All articles published by MDPI are made immediately available worldwide under an open access license. No special
permission is required to reuse all or part of the article published by MDPI, including figures and tables. For
articles published under an open access Creative Common CC BY license, any part of the article may be reused without
permission provided that the original article is clearly cited. For more information, please refer to
https://www.mdpi.com/openaccess.
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature
Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for
future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive
positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world.
Editors select a small number of articles recently published in the journal that they believe will be particularly
interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the
most exciting work published in the various research areas of the journal.
by
Mateusz Bielecki, Khadijeh Saednia, Fang-I Lu, Shely Kagan, Danny Vesprini, Katarzyna J. Jerzak, Roberto Salgado, Raffi Karshafian and William T. Tran
Background: Patients with advanced breast cancer (BC) may be treated with stereotactic ablative radiotherapy (SABR) for tumor control. Variable treatment responses are a clinical challenge and there is a need to predict tumor radiosensitivity a priori. There is evidence showing that tumor infiltrating
[...] Read more.
Background: Patients with advanced breast cancer (BC) may be treated with stereotactic ablative radiotherapy (SABR) for tumor control. Variable treatment responses are a clinical challenge and there is a need to predict tumor radiosensitivity a priori. There is evidence showing that tumor infiltrating lymphocytes (TILs) are markers for chemotherapy response; however, this association has not yet been validated in breast radiation therapy. This pilot study investigates the computational analysis of TILs to predict SABR response in patients with inoperable BC. Methods: Patients with inoperable breast cancer (n = 22) were included for analysis and classified into partial response (n = 12) and stable disease (n = 10) groups. Pre-treatment tumor biopsies (n = 104) were prepared, digitally imaged, and underwent computational analysis. Whole slide images (WSIs) were pre-processed, and then a pre-trained convolutional neural network model (CNN) was employed to identify the regions of interest. The TILs were annotated, and spatial graph features were extracted. The clinical and spatial features were collected and analyzed using machine learning (ML) classifiers, including K-nearest neighbor (KNN), support vector machines (SVMs), and Gaussian Naïve Bayes (GNB), to predict the SABR response. The models were evaluated using receiver operator characteristics (ROCs) and area under the curve (AUC) analysis. Results: The KNN, SVM, and GNB models were implemented using clinical and graph features. Among the generated prediction models, the graph features showed higher predictive performances compared to the models containing clinical features alone. The highest-performing model, using computationally derived graph features, showed an AUC of 0.92, while the highest clinical model showed an AUC of 0.62 within unseen test sets. Conclusions: Spatial TIL models demonstrate strong potential for predicting SABR response in inoperable breast cancer. TILs indicate a higher independent predictive performance than clinical-level features alone.
Full article
Purpose: To assess the effect of subthreshold diode micropulse laser (SDM) on visual fields (VF) by standardized automated perimetry (SAP) in open-angle glaucoma (OAG) and other non-glaucomatous optic atrophies (OA). Methods: The electronic medical records in a vitreoretinal practice were searched to identify
[...] Read more.
Purpose: To assess the effect of subthreshold diode micropulse laser (SDM) on visual fields (VF) by standardized automated perimetry (SAP) in open-angle glaucoma (OAG) and other non-glaucomatous optic atrophies (OA). Methods: The electronic medical records in a vitreoretinal practice were searched to identify the cohort of eyes with OAG and OA that underwent SAP before and after the initial SDM meeting study inclusion and exclusion criteria. Recorded data included mean deviation (MD), mean sensitivity (MS), and pattern standard deviation (PSD) before and after treatment. Results: A total of 55 eyes of 29 patients, 17 female, aged 62–89 years (avg. 76), with 48 eyes having OAG and 7 with OA, were included in the study. All SAP tests were performed the same day prior to the first SDM treatment, and the postop SAP within one month post-treatment. There were three groups: 36 total treated eyes, 14 treated simultaneously in both eyes prior to repeat SAP, and 22 treated in one eye prior to repeat SAP, along with 19 untreated fellow eye controls. Following SDM, MD and MS were significantly improved in all treated eyes and unilaterally treated eyes (p range 1.0 × 10−4 to 7.02 × 10−6). Untreated fellow eyes were also significantly improved (p = 0.03 for both MD and MS), but the MD and MS improvements in the treated eyes were significantly greater than untreated fellow eyes (p = 0.016 for both MD and MS). Conclusions: Panmacular SDM significantly improved VF by SAP in eyes with OAG and OA. This finding has important implications for management in both conditions.
Full article
Impulse response functions (IRFs) are crucial for analyzing the dynamic interactions of macroeconomic variables in vector autoregressive (VAR) models. However, traditional IRF estimation methods often have limitations with assumptions on variable ordering and restrictive identification constraints. This paper applies the Bayesian graphical structural
[...] Read more.
Impulse response functions (IRFs) are crucial for analyzing the dynamic interactions of macroeconomic variables in vector autoregressive (VAR) models. However, traditional IRF estimation methods often have limitations with assumptions on variable ordering and restrictive identification constraints. This paper applies the Bayesian graphical structural vector autoregressive (BGSVAR) model, which integrates structural learning to capture both temporal and contemporaneous dependencies for more accurate impulse response estimation. The BGSVAR framework provides a more efficient and interpretable method for estimating IRFs, which can enhance both forecasting performance and structural inferences in economic modelling. Through extensive simulations across various data-generating processes, we evaluate BGSVAR’s effectiveness in modelling dynamic interactions among US macroeconomic variables. Our results demonstrate that BGSVAR outperforms traditional methods, such as LASSO and Bayesian VAR (BVAR), by delivering more precise impulse response estimates and better capturing the structural dynamics of VAR-based models.
Full article
by
Julia K. Nowak, Joanna Rosik, Kacper Szadziński, Marvin T. Valentin, Katarzyna E. Kosiorowska, Andrzej Białowiec, Sylwia Stegenta-Dąbrowska and Kacper Świechowski
The research aimed to study the effects of straw-derived biochar and two types of chemically modified biochar on biomethane production from glucose as a model substrate and sugar beet pulp as a real substrate. The biochar chemical modification with H3PO4 [...] Read more.
The research aimed to study the effects of straw-derived biochar and two types of chemically modified biochar on biomethane production from glucose as a model substrate and sugar beet pulp as a real substrate. The biochar chemical modification with H3PO4 acid and KOH base resulted in a change in biochar surface area properties and its functional group’s abundance and a decrease in biochar mass yield production. The anaerobic digestion process was performed in batch reactors kept at 37 °C for 20 days. The substrate-to-inoculum ratio by volatile solids was 0.5, while the mass of added biochar corresponded to 16 g·L−1. The results showed that neither the addition of biochar nor the chemically modified biochar had any positive effects on biomethane production or its kinetics in the case of both substrates. The highest methane production was found in reactors without biochar added, respectively, 385 and 324 mL·gVS−1 for glucose and sugar beet pulp. It is hypothesized that the anaerobic digestion process was performed under optimal conditions, and therefore, biochar could not enhance methane production. Additionally, biochar may have adsorbed some volatile fatty acids, making them less available to anaerobic microorganisms.
Full article
Mangrove ecosystems effectively sequester heavy metals, making their sediment distribution and ecological risk assessment vital for coastal protection. This study focuses on the mangrove forests on both sides of the Donghai Island embankment in Huguang Town, Zhanjiang Bay, analyzing the content, spatial distribution,
[...] Read more.
Mangrove ecosystems effectively sequester heavy metals, making their sediment distribution and ecological risk assessment vital for coastal protection. This study focuses on the mangrove forests on both sides of the Donghai Island embankment in Huguang Town, Zhanjiang Bay, analyzing the content, spatial distribution, and potential ecological risks of heavy metals (Cu, Zn, Cd, Pb, Cr, As, Hg) in surface and vertical sediment profiles through systematic sampling. The results show higher, more uniform heavy metal concentrations inside the bay, with Cd, Cr, and As showing significant accumulation, while outside, levels are lower but with Pb and As at sites like DW-Z-1 and DW-Z-4 nearing Class I Marine Sediment Quality Guideline limits. Vertically, concentrations inside the bay increase with depth due to long-term pollution, geoaccumulation and potential ecological risk indices, Cd emerges as the primary pollutant, posing a high risk (Er Class 3) inside the bay (RI Class 2) and a low to moderate risk outside. Pollution sources inside stem from industrial, urban, and aquaculture inputs, while tidal dynamics and mangroves pose purification mitigate risks outside. This study underscores Cd control needs and supports the ecological conservation of Zhanjiang Bay.
Full article
With the development of prefabricated buildings, complex-shaped cement products, represented by heating-type elevated floors, have appeared on the market. These cement products can only be produced by the pouring method, with low efficiency and poor precision. Among the existing processing methods for preparing
[...] Read more.
With the development of prefabricated buildings, complex-shaped cement products, represented by heating-type elevated floors, have appeared on the market. These cement products can only be produced by the pouring method, with low efficiency and poor precision. Among the existing processing methods for preparing cement products, compression dewatering offers the greatest ability to produce cement products with complex shapes. However, the pressed mixing material comprises a plastic fresh mortar, which inherently lacks fluidity, making it difficult to completely fill the cavity of the shaped mold. Few studies have been conducted on the experimental method and design ratios of mortar for the compression dewatering process in the industry, with no effective solution. To achieve the efficient production of complex-shaped cement products, this study explored the experimental method of testing the strength and flowability of mortar formed through compression dewatering as the forming process. Mortar ratios suitable for producing complex-shaped cement products using the compression dewatering process were determined, the relationship between material rheology and product forming performance was analyzed, and the influence of the compression process on the strength and micro-properties was studied. Finally, a cement-based heating-type elevated floor forming technology was developed, offering a novel approach for the efficient forming of complex-shaped cement products.
Full article
The electronic and phonon bands of Skaergaardite are investigated using density functional theory (DFT) as implemented in Quantum ESPRESSO. Skaergaardite is a copper palladium mineral (CuPd) found in the Skaergaard intrusion with a CsCl-type (B2) structure. Due to its porous structure, it presents
[...] Read more.
The electronic and phonon bands of Skaergaardite are investigated using density functional theory (DFT) as implemented in Quantum ESPRESSO. Skaergaardite is a copper palladium mineral (CuPd) found in the Skaergaard intrusion with a CsCl-type (B2) structure. Due to its porous structure, it presents a large surface area available for interactions, which makes it a promising catalyst. The PBE-GGA functional with a Hubbard-like localized term (DFT+U) is combined with ultrasoft and norm-conserving pseudopotentials, and a conventional approach with a dense Monkhorst–Pack grid of k-points 12 × 12 × 12 is applied. The electronic valence bands are mainly constituted by 3d orbitals of Cu and 4d orbitals of Pd and a pseudo-gap can be recognized. With respect to DFT, DFT+U causes a general downward shift in the valence band. The acoustic and optical phonon branches are separated by a few cm−1 gap at about 150 cm−1 and show a density of state curve typical of ordered materials. These results highlight the reliability of DFT+U in studying bimetallic systems with scarce experimental benchmarks, offering insights into the behavior of Skaergaardite and its potential applications in material science such as reduction reactions and hydrogen storage.
Full article
Background/Objectives: Rectangular collimation (RC) reduces patient radiation exposure but is uncommonly used due to cone-cut concerns. An audit at a dental practice was conducted to analyze impact of RC on the quality of intraoral radiographs. Methods: Four X-ray tubes with RC
[...] Read more.
Background/Objectives: Rectangular collimation (RC) reduces patient radiation exposure but is uncommonly used due to cone-cut concerns. An audit at a dental practice was conducted to analyze impact of RC on the quality of intraoral radiographs. Methods: Four X-ray tubes with RC were used. 360 intraoral X-rays were collected, blinded and scored to pre-set qualitative criteria: maximum 14 points for bitewing radiographs (BWs), and 13 for periapical radiographs (PAs). Quality of the X-rays was assessed. Results: We found that 48.1% were acceptable, 32.5% were unacceptable and only 19.4% were good X-rays. The loss of image quality was unrelated to RC. Three cone-cuts occurred in PAs without RC. The mean scores for PAs performed without or with RC were as follows: 9.3 +/− 1.9 points and 9.6 +/− 1.9 points, respectively (p = 0.166). The mean scores for BWs performed without or with RC were as follows: 8.0 +/− 1.9 points and 7.1 +/− 1.9 points, respectively (p < 0.001). All scores declined over time. Conclusions: This audit highlighted the need for refresher training on film-holder use and the importance of regular maintenance of dental X-ray equipment. Decline in X-ray quality over time was related to wear and tear of X-ray equipment, incorrect image contrast, and technical errors unrelated to RC. No cone-cuts occurred when using RC.
Full article
The resistivity method is widely used to address long-term monitoring challenges in fields such as environmental protection, ecological restoration, seawater intrusion, and geological hazard assessment. However, external environmental changes can influence monitoring data, resulting in inversion results that fail to accurately reflect subsurface
[...] Read more.
The resistivity method is widely used to address long-term monitoring challenges in fields such as environmental protection, ecological restoration, seawater intrusion, and geological hazard assessment. However, external environmental changes can influence monitoring data, resulting in inversion results that fail to accurately reflect subsurface variations. Furthermore, the data volume required for such monitoring is several times larger than that for conventional single-point observations, leading to excessively long inversion times and low computational efficiency. To address these issues, we develop a three-dimensional inversion algorithm for the resistivity method that incorporates time-lapse constraints. Additionally, MPI parallelization is integrated into the program to increase computational efficiency. Through the design of theoretical models and the synthesis of data to test the algorithm, the results show that, compared with those of separate inversion, the shapes and values of time-lapse inversion results at different time points are more consistent, maintaining temporal continuity, and the computational efficiency of MPI parallel inversion is greatly improved. Particularly in high-noise environments, time-lapse inversion effectively suppresses background noise interference, reduces false anomalies, and produces results that closely align with the true model, thus confirming the algorithm’s effectiveness and superiority.
Full article
Extracts from 58 species of corticioid fungi (phylum Basidiomycota), mainly belonging to the orders Hymenochaetales, Polyporales and Russulales, were tested for their inhibitory activity against five species of bacteria: Corynebacterium striatum, Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus [...] Read more.
Extracts from 58 species of corticioid fungi (phylum Basidiomycota), mainly belonging to the orders Hymenochaetales, Polyporales and Russulales, were tested for their inhibitory activity against five species of bacteria: Corynebacterium striatum, Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Twenty-four of the species we analyzed in this study were tested for antibacterial activity for the first time. The fruiting bodies of the fungi were collected from dead wood in the forests of north-eastern Poland, and macerated in methanol. Dried extracts were redissolved in dimethyl sulfoxide and applied to broth cultures of the bacteria, which were then inoculated on agar plates. Noblesia crocea demonstrated moderate inhibitory activity against all five tested bacteria; Amylocorticium subincarnatum, Laxitextum bicolor, Peniophora laeta, P. rufomarginata, Phanerochaete sordida, and Xylobolus frustulatus inhibited four bacterial species. The extracts from 14 fungal species tested were moderately active against only two bacteria, P. aeruginosa and C. striatum; 17 species were active against C. striatum only. The full inhibition was observed with concentrations of extract 25 or 50 mg/mL.
Full article
The development of micro- and nano-fabrication technologies has greatly advanced single-cell and spatial omics technologies. With the advantages of integration and compartmentalization, microfluidic chips are capable of generating high-throughput parallel reaction systems for single-cell screening and analysis. As omics technologies improve, microfluidic chips
[...] Read more.
The development of micro- and nano-fabrication technologies has greatly advanced single-cell and spatial omics technologies. With the advantages of integration and compartmentalization, microfluidic chips are capable of generating high-throughput parallel reaction systems for single-cell screening and analysis. As omics technologies improve, microfluidic chips can now integrate promising transcriptomics technologies, providing new insights from molecular characterization for tissue gene expression profiles and further revealing the static and even dynamic processes of tissues in homeostasis and disease. Here, we survey the current landscape of microfluidic methods in the field of single-cell and spatial multi-omics, as well as assessing their relative advantages and limitations. We highlight how microfluidics has been adapted and improved to provide new insights into multi-omics over the past decade. Last, we emphasize the contributions of microfluidic-based omics methods in development, neuroscience, and disease mechanisms, as well as further revealing some perspectives for technological advances in translational and clinical medicine.
Full article
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth
[...] Read more.
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth mechanism, as well as process parameters and environmental conditions. A multiscale approach to residual stress measurement is essential for a comprehensive understanding of stress distribution in such systems. To investigate this, two AlGaN/GaN multilayer coatings with distinct layer architectures were deposited on sapphire substrates using metalorganic vapor phase epitaxy (MOVPE). High-resolution X-ray diffraction (HRXRD) was employed to confirm their epitaxial growth and structural characteristics. Focused ion beam (FIB) cross-sectioning and transmission electron microscopy (TEM) lamella preparation were performed to analyze the coating structure and determine layer thickness. Residual stresses within the multilayer coatings were evaluated using two complementary techniques: High-Resolution Scanning Transmission Electron Microscopy—Graphical Phase Analysis (HRSTEM-GPA) and Focused Ion Beam—Digital Image Correlation (FIB-DIC). HRSTEM-GPA enables atomic-resolution strain mapping, making it particularly suited for investigating interface-related stresses, while FIB-DIC facilitates microscale stress evaluation. The residual strain values obtained using the FIB-DIC and HRSTEM-GPA methods were −3.2 × 10⁻3 and −4.55 × 10⁻3, respectively. This study confirms that residual stress measurements at different spatial resolutions are both reliable and comparable at the required coating depths and locations, provided that a critical assessment of the characteristic scale of each method is performed.
Full article
Initially designed as an automated ledger tool, Excel swiftly evolved into a data analytics platform for financial analysts to execute intricate financial analyses. Excel is so commonplace in the financial industry that many do not even consider it a fintech tool. The transformation
[...] Read more.
Initially designed as an automated ledger tool, Excel swiftly evolved into a data analytics platform for financial analysts to execute intricate financial analyses. Excel is so commonplace in the financial industry that many do not even consider it a fintech tool. The transformation of Excel from a simple ledger tool to a low-code machine learning (mL) platform is not a traditional focus for fintech. The transformation of Excel into an mL platform will let financial analysts and quantitative analyses quickly evolve financial models in Excel to use advanced mL techniques. The low-code interface lets analysts quickly build predictive models. This paper explores how Excel has evolved into a low-code machine platform for financial applications along with the risks associated with Excel’s new functionality.
Full article
The current image registration models have problems such as low feature point matching accuracy, high memory consumption, and significant computational complexity in heterogeneous image registration, especially in complex environments. In this context, significant differences in lighting and leaf occlusion in orchards can result
[...] Read more.
The current image registration models have problems such as low feature point matching accuracy, high memory consumption, and significant computational complexity in heterogeneous image registration, especially in complex environments. In this context, significant differences in lighting and leaf occlusion in orchards can result in inaccurate feature extraction during heterogeneous image registration. To address these issues, this study proposes an AD-ResSug model for heterogeneous image registration. First, a VGG16 network was included as the encoder in the feature point encoder system, and the positional encoding was embedded into the network. This enabled us to better understand the spatial relationships between feature points. The addition of residual structures to the feature point encoder aimed to solve the gradient diffusion problem and enhance the flexibility and scalability of the architecture. Then, we used the Sinkhorn AutoDiff algorithm to iteratively optimize and solve the optimal transmission problem, achieving optimal matching between feature points. Finally, we carried out network pruning and compression operations to minimize parameters and computation cost while maintaining the model’s performance. This new AD-ResSug model uses evaluation indicators such as peak signal-to-noise ratio and root mean square error as well as registration efficiency. The proposed method achieved robust and efficient registration performance, verified through experimental results and quantitative comparisons of processing color with ToF images captured using heterogeneous cameras in natural apple orchards.
Full article
Endocrine disruptors such as 17α-ethinylestradiol pose significant ecological risks in aquatic environments. This study assessed the catalytic performance of Fe- and Cu-impregnated delaminated clays (DCs) and layered double hydroxides (LDHs) in a Fenton-like process for EE2 removal. The effects of key parameters—including hydrogen
[...] Read more.
Endocrine disruptors such as 17α-ethinylestradiol pose significant ecological risks in aquatic environments. This study assessed the catalytic performance of Fe- and Cu-impregnated delaminated clays (DCs) and layered double hydroxides (LDHs) in a Fenton-like process for EE2 removal. The effects of key parameters—including hydrogen peroxide concentration, initial contaminant load, and catalyst dosage—were analyzed using HPLC-QqTOF. Delaminated clays (DCs) demonstrated higher removal efficiencies compared to layered double hydroxides (LDHs), reaching 55% with Fe and 47% with Cu, while LDHs achieved 40% and 33% for Fe and Cu, respectively. Ecotoxicity was evaluated using bioassays (L. sativa, S. capricornutum, D. magna) and the Ames test. Notably, S. capricornutum exhibited 100% inhibition at the highest tested concentration, with IC50 values of 11.2–12.4 for Cu and 31.5–32.7 for Fe. L. sativa was inhibited by Cu- and Fe-impregnated LDH/DC, with IC50 values of 71.0 (DC-Cu), 56.6 (DC-Fe), and 58.6 (LDH-Fe). D. magna exhibited 17–75% mortality when exposed to untreated EE2, while LC50 values confirmed Cu’s greater toxicity. The Ames test indicated no mutagenic effects. Integrating the Fenton-like process with complementary techniques is recommended to enhance efficiency. These findings highlight the need to optimize operational parameters for effective removal of 17α-ethinylestradiol.
Full article
This study aimed to evaluate the daily use safety and instrumental efficacy for sebum control of a cosmetic elastomer-type formulation containing the vegetable seed oils of Plukenetia huayllabambana, Physalis peruviana L., and Bertholletia excelsa. Assessments were conducted using a skin irritation
[...] Read more.
This study aimed to evaluate the daily use safety and instrumental efficacy for sebum control of a cosmetic elastomer-type formulation containing the vegetable seed oils of Plukenetia huayllabambana, Physalis peruviana L., and Bertholletia excelsa. Assessments were conducted using a skin irritation index and the Sebumeter® SM 815 from Courage + Khazaka Electronics GmbH, Cologne, Germany. Sebum control efficacy was determined in three groups of volunteers seated in a room at a temperature of 26 ± 1 °C. The forehead area was divided into two sections: one received the cosmetic elastomer while the other area received no product. The elastomer significantly reduced sebum levels in all three groups at 2, 4, and 5 h (p < 0.05) compared to the untreated area, and the third group exhibited higher sebum reductions, with 43.48%, 52.43%, and 43.95%, respectively. In conclusion, the dermatologically tested and safe cosmetic product contains a balanced combination of active ingredients that effectively control sebum levels, resulting in visibly oil-free skin.
Full article
by
Raquel Muñoz-Castells, Margherita Modesti, Jaime Moreno-García, Alexandro Catini, Rosamaria Capuano, Corrado Di Natale, Andrea Bellincontro and Juan Moreno
Electronic noses (E-noses) have become powerful tools for the rapid and cost-effective differentiation of wines, providing valuable information for the comprehensive evaluation of aroma patterns. However, they need to be trained and validated using classical analytical techniques, such as gas chromatography coupled with
[...] Read more.
Electronic noses (E-noses) have become powerful tools for the rapid and cost-effective differentiation of wines, providing valuable information for the comprehensive evaluation of aroma patterns. However, they need to be trained and validated using classical analytical techniques, such as gas chromatography coupled with mass spectrometry, which accurately identify the volatile compounds in wine. In this study, five low-ethanol wines with distinctive sensory profiles—produced using Saccharomyces and non-Saccharomyces yeasts and tailored to modern consumer preferences—were analyzed to validate the E-nose. A total of 57 volatile compounds were quantified, 27 of which had an Odor Activity Value (OAV) over 0.2. The content in volatiles, grouped into 11 odorant series according to their odor descriptors, along with the data provided by 12 E-nose sensors, underwent advanced statistical treatments to identify relationships between both data matrices. Partial least squares discriminant analysis (PLS-DA) applied to the data from the 12 E-nose sensors revealed well-defined clustering patterns and produced a model that explained approximately 92% of the observed variability. In addition, a principal component regression (PCR) model was developed to assess the ability of the E-nose to non-destructively predict odorant series in wine. The synergy between the volatile compound profiles and the pattern recognition capability of the E-nose, as captured by PLS-DA, enables a detailed characterization of wine aromas. In addition, predictive models that integrate data from gas chromatography, flame ionization detection, and mass spectrometry (GC-FID/GC-MSD) with the electronic nose demonstrating a promising approach for a rapid and accurate odor series prediction, thereby increasing the efficiency of wine aroma analysis.
Full article
We report the successful synthesis of amorphous titanium-engineered tungsten oxide (WTi) films via a facile and cost-effective electrodeposition method. Unlike conventional high-temperature or vacuum-based techniques, our approach enables a scalable, all-solution process, ensuring efficiency and sustainability. X-ray diffraction (XRD) confirmed the amorphous nature
[...] Read more.
We report the successful synthesis of amorphous titanium-engineered tungsten oxide (WTi) films via a facile and cost-effective electrodeposition method. Unlike conventional high-temperature or vacuum-based techniques, our approach enables a scalable, all-solution process, ensuring efficiency and sustainability. X-ray diffraction (XRD) confirmed the amorphous nature of all films, a key factor in enhancing ion diffusion for superior electrochromic (EC) performance. Field-emission scanning electron microscopy (FESEM) revealed that an optimized nanoparticle network facilitates rapid charge transport and ion intercalation, while uncontrolled nucleation and grain growth hinder EC efficiency. By precisely tuning the Ti concentration, the optimized 3 at% WTi-3 film achieved outstanding EC properties, including an impressive optical modulation of 85% at 600 nm, exceptional reversibility of 95.61%, and a high coloration efficiency of 51.55 cm2/C. This study underscores the pivotal role of amorphous engineering and dopant concentrations in advancing high-performance EC materials, paving the way for next-generation smart windows and energy-efficient displays. Our findings highlight a transformative strategy for low-cost, high-efficiency EC devices, demonstrating unprecedented performance through precision-engineered material design.
Full article
Ligia feed on seashore algae and remove organic debris from the coastal zone, thereby playing an important role in the intertidal ecosystem. Nevertheless, the specific roles of distinct gut segments in the gut transit remain unclear. We collected and identified Ligia exotica specimens
[...] Read more.
Ligia feed on seashore algae and remove organic debris from the coastal zone, thereby playing an important role in the intertidal ecosystem. Nevertheless, the specific roles of distinct gut segments in the gut transit remain unclear. We collected and identified Ligia exotica specimens in the coast of Aoshanwei, Qingdao, Shandong Province, and analyzed their foreguts and hindguts for 16S rRNA, metagenomics, metabolomics, and proteomics. The concentrations of common metabolites, NO3−-N and NH4+-N, and the contents of C and N were measured. The gut transit decreased the abundances of the dominant phyla Cyanobacteria but increased Proteobacteria, Firmicutes, and Actinobacteria, and Planctomycetes and Bacteroidetes remained relatively constant. The foregut gut microbiota is involved in the carbohydrates and amino acids metabolism, as well as the decomposition of polysaccharides. The hindgut gut microbiota performs a variety of functions, including carbohydrate and amino acid metabolism, fermentation, cell motility, intracellular transport, secretion, and vesicular translocation, and the decomposition of polysaccharides, disaccharides, and oligosaccharides. The results of omics analyses and molecular experiments demonstrated that the metabolic processes involving amino acids and carbohydrates are more active in the foregut, whereas the fermentation, absorption, and assimilation processes are more active in the hindgut. Taken together, the differences in microbial community structure determine the functional specialization of different gut segments, i.e., the foregut appears to be the primary site for digesting food, while the hindgut further processes and absorbs nutrients and then excretes them.
Full article
Amid the rapid growth of the new energy vehicle industry and the accelerating global shift toward green and low-carbon energy alternatives, this paper develops a multi-objective optimization model for an Electric Vehicle Integrated Energy Station (EVIES) and a high-rise building wind-solar-storage sharing system.
[...] Read more.
Amid the rapid growth of the new energy vehicle industry and the accelerating global shift toward green and low-carbon energy alternatives, this paper develops a multi-objective optimization model for an Electric Vehicle Integrated Energy Station (EVIES) and a high-rise building wind-solar-storage sharing system. The model aims to maximize the daily economic revenue of the EVIES, minimize the load variance on the grid side of the building, and reduce overall carbon emissions. To solve this multi-objective optimization problem, a Multi-Objective Sand Cat Swarm Optimization Algorithm (MSCSO) based on a mutation-dominated selection strategy is proposed. Benchmark tests confirm the significant performance advantages of MSCSO in both solution quality and stability, achieving the optimal mean and minimum variance in 73% of the test cases. Further comparative analyses validate the effectiveness of the proposed system, showing that the optimized configuration increases daily economic revenue by 26.54% on average and reduces carbon emissions by 37.59%. Additionally, post-optimization analysis reveals a smoother load curve after grid integration, a significantly reduced peak-to-valley difference, and improved overall operational stability.
Full article
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed
[...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed nano-immune conjugates (NIC) in which hydrophobic chemotherapy drugs like paclitaxel (PTX) and SN38, the active metabolite of irinotecan, are made water soluble by formulating them into albumin-based nanoparticles (nab) that are hydrophobically linked to various IgG1 monoclonal antibodies, creating an antigen-targetable nano-immune conjugate. To date, we have successfully tested PTX containing NICs linked to either VEGF- or CD20-targeted antibodies in two phase I clinical trials against multiple relapsed ovarian/uterine cancer or non-Hodgkin’s lymphoma, respectively. Herein, we describe a novel NIC created with either PTX or SN38 that is coated with anti-PD-L1-targeting antibodies for the treatment of a preclinical model of TNBC. In vitro testing suggests that the chemotherapy drug and antibody retain their toxicity and ligand binding capability in the context of the NIC. Furthermore, both the PTX and SN-38 NIC demonstrate superior anti-tumor efficacy relative to antibody and chemotherapy drugs alone in a PD-L1 + MDA-MB-231 human TNBC xenograft model, which could translate clinically to patients with TNBC.
Full article
Athletic individuals may intentionally aim to gain weight, primarily as lean body mass, to improve athletic performance or to better match opponents’ size. This study aimed to investigate the self-reported nutrition- and exercise-related behaviors of athletic individuals aiming to gain weight. Cross-sectional data
[...] Read more.
Athletic individuals may intentionally aim to gain weight, primarily as lean body mass, to improve athletic performance or to better match opponents’ size. This study aimed to investigate the self-reported nutrition- and exercise-related behaviors of athletic individuals aiming to gain weight. Cross-sectional data were drawn from an online survey of athletic adults recruited locally, nationally, and internationally. In total, 168 athletic participants (24 ± 5 years; 29% female, 71% male) completed the survey and were actively attempting or had attempted weight gain in the last 12 months to gain muscle mass (87.5%), for aesthetic reasons (66.1%), or to improve athletic performance (63.7%). The most prevalent dietary strategies reported to increase weight gain were consuming more energy than usual (88.0%) from mainly protein foods (83.9%) and using protein powders (67.3%). In total, 9.6% of participants reported using anabolic hormones. The main exercise change was increased resistance training (81.5%). Our results confirm that both male and female athletic individuals intentionally attempt to gain weight. Nutrition and exercise professionals may use the findings to be aware of these common dietary and exercise strategies and to better educate their athletic clients on appropriate methods that are evidence-based and not detrimental to health.
Full article
BODIPY (Boron-Dipyrromethene) dyes have emerged as versatile fluorescent probes in cellular imaging and therapeutic applications owing to their unique chemical properties, including high fluorescence quantum yield, strong extinction coefficients, and remarkable photostability. This review synthesizes the recent advancements in BODIPY dyes, focusing on
[...] Read more.
BODIPY (Boron-Dipyrromethene) dyes have emerged as versatile fluorescent probes in cellular imaging and therapeutic applications owing to their unique chemical properties, including high fluorescence quantum yield, strong extinction coefficients, and remarkable photostability. This review synthesizes the recent advancements in BODIPY dyes, focusing on their deployment in biological imaging and therapy. The exceptional ability of BODIPY dyes to selectively stain cellular structures enables precise visualization of lipids, proteins, and nucleic acids within live and tumor cells, thereby facilitating enhanced understanding of biochemical processes. Moreover, BODIPY derivatives are increasingly utilized in Photodynamic therapy (PDT) and Photothermal therapies (PTT) for targeting cancer cells, where their capability to generate cytotoxic reactive oxygen species upon light activation offers a promising approach to tumor treatment. Recently, BODIPY derivatives have been used for Boron Neutron Capture Therapy (BNCT) for various tumors, and it is a growing research field. Advancements in nanotechnology have allowed the fabrication of BODIPY dye-based nanomedicines, either alone or with the use of metallic nanoparticles as a matrix offering the development of a new class of bioimaging and theragnostic agents. This review also discusses innovative BODIPY-based formulations and strategies that amplify therapeutic efficacy while minimizing adverse effects, underscoring the potential of these dyes as integral components in next-generation diagnostic and therapeutic modalities. By summarizing current research and future perspectives, this review highlights the critical importance of BODIPY dyes in advancing the fields of cellular imaging and treatment methodologies.
Full article
Caffeine is administered to preterm infants in neonatal intensive care units for prevention and treatment of apnea of prematurity. Although caffeine’s primary effect is to impact the respiratory drive of preterm infants, caffeine also has anti-inflammatory properties. This study investigated the role of
[...] Read more.
Caffeine is administered to preterm infants in neonatal intensive care units for prevention and treatment of apnea of prematurity. Although caffeine’s primary effect is to impact the respiratory drive of preterm infants, caffeine also has anti-inflammatory properties. This study investigated the role of caffeine on the inflammatory gene expression in THP-1 pre-monocytes exposed to lipopolysaccharide (LPS) in vitro, mimicking a clinical pro-inflammatory scenario. The effects of different physiologic dosages of caffeine administration post-LPS (treatment with caffeine) and pre-LPS (prophylaxis with caffeine) on pro-inflammatory gene expressions (TNF-α, NF-κB, IL-8, PPARγ) of the THP-1 cells were investigated. The post-LPS group showed a dose-dependent decrease in TNF-α at a caffeine concentration of 100 μM and NF-κB gene expression at 50 and 100 μM, with the implication that this is an optimal anti-inflammatory caffeine concentration range. Clinically, this would correspond to a serum caffeine level between 10 and 20 μg/mL, respectively. For the pre-LPS group, TNF-α and NF-κB gene expression decreased at all studied caffeine concentrations. These findings point to caffeine’s potential therapeutic capacity in regulating monocyte inflammatory responses to gram-negative infections in addition to regulating neuron response in the brainstem for preterm infants.
Full article
Respiratory viruses such as respiratory syncytial virus (RSV) annually cause respiratory illness, which may result in substantial disease and mortality in susceptible individuals. Viruses exploit host cell machinery for replication, which engages the mitogen-activated protein kinases (MAPK) pathway. The MAPK signaling pathways are
[...] Read more.
Respiratory viruses such as respiratory syncytial virus (RSV) annually cause respiratory illness, which may result in substantial disease and mortality in susceptible individuals. Viruses exploit host cell machinery for replication, which engages the mitogen-activated protein kinases (MAPK) pathway. The MAPK signaling pathways are triggered by pattern recognition receptors that recognize the pathogen, infection, or external stimuli, leading to the induction and regulation of immunity and inflammation. Probenecid, used to improve renal function by inhibiting the tubular reabsorption of uric acid, has been shown to have therapeutic efficacy in reducing inflammation and blocking viral replication by inhibiting components of the MAPK pathway that preclude virus replication. This review summarizes key molecular cascades in the host response to virus recognition, infection, and replication and how this can be altered by probenecid treatment.
Full article