Corrections to the Bekenstein–Hawking Entropy of the HNUTKN Black Hole Due to Lorentz-Breaking Fermionic Einstein–Aether Theory
Abstract
:1. Introduction
2. Lorentz Breaking and the Modified Dynamical Equation of the Spinor Field
3. Research on the Entropy of HNUTKN Black Holes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gasperini, M. A thermal interpretation of the cosmological constant. Class. Quantum Grav. 1988, 5, 521. [Google Scholar] [CrossRef]
- Ahmed, M. Hawking radiation of Dirac particles in the hot NUT-Kerr-Newman spacetime. Phys. Lett. B 1991, 258, 318. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking Radiation As Tunneling. Phys. Rev. Lett. 2000, 85, 5042. [Google Scholar] [CrossRef]
- Parikh, M.K. Energy Conservation and Hawking Radiation. arXiv, 2004; arXiv:hep-th/0402166. [Google Scholar]
- Parikh, M.K. A Secret Tunnel through The Horizon. Int. J. Mod. Phys. D 2004, 13, 2351–2354. [Google Scholar] [CrossRef]
- Feng, Z.W.; Li, H.L.; Zu, X.T.; Yang, S.Z. Corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle. arXiv 2015, arXiv:1512.09219. [Google Scholar] [CrossRef]
- Hooft, G.T. On the quantum structure of a black hole. Nucl. Phys. B 1985, 256, 727. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z. Entropy of an Extreme Reissner-Nordström Black Hole. Gen. Rel. Grv. 2002, 34, 255. [Google Scholar]
- Li, X.; Zhao, Z. Entropy of a Vaidya black hole. Phys. Rev. D 2000, 62, 104001. [Google Scholar]
- Liu, W.; Zhao, Z. Entropy of the Dirac field in a Kerr-Newman black hole. Phys. Rev. D 2000, 61, 063003. [Google Scholar]
- Kruglov, S.I. Modified wave equation for spinless particles and its solutions in an external magnetic field. Mod. Phys. Lett. A 2013, 28, 1350014. [Google Scholar] [CrossRef]
- Jacobson, T.; Liberati, S.; Mattingly, D. A strong astrophysical constraint on the violation of special relativity by quantum gravity. Nature 2003, 424, 1019. [Google Scholar] [CrossRef] [PubMed]
- Amelino-Camelia, G. Phenomenology of Planck-scale Lorentz-symmetry test theories. New J. Phys. 2004, 6, 188. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 2002, 88, 190403. [Google Scholar] [CrossRef]
- Ellis, J.R.; Mavromatos, N.E.; Sakharov, A.S. Synchrotron radiation from the Crab Nebula discriminates between models of space–time foam. Astropart. Phys. 2004, 20, 669. [Google Scholar] [CrossRef]
- Carleo, A.; Lambiase, G.; Mastrototaro, L. Energy extraction via magnetic reconnection in Lorentz breaking Kerr–Sen and Kiselev black holes. Eur. Phys. J. C 2022, 82, 776. [Google Scholar] [CrossRef]
- Yang, S.Z.; Lin, K.; Li, J.; Jiang, Q.Q. Phenomenological Aspects of Quantum Gravity and Modified Theories of Gravity. Adv. High Energy Phys. 2016, 2016, 7058764. [Google Scholar]
- Tan, X.; Zhang, J.; Li, R. Correction of Lorentz breaking theory to quantum tunneling radiation and entropy of black hole in gravity’s rainbow. Phys. Scr. 2023, 98, 105015. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.Z.; Liu, Z.E.; Sha, B.; Zhang, J.; Yang, S.Z. The solution of a modified Hamilton–Jacobi equation with Lorentz-violating scalar field. Mod. Phys. Lett. A 2020, 35, 2050168. [Google Scholar] [CrossRef]
- Carroll, S.M.; Field, G.B.; Jackiw, R. Limits on a Lorentz and parity-violating modification of electrodynamics. Phys. Rev. D 1990, 41, 1231. [Google Scholar] [CrossRef]
- Jackiw, R.; Kostelecký, V.A. Radiatively Induced Lorentz and CPT Violation in Electrodynamics. Phys. Rev. Lett. 1999, 82, 3572. [Google Scholar] [CrossRef]
- Coleman, S.; Glashow, S.L. High-energy tests of Lorentz invariance. Phys. Rev. D 1999, 59, 116008. [Google Scholar] [CrossRef]
- Gomes, M.; Nascimento, J.R.; Petrov, A.Y.; Da Silva, A.J. Aetherlike Lorentz-breaking actions. Phys. Rev. D 2010, 81, 045018. [Google Scholar] [CrossRef]
- Nascimento, J.R.; Petrov, A.Y.; Marat Reyes, C. Lorentz-breaking theory with higher derivatives in spinor sector. Phys. Rev. D 2015, 92, 045030. [Google Scholar] [CrossRef]
- Carter, B. The commutation property of a stationary. Commun. Math. Phys. 1970, 17, 233–238. [Google Scholar] [CrossRef]
- Banerjee, R.; Majhi, B.R.; Samanta, S. Noncommutative black hole thermodynamics. Phys. Rev. D 2008, 77, 124035. [Google Scholar] [CrossRef]
- Banerjee, R.; Majhi, B.R. Connecting anomaly and tunneling methods for hawking effect through Chirality. Phys. Rev. D 2009, 79, 394. [Google Scholar] [CrossRef]
- Wang, C.; Tan, X.; Zhang, J.; Li, R.; Yang, S.Z. Correction of Kerr-Sen Black Hole Temperature and Entropy by Lorentz Invariance Violation. Phys. Scr. 2024, 99, 035009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Wang, C.; Yang, S.-Z. Corrections to the Bekenstein–Hawking Entropy of the HNUTKN Black Hole Due to Lorentz-Breaking Fermionic Einstein–Aether Theory. Entropy 2024, 26, 326. https://doi.org/10.3390/e26040326
Tan X, Wang C, Yang S-Z. Corrections to the Bekenstein–Hawking Entropy of the HNUTKN Black Hole Due to Lorentz-Breaking Fermionic Einstein–Aether Theory. Entropy. 2024; 26(4):326. https://doi.org/10.3390/e26040326
Chicago/Turabian StyleTan, Xia, Cong Wang, and Shu-Zheng Yang. 2024. "Corrections to the Bekenstein–Hawking Entropy of the HNUTKN Black Hole Due to Lorentz-Breaking Fermionic Einstein–Aether Theory" Entropy 26, no. 4: 326. https://doi.org/10.3390/e26040326