on the microstructure, ferroelectric, and dielectric properties. Our results indicate an enhancement of the polarization and strong anisotropy in the dielectric response for the (001)-oriented film. The enhanced ferroelectric, energy storage, and dielectric properties of the (001)-oriented film is explained by the coexistence of orthorhombic-tetragonal phase, where the disordered local structure is in its free energy minimum. Full article
Show Figures

Figure 1

15 pages, 10779 KiB  
Article
Phosphorus-Doped Hollow Tubular g-C3N4 for Enhanced Photocatalytic CO2 Reduction
by Manying Sun, Chuanwei Zhu, Su Wei, Liuyun Chen, Hongbing Ji, Tongming Su and Zuzeng Qin
Materials 2023, 16(20), 6665; https://doi.org/10.3390/ma16206665 - 12 Oct 2023
Cited by 3 | Viewed by 1071
Abstract
Photocatalytic CO2 reduction is a tactic for solving the environmental pollution caused by greenhouse gases. Herein, NH4H2PO4 was added as a phosphorus source in the process of the hydrothermal treatment of melamine for the first time, and [...] Read more.
Photocatalytic CO2 reduction is a tactic for solving the environmental pollution caused by greenhouse gases. Herein, NH4H2PO4 was added as a phosphorus source in the process of the hydrothermal treatment of melamine for the first time, and phosphorus-doped hollow tubular g-C3N4 (x-P-HCN) was fabricated and used for photocatalytic CO2 reduction. Here, 1.0-P-HCN exhibited the largest CO production rate of 9.00 μmol·g−1·h−1, which was 10.22 times higher than that of bulk g-C3N4. After doping with phosphorus, the light absorption range, the CO2 adsorption capacity, and the specific surface area of the 1.0-P-HCN sample were greatly improved. In addition, the separation of photogenerated electron–hole pairs was enhanced. Furthermore, the phosphorus-doped g-C3N4 effectively activated the CO2 adsorbed on the surface of phosphorus-doped g-C3N4 photocatalysts, which greatly enhanced the CO production rate of photocatalytic CO2 reduction over that of g-C3N4. Full article
Show Figures

Figure 1

10 pages, 2782 KiB  
Communication
Cubic Nonlinearity of Graphene-Oxide Monolayer
by Tikaram Neupane, Uma Poudyal, Bagher Tabibi, Wan-Joong Kim and Felix Jaetae Seo
Materials 2023, 16(20), 6664; https://doi.org/10.3390/ma16206664 - 12 Oct 2023
Viewed by 712
Abstract
The cubic nonlinearity of a graphene-oxide monolayer was characterized through open and closed z−scan experiments, using a nano-second laser operating at a 10 Hz repetition rate and featuring a Gaussian spatial beam profile. The open z−scan revealed a reverse saturable absorption, indicating a [...] Read more.
The cubic nonlinearity of a graphene-oxide monolayer was characterized through open and closed z−scan experiments, using a nano-second laser operating at a 10 Hz repetition rate and featuring a Gaussian spatial beam profile. The open z−scan revealed a reverse saturable absorption, indicating a positive nonlinear absorption coefficient, while the closed z−scan displayed valley-peak traces, indicative of positive nonlinear refraction. This observation suggests that, under the given excitation wavelength, a two-photon or two-step excitation process occurs due to the increased absorption in both the lower visible and upper UV wavelength regions. This finding implies that graphene oxide exhibits a higher excited-state absorption cross-section compared to its ground state. The resulting nonlinear absorption and nonlinear refraction coefficients were estimated to be approximately ~2.62 × 10−8 m/W and 3.9 × 10−15 m2/W, respectively. Additionally, this study sheds light on the interplay between nonlinear absorption and nonlinear refraction traces, providing valuable insights into the material’s optical properties. Full article
(This article belongs to the Special Issue Advanced Graphene and Graphene Oxide Materials)
Show Figures

Figure 1

14 pages, 27546 KiB  
Article
Ce/Mn/Cr: (Re,Y)3Al5O12 Phosphor Ceramics (Re = Gd, Tb and Lu) for White LED Lighting with Significant Spectral Redshift and Improved Color-Rendering Index
by Yukun Li, Svenja Hanson, Cheng Heng Pang, Peng Lyu and Jun Jiang
Materials 2023, 16(20), 6667; https://doi.org/10.3390/ma16206667 - 12 Oct 2023
Viewed by 972
Abstract
In order to attain phosphor ceramics with a high Color-Rendering Index (CRI), samples with the composition of Y0.997−xRexCe0.003)3(Al0.9748 Mn2+0.024Cr3+0.0012)5O12(Rex = 0, Gd0.333 [...] Read more.
In order to attain phosphor ceramics with a high Color-Rendering Index (CRI), samples with the composition of Y0.997−xRexCe0.003)3(Al0.9748 Mn2+0.024Cr3+0.0012)5O12(Rex = 0, Gd0.333, Gd0.666, Gd0.997, Tb0.333, Tb0.666, Tb0.997 and Lu0.997 were prepared by solid-state reaction and vacuum sintering, and exhibited potential for high-quality, solid-state lighting. Doping with Cr3+ and Mn2+ effectively enhanced the red component of Ce3+ spectra through the intense energy transfer from Ce3+ ions to Mn2+/Cr3+ ions. The crystal field splitting of [GdO8] and [TbO8] was more extensive than that of [YO8], causing a massive redshift in the Ce3+ emission peaks from 542 to 561 and 595 nm, while [LuO8] had an opposite effect and caused a blueshift with a peak position at 512 nm. White LED devices incorporating Ce/Mn/Cr: (Gd0.333Y0.664)3Al5O12 phosphor ceramic exhibited a high CRI of 83.97, highlighting the potential for enhancing the red-light component of white LED lighting. Full article
Show Figures

Figure 1

17 pages, 2966 KiB  
Review
Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review
by Yang Zhou, Keke Zhang, Zhaoyang Chen and Haichang Zhang
Materials 2023, 16(20), 6645; https://doi.org/10.3390/ma16206645 - 11 Oct 2023
Cited by 3 | Viewed by 1202
Abstract
In the last two decades, organic field-effect transistors (OFETs) have garnered increasing attention from the scientific and industrial communities. The performance of OFETs can be evaluated based on three factors: the charge transport mobility (μ), threshold voltage (Vth), and current on/off [...] Read more.
In the last two decades, organic field-effect transistors (OFETs) have garnered increasing attention from the scientific and industrial communities. The performance of OFETs can be evaluated based on three factors: the charge transport mobility (μ), threshold voltage (Vth), and current on/off ratio (Ion/off). To enhance μ, numerous studies have concentrated on optimizing charge transport within the semiconductor layer. These efforts include: (i) extending π-conjugation, enhancing molecular planarity, and optimizing donor–acceptor structures to improve charge transport within individual molecules; and (ii) promoting strong aggregation, achieving well-ordered structures, and reducing molecular distances to enhance charge transport between molecules. In order to obtain a high charge transport mobility, the charge injection from the electrodes into the semiconductor layer is also important. Since a suitable frontier molecular orbitals’ level could align with the work function of the electrodes, in turn forming an Ohmic contact at the interface. OFETs are classified into p-type (hole transport), n-type (electron transport), and ambipolar-type (both hole and electron transport) based on their charge transport characteristics. As of now, the majority of reported conjugated materials are of the p-type semiconductor category, with research on n-type or ambipolar conjugated materials lagging significantly behind. This review introduces the molecular design concept for enhancing charge carrier mobility, addressing both within the semiconductor layer and charge injection aspects. Additionally, the process of designing or converting the semiconductor type is summarized. Lastly, this review discusses potential trends in evolution and challenges and provides an outlook; the ultimate objective is to outline a theoretical framework for designing high-performance organic semiconductors that can advance the development of OFET applications. Full article
(This article belongs to the Special Issue New Advances in π-Conjugated Materials)
Show Figures

Figure 1

16 pages, 3821 KiB  
Article
Mg, Zn Substituted Calcium Phosphates—Thermodynamic Modeling, Biomimetic Synthesis in the Presence of Low-Weight Amino Acids and High Temperature Properties
by Diana Rabadjieva, Rumiana Gergulova, Kostadinka Sezanova, Daniela Kovacheva and Rositsa Titorenkova
Materials 2023, 16(20), 6638; https://doi.org/10.3390/ma16206638 - 11 Oct 2023
Cited by 1 | Viewed by 1063
Abstract
The preparation of specially doped calcium phosphates (CaPs) is receiving a great deal of attention from researchers due to CaPs’ enhanced capabilities for application in medicine. Complexation and precipitation in a complicated electrolyte system including simulated body fluids that are enriched with Mg [...] Read more.
The preparation of specially doped calcium phosphates (CaPs) is receiving a great deal of attention from researchers due to CaPs’ enhanced capabilities for application in medicine. Complexation and precipitation in a complicated electrolyte system including simulated body fluids that are enriched with Mg2+ and Zn2+ ions and modified with glycine, alanine and valine were first evaluated using a thermodynamic equilibrium model. The influence of the type and concentration of amino acid on the incorporation degree of Mg and Zn into the solid phases was predicted. Experimental studies, designed on the basis of thermodynamic calculations, confirmed the predictions. Amorphous calcium phosphates double-doped with Mg and Zn were biomimetically precipitated and transformed into Mg, Zn-β—tricalcium phosphates (TCP) upon calcination. The Rietveld refinement confirmed that Mg2+ and Zn2+ substituted Ca2+ only at the octahedral sites of β-TCP, and in some cases, fully displacing the Ca2+ from them. The resulting Mg, Zn-β–TCP can serve as a reservoir for Mg and Zn ions when included in the formulation of a biomaterial for bone remodeling. The research conducted reveals the effect of combining mathematical models with experimental studies to pre-evaluate the influence of various additives in the design of materials with predetermined properties. Full article
Show Figures

Graphical abstract

18 pages, 4700 KiB  
Article
Ultra-High-Temperature Ceramic-Doped Inorganic Polymers for Thermo-Structural Fiber-Reinforced Composites
by Valentina Medri, Annalisa Natali Murri, Elettra Papa, Claudio Mingazzini, Matteo Scafè and Elena Landi
Materials 2023, 16(20), 6649; https://doi.org/10.3390/ma16206649 - 11 Oct 2023
Viewed by 1349
Abstract
New inorganic nanostructured matrices for fiber-reinforced composites with enhanced high-temperature stability were developed from alkali aluminosilicate polymers doped with different ultra-high-temperature ceramic (UHTC) particles. The alkali aluminosilicate matrices were synthesized at room temperature with a high SiO2:Al2O3 ratio [...] Read more.
New inorganic nanostructured matrices for fiber-reinforced composites with enhanced high-temperature stability were developed from alkali aluminosilicate polymers doped with different ultra-high-temperature ceramic (UHTC) particles. The alkali aluminosilicate matrices were synthesized at room temperature with a high SiO2:Al2O3 ratio and then further functionalized by doping with 4–5 wt % of micrometric SiC, ZrB2, ZrC, and HfC powders and finally thermally stabilized as glass–ceramics at 750 °C. The different UHTC-doped matrices were characterized according to their dimensional and microstructural changes after thermal cycling in air flux at 1000 °C. The first results showed that carbide-based UHTC powders improved the thermal stability of the matrices, preventing the excessive swelling of the material and the formation of detrimental voids that might result in the lack of adhesion with reinforcing fibers. Contrarily, the addition of ZrB2 resulted in an excessive matrix swelling at high temperature, thus proving no efficacy compared to the undoped matrix. Impregnation tests carried out on C-fiber fabrics showed good processability, adhesion to the fibers, and fracture pull-out, especially for carbide-based matrices. Full article
Show Figures

Graphical abstract

16 pages, 3618 KiB  
Article
3D Composite U(VI) Adsorbents Based on Alginate Hydrogels and Oxidized Biochar Obtained from Luffa cylindrica
by Andreas Ayiotis, Efthalia Georgiou, Panagiotis S. Ioannou, Ioannis Pashalidis and Theodora Krasia-Christoforou
Materials 2023, 16(19), 6577; https://doi.org/10.3390/ma16196577 - 6 Oct 2023
Viewed by 888
Abstract
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various [...] Read more.
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various physicochemical parameters on the adsorption performance of materials. The maximum adsorption capacity (qmax) was 1.7 mol kg−1 (404.6 mg·g−1) at pH 3.0 for the CA/ox-LC with a 10% wt. ox-LC content. FTIR spectroscopy indicated the formation of inner-sphere complexes between U(VI) and the surface-active moieties existing on both CA and ox-LC, while thermodynamic data revealed that the adsorption process was endothermic and entropy-driven. The experimental data obtained from the adsorption experiments were well-fitted by the Langmuir and Freundlich models. Overall, the produced composites exhibited enhanced adsorption efficiency against U(VI), demonstrating their potential use as effective adsorbents for the recovery of uranium ions from industrial effluents and seawater. Full article
Show Figures

Graphical abstract

16 pages, 6647 KiB  
Article
Carbon-Based Composites with Mixed Phosphate-Pyrophosphates with Improved Electrochemical Performance at Elevated Temperature
by Sonya Harizanova, Trajche Tushev, Violeta Koleva and Radostina Stoyanova
Materials 2023, 16(19), 6546; https://doi.org/10.3390/ma16196546 - 4 Oct 2023
Cited by 1 | Viewed by 2644
Abstract
Sodium iron phosphate-pyrophosphate, Na4Fe3(PO4)2P2O7 (NFPP) emerges as an excellent cathode material for sodium-ion batteries. Because of lower electronic conductivity, its electrochemical performance depends drastically on the synthesis method. Herein, we provide a [...] Read more.
Sodium iron phosphate-pyrophosphate, Na4Fe3(PO4)2P2O7 (NFPP) emerges as an excellent cathode material for sodium-ion batteries. Because of lower electronic conductivity, its electrochemical performance depends drastically on the synthesis method. Herein, we provide a simple and unified method for synthesis of composites between NFPP and reduced graphene oxide (rGO) and standard carbon black, designed as electrode materials for both sodium- and lithium-ion batteries. The carbon additives affect only the morphology and textural properties of the composites. The performance of composites in sodium and lithium cells is evaluated at elevated temperatures. It is found that NFPP/rGO outperforms NFPP/C in both Na and Li storage due to its hybrid mechanism of energy storage. In sodium half-cells, NFPP/rGO delivers a reversible capacity of 95 mAh/g at 20 °C and 115 mAh/g at 40 °C with a cycling stability of 95% and 88% at a rate of C/2. In lithium half-cells, the capacity reaches a value of 120 mAh/g at 20 and 40 °C, but the cycling stability becomes worse, especially at 40 °C. The electrochemical performance is discussed on the basis of ex situ XRD and microscopic studies. The good Na storage performance of NFPP/rGO at an elevated temperature represents a first step towards its commercialization. Full article
Show Figures

Figure 1

25 pages, 14309 KiB  
Article
Fe3O4 Magnetic Nanoparticles Obtained by the Novel Aerosol-Based Technique for Theranostic Applications
by Piotr Pawlik, Barbara Błasiak, Marcin Pruba, Arkadiusz Miaskowski, Oskar Moraczyński, Justyna Miszczyk, Boguslaw Tomanek and Joanna Depciuch
Materials 2023, 16(19), 6483; https://doi.org/10.3390/ma16196483 - 29 Sep 2023
Cited by 1 | Viewed by 1307
Abstract
This work is aimed at presenting a novel aerosol-based technique for the synthesis of magnetite nanoparticles (Fe3O4 NPs) and to assess the potential medical application of their dispersions after being coated with TEA-oleate. Refinement of the processing conditions led to [...] Read more.
This work is aimed at presenting a novel aerosol-based technique for the synthesis of magnetite nanoparticles (Fe3O4 NPs) and to assess the potential medical application of their dispersions after being coated with TEA-oleate. Refinement of the processing conditions led to the formation of monodispersed NPs with average sizes of ∼5–6 nm and narrow size distribution (FWHM of ∼3 nm). The NPs were coated with Triethanolammonium oleate (TEA-oleate) to stabilize them in water dispersion. This allowed obtaining the dispersion, which does not sediment for months, although TEM and DLS studies have shown the formation of small agglomerates of NPs. The different behaviors of cancer and normal cell lines in contact with NPs indicated the diverse mechanisms of their interactions with Fe3O4 NPs. Furthermore, the studies allowed assessment of the prospective theranostic application of magnetite NPs obtained using the aerosol-based technique, particularly magnetic hyperthermia and magnetic resonance imaging (MRI). Full article
Show Figures

Figure 1

41 pages, 12583 KiB  
Review
Enhancing Fatigue Life and Strength of Adhesively Bonded Composite Joints: A Comprehensive Review
by Hossein Malekinejad, Ricardo J. C. Carbas, Alireza Akhavan-Safar, Eduardo A. S. Marques, Fernando Castro Sousa and Lucas F. M. da Silva
Materials 2023, 16(19), 6468; https://doi.org/10.3390/ma16196468 - 28 Sep 2023
Cited by 8 | Viewed by 2749
Abstract
Adhesive bonding is widely seen as the most optimal method for joining composite materials, bringing significant benefits over mechanical joining, such as lower weight and reduced stress concentrations. Adhesively bonded composite joints find extensive applications where cyclic fatigue loading takes place, but this [...] Read more.
Adhesive bonding is widely seen as the most optimal method for joining composite materials, bringing significant benefits over mechanical joining, such as lower weight and reduced stress concentrations. Adhesively bonded composite joints find extensive applications where cyclic fatigue loading takes place, but this might ultimately lead to crack damage and safety issues. Consequently, it has become essential to study how these structures behave under fatigue loads and identify the remaining gaps in knowledge to give insights into new possibilities. The fatigue life of adhesively bonded composite joints is influenced by various parameters, including joint configuration and material properties of adherends and adhesive. Numerous studies with varying outcomes have been documented in the literature. However, due to the multitude of influential factors, deriving conclusive insights from these studies for practical design purposes has proven to be challenging. Hence, this review aims to address this challenge by discussing different methods to enhance the fatigue performance of adhesively bonded composite joints. Additionally, it provides a comprehensive overview of the existing literature on adhesively bonded composite joints under cyclic fatigue loading, focusing on three main aspects: Adherends modification, adhesive modification, and joint configurations. Since the effect of modifying the adhesive, adherends, and joint configurations on fatigue performance has not been comprehensively studied in the literature, this review aims to fill this gap by compiling and comparing the relevant experimental data. Furthermore, this review discusses the challenges and limitations associated with the methods that can be used to monitor the initiation and propagation of fatigue cracks. Full article
Show Figures

Figure 1

15 pages, 1571 KiB  
Review
Brief Narrative Review on Commercial Dental Sealants—Comparison with Respect to Their Composition and Potential Modifications
by Aleksandra Piszko, Paweł J. Piszko, Adam Lubojański, Wojciech Grzebieluch, Maria Szymonowicz and Maciej Dobrzyński
Materials 2023, 16(19), 6453; https://doi.org/10.3390/ma16196453 - 28 Sep 2023
Cited by 2 | Viewed by 1463
Abstract
The scope of this paper is to compare different dental sealants and flow materials indicated for sealing pits and fissures considering their chemical formula. The narrative review aims to address the following questions: What is the essence of different dental sealants’ activity, how [...] Read more.
The scope of this paper is to compare different dental sealants and flow materials indicated for sealing pits and fissures considering their chemical formula. The narrative review aims to address the following questions: What is the essence of different dental sealants’ activity, how does their chemical formula affect their mechanisms of caries prevention, and what makes a dental sealant efficient mean of caries prevention? Another vital issue is whether the sealants that contain fluoride, or any other additions, have potentially increased antimicrobial properties. An electronic search of the PubMed, Cochrane, Web of Science, and Scopus databases was performed. The following keywords were used: (dental sealants) AND (chemical composition). Additionally, information about composition and indications for clinical use provided by manufacturers were utilized. All of the considered materials are indicated for use both in permanent and primary dentition for sealing fissures, pits, and foramina caeca. The selection of suitable material should be made individually and adjusted to conditions of the sealing procedure and patient’s needs. Cariostatic mechanisms increasing sealants’ effectiveness such as fluoride release are desired in modern dentistry appreciating preventive approach. The review aims are to find crucial elements of sealants’ composition which affect their cariostatic mechanisms. Full article
Show Figures

Figure 1

15 pages, 6282 KiB  
Article
Hot-Cracking Mechanism of Laser Welding of Aluminum Alloy 6061 in Lap Joint Configuration
by Km Rakhi, Seunggu Kang and Joonghan Shin
Materials 2023, 16(19), 6426; https://doi.org/10.3390/ma16196426 - 27 Sep 2023
Viewed by 1557
Abstract
Laser welding, known for its distinctive advantages, has become significantly valuable in the automotive industry. However, in this context, the frequent occurrence of hot cracking necessitates further investigation into this phenomenon. This research aims to understand the hot-cracking mechanism in aluminum alloy (AA) [...] Read more.
Laser welding, known for its distinctive advantages, has become significantly valuable in the automotive industry. However, in this context, the frequent occurrence of hot cracking necessitates further investigation into this phenomenon. This research aims to understand the hot-cracking mechanism in aluminum alloy (AA) 6061, welded using a laser beam in a lap joint setup. We used an array of material characterization methods to study the effects of processing parameters on the cracking susceptibility and to elucidate the hot-cracking mechanism. A laser power of 2000 W generated large hot cracks crossing the whole weld zone for all welding speed conditions. Our findings suggest that using a heat input of 30 J/mm significantly mitigates the likelihood of hot cracking. Furthermore, we observed that the concentrations of the alloying elements in the cracked region markedly surpassed the tolerable limits of some elements (silicon: 2.3 times, chromium: 8.1 times, and iron: 2.7 times, on average) in AA6061. The hot-cracking mechanism shows that the crack initiates from the weld root at the interface between the two welded plates and then extends along the columnar dendrite growth direction. Once the crack reaches the central region of the fusion zone, it veers upward, following the cooling direction in this area. Our comprehensive investigation indicates that the onset and propagation of hot cracks are influenced by a combination of factors, such as stress, strain, and the concentration of alloying elements within the intergranular region. Full article
(This article belongs to the Special Issue Welding and Joining Processes of Metallic Materials)
Show Figures

Figure 1

14 pages, 1477 KiB  
Article
Pt-Coated Ni Layer Supported on Ni Foam for Enhanced Electro-Oxidation of Formic Acid
by Antanas Nacys, Dijana Simkunaitė, Aldona Balciunaite, Ausrine Zabielaite, Daina Upskuviene, Ramunas Levinas, Vitalija Jasulaitiene, Vitalij Kovalevskij, Birute Simkunaite-Stanyniene, Loreta Tamasauskaite-Tamasiunaite and Eugenijus Norkus
Materials 2023, 16(19), 6427; https://doi.org/10.3390/ma16196427 - 27 Sep 2023
Viewed by 851
Abstract
A Pt-coated Ni layer supported on a Ni foam catalyst (denoted PtNi/Nifoam) was investigated for the electro-oxidation of the formic acid (FAO) in acidic media. The prepared PtNi/Nifoam catalyst was studied as a function of the formic acid (FA) concentration [...] Read more.
A Pt-coated Ni layer supported on a Ni foam catalyst (denoted PtNi/Nifoam) was investigated for the electro-oxidation of the formic acid (FAO) in acidic media. The prepared PtNi/Nifoam catalyst was studied as a function of the formic acid (FA) concentration at bare Pt and PtNi/Nifoam catalysts. The catalytic activity of the PtNi/Nifoam catalysts, studied on the basis of the ratio of the direct and indirect current peaks (jd)/(jnd) for the FAO reaction, showed values approximately 10 times higher compared to those on bare Pt, particularly at low FA concentrations, reflecting the superiority of the former catalysts for the electro-oxidation of FA to CO2. Ni foams provide a large surface area for the FAO, while synergistic effects between Pt nanoparticles and Ni-oxy species layer on Ni foams contribute significantly to the enhanced electro-oxidation of FA via the direct pathway, making it almost equal to the indirect pathway, particularly at low FA concentrations. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

16 pages, 3283 KiB  
Article
Effect of B2O3 on the Structure, Properties and Antibacterial Abilities of Sol-Gel-Derived TiO2/TeO2/B2O3 Powders
by Albena Bachvarova-Nedelcheva, Reni Iordanova, Angelina Stoyanova, Nelly Georgieva, Veronica Nemska and Tsvetelina Foteva
Materials 2023, 16(19), 6400; https://doi.org/10.3390/ma16196400 - 25 Sep 2023
Viewed by 928
Abstract
This paper studies the influence of B2O3 on the structure, properties and antibacterial abilities of sol-gel-derived TiO2/TeO2/B2O3 powders. Titanium(IV) butoxide, telluric(VI) acid and boric acid were used as precursors. Differences were observed in [...] Read more.
This paper studies the influence of B2O3 on the structure, properties and antibacterial abilities of sol-gel-derived TiO2/TeO2/B2O3 powders. Titanium(IV) butoxide, telluric(VI) acid and boric acid were used as precursors. Differences were observed in the degree of decomposition of Ti butoxide in the presence of H3BO3 and H6TeO6 acids. The phase transformations of the obtained gels in the temperature range of 200–700 °C were investigated by XRD. Composite materials containing an amorphous phase and different crystalline phases (metallic Te, α-TeO2, anatase, rutile and TiTe3O8) were prepared. Heating at 400 °C indicated a crystalline-to-amorphous-phase ratio of approximately 3:1. The scanning electron microscopy (SEM) analysis showed the preparation of plate-like TiO2 nanoparticles. The IR results showed that the short-range order of the amorphous phases that are part of the composite materials consists of TiO6, BO3, BO4 and TeO4 structural units. Free B2O3 was not detected in the investigated compositions which could be related to the better connectivity between the building units as compared to binary TiO2/B2O3 compositions. The UV-Vis spectra of the investigated gels exhibited a red shift of the cut-off due to the presence of boron and tellurium units. The binary sample achieved the maximum photodegradation efficiency (94%) toward Malachite green dye under UV irradiation, whereas the ternary sample photoactivity was very low. The compositions exhibited promising antibacterial activity against E. coli NBIMCC K12 407. Full article
Show Figures

Figure 1

11 pages, 3088 KiB  
Article
Tailoring of the Structural, Optical, and Electrical Characteristics of Sol-Gel-Derived Magnesium-Zinc-Oxide Wide-Bandgap Semiconductor Thin Films via Gallium Doping
by Chien-Yie Tsay, Shih-Ting Chen and Hsuan-Meng Tsai
Materials 2023, 16(19), 6389; https://doi.org/10.3390/ma16196389 - 25 Sep 2023
Cited by 2 | Viewed by 896
Abstract
The Ga-doped Mg0.2Zn0.8O (GMZO) transparent semiconductor thin films were prepared using the sol-gel and spin-coating deposition technique. Changes in the microstructural features, optical parameters, and electrical characteristics of sol-gel-synthesized Mg0.2Zn0.8O (MZO) thin films affected by [...] Read more.
The Ga-doped Mg0.2Zn0.8O (GMZO) transparent semiconductor thin films were prepared using the sol-gel and spin-coating deposition technique. Changes in the microstructural features, optical parameters, and electrical characteristics of sol-gel-synthesized Mg0.2Zn0.8O (MZO) thin films affected by the amount of Ga dopants (0–5 at%) were studied. The results of grazing incidence X-ray diffraction (GIXRD) examination showed that all as-prepared MZO-based thin films had a wurtzite-type structure and hexagonal phase, and the incorporation of Ga ions into the MZO nanocrystals refined the microstructure and reduced the average crystallite size and flatness of surface roughness. Each glass/oxide thin film sample exhibited a higher average transmittance than 91.5% and a lower average reflectance than 9.1% in the visible range spectrum. Experimental results revealed that the optical bandgap energy of the GMZO thin films was slightly higher than that of the MZO thin film; the Urbach energy became wider with increasing Ga doping level. It was found that the 2 at% and 3 at% Ga-doped MZO thin films had better electrical properties than the undoped and 5 at% Ga-doped MZO thin films. Full article
(This article belongs to the Special Issue ZnO Materials: Synthesis, Properties and Applications (Second Volume))
Show Figures

Figure 1

10 pages, 4177 KiB  
Article
Understanding the Effect of Electron Beam Melting Scanning Strategies on the Aluminum Content and Materials State of Single Ti-6Al-4V Feedstock
by Katie O’Donnell, Maria J. Quintana and Peter C. Collins
Materials 2023, 16(19), 6366; https://doi.org/10.3390/ma16196366 - 23 Sep 2023
Viewed by 995
Abstract
Research on the additive manufacturing of metals often neglects any characterization of the composition of final parts, erroneously assuming a compositional homogeneity that matches the feedstock material. Here, the composition of electron-beam-melted Ti-6Al-4V produced through three distinct scanning strategies (linear raster and two [...] Read more.
Research on the additive manufacturing of metals often neglects any characterization of the composition of final parts, erroneously assuming a compositional homogeneity that matches the feedstock material. Here, the composition of electron-beam-melted Ti-6Al-4V produced through three distinct scanning strategies (linear raster and two point melting strategies, random fill and Dehoff fill) is characterized both locally and globally through energy-dispersive spectroscopy and quantitative chemical analysis. As a result of the different scanning strategies used, differing levels of preferential vaporization occur across the various parts, leading to distinct final compositions, with extremes of ~5.8 wt.% Al and ~4.8 wt.% Al. In addition, energy-dispersive spectroscopy composition maps reveal specific features in both the XY and XZ planes (with Z being the build direction) as a result of local inhomogeneous preferential vaporization. The subsequent change in composition significantly modifies the materials’ state of parts, wherein parts and local regions with higher aluminum contents lead to higher hardness levels (with a ~50 HV difference) and elastic property values and vice versa. While varying scan strategies and scan parameters are known to modify the microstructure and properties of a part, the effect on composition cannot, and should not, be neglected. Full article
Show Figures

Figure 1

22 pages, 13530 KiB  
Article
Comparison of Various Intrinsic Defect Criteria to Plot Kitagawa–Takahashi Diagrams in Additively Manufactured AlSi10Mg
by Mohammed Intishar Nur, Meetkumar Soni, Mustafa Awd and Frank Walther
Materials 2023, 16(18), 6334; https://doi.org/10.3390/ma16186334 - 21 Sep 2023
Cited by 1 | Viewed by 1168
Abstract
Selective laser melting is a form of additive manufacturing in which a high-power density laser is used to melt and fuse metallic powders to form the final specimen. By performing fatigue and tensile tests under various loading conditions, the study sought to establish [...] Read more.
Selective laser melting is a form of additive manufacturing in which a high-power density laser is used to melt and fuse metallic powders to form the final specimen. By performing fatigue and tensile tests under various loading conditions, the study sought to establish the impact of internal defects on the specimens’ fatigue life. Scanning electron microscopy and finite element simulation were conducted to determine the defect characteristics and the stress intensity factor of the specimens. Four different methods were used to determine the intrinsic defect length of the specimen, using data such as grain size, yield strength, and hardness value, among others. Kitagawa–Takahashi and El-Haddad diagrams were developed using the results. A correction factor hypothesis was established based on the deviation of measured data. Using Paris law, fatigue life was determined and compared to the experimental results later. The study aims to select one or more approaches that resemble experimental values and comprehend how internal defects and loading situations affect fatigue life. This study’s findings shed light on how internal defects affect the fatigue life of selective laser-melted AlSi10Mg specimens and can aid in improving the fatigue life prediction method of additively manufactured components, provided an appropriate intrinsic crack criterion is selected. Full article
Show Figures

Figure 1

Back to TopTop