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Abstract: Surrounded by the Shandong Peninsula, the Bohai Sea and Yellow Sea possess vast marine
energy resources. An analysis of actual meteorological data from these regions indicates significant
seasonality and intra-day uncertainty in wind and photovoltaic power generation. The challenge
of scheduling to leverage the complementary characteristics of various renewable energy sources
for maintaining grid stability is substantial. In response, we have integrated wave energy with
offshore photovoltaic and wind power generation and propose a day-ahead and intra-day multi-
time-scale rolling optimization scheduling strategy for the complementary dispatch of these three
energy sources. Using real meteorological data from this maritime area, we employed a CNN-LSTM
neural network to predict the power generation and load demand of the area on both day-ahead 24 h
and intra-day 1 h time scales, with the DDPG algorithm applied for refined electricity management
through rolling optimization scheduling of the forecast data. Simulation results demonstrate that
the proposed strategy effectively meets load demands through complementary scheduling of wave
power, wind power, and photovoltaic power generation based on the climatic characteristics of
the Bohai and Yellow Sea regions, reducing the negative impacts of the seasonality and intra-day
uncertainty of these three energy sources on the grid. Additionally, compared to the day-ahead
scheduling strategy alone, the day-ahead and intra-day rolling optimization scheduling strategy
achieved a reduction in system costs by 16.1% and 22% for a typical winter day and a typical summer
day, respectively.

Keywords: deep reinforcement learning; energy scheduling; energy forecast; entropy value; multi-
energy complementarity

1. Introduction

In recent years, with the increasingly severe problem of energy depletion, the devel-
opment of renewable energy has gradually become the key to solving the energy crisis.
Due to the volatility of renewable energy, the power system needs sufficient flexibility
to balance the difference between power supply and demand [1]. According to research,
the proportion of renewable energy is expected to increase to 31% by the year 2035 [2].
Therefore, effective dispatch for renewable energy sources, particularly taking into account
their complementarities, is essential to ensure distribution network stability.

Currently, numerous achievements have been made in the research on the optimal
scheduling of renewable energy resources. Day-ahead scheduling involves energy fore-
casting, with the authors of [3–7] focusing on wind power prediction and the authors
of [8–11] on photovoltaic power prediction. In [12], the authors utilized actual operational
data from the load system to perform load forecasting on the integrated energy system of
industrial parks using deep learning algorithms, and [13] concentrates on load forecasting.
However, these studies predominantly forecast from a single perspective, and simultaneous
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predictions of both the generation and consumer sides in the system could further enhance
grid stability. Dahmani et al. [14] analyzed the reliability of offshore wind power, providing
valuable insights. In an earlier work, ref. [15] introduces an integrated multi-energy com-
plementary coordination scheduling method. A storage system control model (ESSCM)
is proposed in [16] for the wind and solar hybrid combined storage system scenario to
facilitate the synergistic operation of wind and photovoltaic (PV) power generation in a
combined system, thus maximizing the benefits of the combined system in the electricity
market. Zhang et al. [17] present a day-ahead scheduling model for an industrial power
system integrating wind power and multiple types of storage, proving that the introduction
of storage devices can reduce the occurrence of wind curtailment and enhance system flexi-
bility. The authors of [18] offer a solution for coordinated optimal day-ahead scheduling in
a hybrid thermal–wind–photovoltaic power generation system including an energy storage
system (ESS), aimed at minimizing the total generation cost and suppressing frequent
changes in the charging and discharging states of the ESS. Reddy et al. [19] propose an
optimized scheduling strategy for a battery–thermal–wind–photovoltaic generation system
considering the impact of uncertainties in wind, solar photovoltaic, and load forecasting.
These scheduling schemes in [14–19] focus on the combination of single or dual types of
energy sources. The authors of [17,18] do not consider the cost issues of storage systems.
Moreover, different maritime areas have distinct climatic characteristics, and relying solely
on photovoltaic and wind energy may not always meet the users’ electricity demands. As
an emerging energy source, wave energy, with its high predictability and abundant kinetic
energy conversion potential, is attracting increasing attention. This paper aims to propose
a multi-energy complementary system suitable for the Bohai and Yellow Sea areas.

The Bohai Sea and Yellow Sea, located in the eastern maritime region of China, are
geographically connected and significantly influenced by the monsoon climate in terms
of their climatic characteristics. For photovoltaic power generation, this area enjoys long
sunshine hours and high solar radiation intensity in the summer, while the winter has
relatively shorter sunshine hours and less intense solar radiation. Regarding wind power
generation, influenced by monsoons, the region is dominated by northerly winds in winter,
characterized by stable and strong wind conditions; in summer, it shifts to predominantly
southerly winds, which are less stable and weaker. Wave energy in this area is primarily
driven by wind waves, exhibiting distribution characteristics similar to the wind field, with
higher waves and northerly directions in winter, and lower waves with southerly directions
in summer. During the day, the peak production period of photovoltaic power generation
is utilized to meet the high electricity demand during peak daytime hours, with wind
and wave power generation serving as supplements. Since photovoltaic power generation
does not produce electricity at night, wind and wave power generation can provide power,
especially on nights with high wind speeds, where wind power generation can play a
more significant role. An earlier work [20] assessed the complementary system of wind,
photovoltaic, and wave energies in the Yellow Sea and Bohai Sea areas, demonstrating the
rationality of their complementarity. Based on the rationale of wind–photovoltaic–wave
complementarity, this paper proposes a day-ahead and intra-day multi-time-scale rolling
optimization scheduling model that considers the integration of offshore wind energy,
wave energy, and offshore photovoltaic energy. This multi-energy integration approach can
more effectively utilize the monsoon characteristics of the area to enhance grid stability.

The main work is as follows:

• Based on meteorological data from the Bohai Sea and Yellow Sea areas, we conducted
an analysis of annual electricity production, which included the temporal distribution,
Kendall coefficient, and entropy value. We discovered that the integration of wave
energy could effectively complement wind energy, enhancing the complementarity
between wind and solar photovoltaic energy sources.

• We utilized a CNN-LSTM neural network to predict the power generation of three
types of renewable energy sources 24 h and 1 h in advance, with time scales of 1 h
and 10 min, respectively. Employing CNN-LSTM for predictions at 1 h and 10 min
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scales captures the short-term and long-term patterns of renewable energy output.
This multi-time-scale approach aids in more accurately understanding and predicting
the power generation of renewable energy sources, thereby facilitating more effective
planning and scheduling of resources.

• We formulated the day-ahead and intra-day energy scheduling problem as a Markov
Decision Process (MDP) model. Within this MDP model, we used a DRL algorithm to
find the optimal scheduling strategy, adjusting the reward function and state space
to better accommodate the rolling optimization scheduling problem discussed in
this paper.

In Section 2, we introduce the system models and the cost functions of each unit. In
Section 3, we present the day-ahead and intra-day rolling optimization scheduling strategy
and the CNNLSTM-DDPG algorithm. Section 4 is dedicated to simulation analysis, and
Section 5 concludes the discussion.

2. System Model
2.1. Energy Complementarity Analysis

We collected meteorological data from the maritime areas surrounding Weihai City in
Shandong Province, China, for the period from 1 January to 31 December 2019. Through
the use of power conversion formulas, we calculated the annual power generation. For
ease of analysis, the calculated data were normalized, as shown in Figure 1.
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The generating power of a wind turbine (WT) is directly related to the wind speed,
and the equation for the output power of a wind turbine is expressed as [21]

PWT =


0, vi < vin or vout < vi

PRated
v3

i −v3
in

v3
r−v3

in
, vin < vi < vr

PRated, vr < vi < vout

, (1)

where vin is the cut-in wind speed and vout is the cut-out wind speed. When the wind
speed exceeds the cut-out wind speed, the wind turbine will stop generating electricity to
protect the turbine blades. When the wind speed (vi) is between the rated wind speed (vr)
and the cut-out speed (vout), the wind turbine outputs its rated power.
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When calculating the power output of a wind turbine (PWT) based on wind speed, it
is necessary to convert the wind speed according to the height of the wind turbine (WT),
using the following conversion formula [22]:

v = vm(
h

hm
)

z
, (2)

where v is the wind speed at the hub height (h) of the WT, vm is the wind speed measured at
the height, hm, and z is a function of atmospheric stability and ocean surface characteristics,
with a value of 0.11 [20].

The performance of photovoltaic (PV) power generation is primarily influenced by
solar radiation and ambient temperature. The calculation formula is as follows [22]:

PPV = PRated
Ri

RSTC
[1 + k(Tcell − TSTC)] (3)

In the formula, Tcell represents the working temperature of the photovoltaic panel,
TSTC and RSTC are the temperature and radiation values measured under standard con-
ditions, Ri is the current radiation, PRated is the rated power, and k is the temperature
conversion coefficient, set at −3.7%.

For the wave energy output model, this paper employs an oscillating buoy as the
wave energy converter (WEC), represented as [23,24]

PWave = η
ρg2H2

s Te

32π
Lwidth (4)

In the formula, η represents the energy conversion efficiency, Lwidth represents the
width of the wave captured, Hs and Te, respectively, represent the effective wave height
and effective wave period, and ρ and g are the density of seawater and the acceleration due
to gravity, respectively.

The Kendall coefficient (τ) is an indicator used to evaluate the correlation between
two sets of data. Through the Kendall coefficient, the complementary potential between
different energy sources can be analyzed [19]. When 0 < τ < 1, the two energy sources are
positively correlated, indicating that they have a similar increase or decrease relationship
and lack complementarity; when −1 < τ < 0, the two energy sources are negatively
correlated, indicating that they have opposite increase or decrease relationships and possess
complementarity. Table 1 shows the complementarity among photovoltaic, wave energy,
and wind energy sources.

Table 1. The Kendall coefficient among the three energy sources.

Time τPV−WEC τWT−WEC τWT−PV τ(WT+WEC)−PV

Annual −0.5086 0.6114 −0.3649 −0.4106

By evaluating the annual electricity production entropy of three energy sources, their
uncertainty and variability can be quantified. Periods with higher entropy values indi-
cate significant fluctuations in electricity production for the corresponding energy source,
signifying increased uncertainty; conversely, lower entropy values suggest more stable
production levels. As illustrated in Figure 2, photovoltaic (PV) and wave energy conversion
(WEC) exhibit an approximate inverse relationship in entropy values throughout the year,
suggesting that these two energy sources can complement each other in facing changes and
instability. Meanwhile, wind turbine (WT) entropy values remain relatively stable over the
year, contributing positively to enhancing the stability of grid operations.
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Figure 2. The entropy values from marine renewable energy sources.

From Figure 1 and Table 1, it is evident that on a seasonal time scale, wind energy
and photovoltaic energy exhibit good complementarity, while wave energy is correlated
with wind energy and also has good complementary potential with photovoltaic energy.
τ(WT+WEC)−PV in Table 1 shows that after integrating the WEC into the WT-PV system,
the Kendall coefficient changes from −0.3649 to −0.4106, indicating an enhancement in
complementarity. Therefore, the inclusion of wave energy can effectively compensate for
the shortcomings of wind energy.

Based on a comprehensive analysis that considers the temporal distribution, Kendall
coefficient, and entropy values of the three energy sources, we conclude that it is reasonable to
implement complementary scheduling of wind, solar, and wave energy in the test marine area.

2.2. Microgrid Generation Model

Based on the aforementioned analysis, we considered a wind–solar–wave multi-energy
complementary system, as shown in Figure 3. This system consists of three microgrids,
each equipped with renewable energy generation facilities and Distributed Generation
(DG) devices as backup power sources. In this system, the generation of various energy
sources is subject to environmental conditions, leading to uncertainties and volatility. To
balance power generation with load demand, surplus electricity can be stored in the energy
storage system for future use. Moreover, when the renewable energy generation exceeds
load demand, this surplus electricity can also be sold through energy transactions with the
main grid, thereby achieving optimal energy allocation and maximizing economic benefits.
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For electricity pricing, this paper adopts time-of-use (TOU) pricing. The year is divided
into heating and non-heating periods, and the day is divided into peak and off-peak hours.
The non-heating period spans from 1 April to 31 October, and the heating period from
November 1 to March 31 of the following year. During the non-heating period, peak hours
are from 8:00 to 22:00, and off-peak hours are from 22:00 to 8:00 (the next day); during the
heating period, peak hours are from 8:00 to 20:00, and off-peak hours are from 20:00 to 8:00
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(the next day). The electricity price data were obtained from the official website of the State
Grid Shandong Electric Power Company, and are shown in Table 2.

Table 2. Time-of-use (TOU) pricing.

Period Time Slot Price (kWh/¥)

Heating period
11.1–3.31 (next year)

Peak Hours
8:00–22:00 0.5769

Off-Peak Hours
22:00–8:00 (next day) 0.3469

Non-heating period
4.1–10.31

Peak Hours
8:00–20:00 0.5769

Off-Peak Hours
20:00–8:00 (next day) 0.3769

2.3. Cost Function

The goal of this paper is to achieve system cost minimization through microgrid
scheduling optimization while fulfilling load demands. Consequently, we take into account
the operational costs of each microgrid unit, transaction costs, and penalty costs simulta-
neously. To encourage the system to prioritize the use of renewable energy to satisfy the
load demand, we set the selling price of electricity from the microgrid at 50% of the current
electricity rate.

The operating costs of DG units can typically be approximated by a quadratic equa-
tion [19] due to the non-linear relationship between the cost and the generated electricity.
This relationship encompasses fixed costs, costs that change linearly, and costs that are
proportional to the square of the generated electricity.

CDG
i,t = ai

(
PDG

i,t

)2
+ bi

(
PDG

i,t

)
+ ci, i ∈ {1, 2, 3}, (5)

To ensure that the operating costs of DG units are lower than the cost of purchasing
electricity, the specific values of a, b, and c are shown in Table 3.

Table 3. The specific values of a, b, and c.

Units ai bi ci

DGi 0.0004 0.1 0.15

The cost of trading electricity in the system is expressed as

CE
t = pt(PBuy

t − PSell
t ), (6)

where pt is the electricity price at the current moment, and PBuy
t and PSell

t are the amounts
of electricity to be bought and sold, respectively.

The operating cost of renewable energy equipment is expressed as

CR
t = CWT

t + CPV
t + CWEC

t = (kWT PWT
t + kPV PPV

t + kWECPWEC
t )∆t (7)

k is the linear coefficient
The operating cost of the energy storage system (ESS) is expressed as

CESS
t = kESS

∣∣∣Pswap
t

∣∣∣∆t (8)

The variable Pswap
t represents the charging and discharging power of the ESS. If Pswap

t
is less than 0, the device is discharging; otherwise, the device is charging.
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When condition PDGdispatch
i,t + PRdispatch

t + PESSdischarge
t + PBuy

t < PLoad_Actual
t occurs

and the power demand of users cannot be met during time period t, this is referred to as a
power deficit situation. The sum on the left side of the inequality represents the scheduled
power Pdispatch

t . We set the penalty cost for power shortages as

Cde f icit
t = kde f icitP

de f icit
t = kde f icit(PLoad_Actual

t − Pdispatch
t ) (9)

When condition PDGdispatch
i,t + PRdispatch

t + PESSdischarge
t + PBuy

t > PLoad_Actual
t occurs,

the scheduled power Pdispatch
t during time period t overflows, resulting in curtailment

situation. We set the penalty cost for curtailment as

Cabandon
t = kabandonPabandon

t = kabandon(Pdispatch
t − PLoad_Actual

t ) (10)

The detailed parameters are shown in Table 4.

Table 4. The values of parameters.

Parameters Value Parameters Value

kWT 0.3 kESS 0.3
kPV 0.1 kde f icit 0.8

kWEC 0.2 kabandon 0.8

3. CNNLSTM-DDPG Algorithm
3.1. Day-Ahead and Intra-Day Rolling Optimization Scheduling Strategy

The day-ahead and intra-day rolling optimization scheduling strategy is shown in
Figure 4.
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The foundation of rolling optimization is the day-ahead and intra-day forecasting.
Day-ahead forecasting utilizes the CNN-LSTM network with a 1 h time step to predict the
power generation from photovoltaics, wave energy, and wind turbines, as well as load
demand, 24 h in advance. Intra-day forecasting, with a 10 min time step, predicts renewable
energy generation and load demand 1 h ahead.
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In the day-ahead optimization phase, based on the day-ahead forecast results, a deep
reinforcement learning algorithm is used to formulate an hourly scheduling plan for the
ESS, DG, and the main grid, at 1 h intervals, 24 h in advance. The day-ahead objective
function can be represented as

min
N

∑
i

T

∑
t
(CDG

t,i + CR
t + CESS

t + CE
t ), (11)

s.t.
T

∑
t
(

N

∑
i

PDG
i,t + PR

t + Pswap
t + PBuy

t − PSell
t ) =

T

∑
t

Pload
t , (11a)

Pswap
min ≤ Pswap

t ≤ Pswap
max , ∀t ∈ T, (11b)

SOCESS
min ≤ SOCt ≤ SOCESS

max, ∀t ∈ T, (11c)

SOCt = SOCt−1 + ηESSPswap
t ∆t, ∀t ∈ T, (11d)

where (11a) ensures the balance of system power; (11b) indicates the maximum charging
and discharging power of the energy storage system; (11c) limits the State of Charge (SOC)
of the energy storage system; and (11d) represents the SOC update strategy.

Intra-day optimization is based on the output of day-ahead optimization, adjusting
the dispatch plan according to the deviations between intra-day forecasts and day-ahead
forecasts. To maximize system economy, intra-day optimization tries to avoid changes
to the scheduling plans of DG, ESS, and other units, focusing instead on re-planning
the deviated wind, solar, and wave energy to perform peak shaving and valley filling.
Adjustments to other units’ scheduling plans are made only when the aforementioned
operations cannot meet the load demand. The cost of intra-day optimization considers the
impact of day-ahead forecast deviations on system costs, represented as

CIN
t = kWT(PDay−ahead

t,WT − PIntra−day
t,WT ) + kWEC(PDay−ahead

t,WEC − PIntra−day
t,WEC ) + kPV(PDay−ahead

t,PV − PIntra−day
t,PV ) (12)

Additionally, to encourage intra-day optimization to schedule only the energy with
forecast deviations without altering the day-ahead decisions, we introduce an additional
constraint:

CR
t < CESS

t < CDG
i,t < CE

t (13)

The objective function is updated as

min
N

∑
i

T

∑
t
(CDG

t,i + CR
t + CESS

t + CIN
t + CE

t ) (14)

3.2. CNNLSTM-DDPG Algorithm

Despite the discernible patterns exhibited by renewable energy sources, they also
possess characteristics of uncertainty and volatility. The fundamental cause of these phe-
nomena is the variability of weather conditions. Sudden changes in weather can increase
the challenges of forecasting, as simple prediction models may fail to adequately capture
such abrupt changes, leading to decreased forecasting accuracy. In the scenario considered
in this paper, high accuracy is required to support the stability of the power supply in the
scheduling system. Component-based forecasting is an excellent prediction method, as it
allows for a better understanding of the factors behind renewable energy forecast results,
but it inevitably increases the complexity of the process by requiring the integration of
predictions from various components. Regarding neural network prediction models, a vast
body of research has validated their reliability. Compared to component-based forecasting,
neural network models may seem more complex at first glance, but they can autonomously
capture and learn from complex relationships within the data, avoiding the need for result
integration, and offering considerable accuracy in predictions. Considering both efficiency
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and accuracy, we have chosen to use neural network models for forecasting. For such
long-term sequential data, CNN-LSTM stands out as an excellent choice.

The CNN-LSTM network is a hybrid neural network model that combines Convolu-
tional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. This
structure leverages the powerful capability of CNNs in processing spatial features along
with the advantages of LSTM in handling time-series data, making it particularly suitable
for the complex and temporal correlation task of predicting renewable energy generation
in this paper.

Wind, wave, and photovoltaic energies in the Bohai and Yellow Sea regions are
influenced by weather conditions, seasonal changes, and other factors. CNNs can effectively
extract spatial features, while LSTM excels at capturing the dynamic changes in these data
over time. Utilizing both CNNs and LSTM allows for a more comprehensive understanding
and use of these temporal correlation features, thereby enhancing prediction accuracy.
And the CNN-LSTM model is capable of efficiently processing datasets by automatically
extracting important features, thereby saving time and enhancing efficiency.

This paper employs a CNN-LSTM network for 24 h day-ahead forecasting and 1 h intra-
day forecasting of renewable energy generation data. When forecasting 24 h in advance,
the CNN-LSTM network can analyze the daily variation trends of energy production based
on past data, outputting future predictions for the next 24 h on an hourly time scale. This
provides crucial information for the energy dispatch and management of the power grid.
For predictions within an hour, the CNN-LSTM model can capture short-term fluctuations
in energy production more accurately, outputting predictions for the next hour on a 10 min
time scale. This is vital for adjusting the grid’s immediate load and optimizing energy
distribution. The combination of day-ahead forecasting and intra-day forecasting can
effectively reduce the impact of renewable energy instability on the distribution grid.

Based on the forecast data from the CNN-LSTM network, the energy scheduling opti-
mization problem can be formulated as a Markov Decision Process (MDP) decision model,
which can then be solved using deep reinforcement learning algorithms. This model is rep-
resented by a quintuple (S, A, P, R, γ), where S represents the state space, A represents the
action space, P represents the state transition probability, R represents the reward function,
and γ represents the discount factor. In this paper, the state space consists of the power
generation of renewable energy, power demand, and the charging/discharging status of
batteries, which is st = (PR

t , PLoad
t , SOCt, pt). Based on the state of the microgrid system at

time t, the action space for the microgrid is defined as at = (PDG
i,t , Pswap

t , PR
i,t, PSell

t , PBuy
t ). P

is the transfer probability of transferring from the current state, st, to the next state, st+1,
after executing the current action, at. The deterministic policy, π : S→ P(A) , is defined as
the mapping of received states to actions. Different actions explored in the environment
will receive different rewards. The goal of reinforcement learning is to use the reward
function as a guide to discover the action that maximizes rewards as the optimal solution
to the optimization problem. The objective of this paper is to minimize the operational
costs of the system. The day-ahead scheduling reward function is represented as follows:

Rt,Day−ahead(st, at) = −min
N

∑
i

T

∑
t
(CDG

t + CR
t + CESS

t + CE
t ) (15)

For intra-day optimization, the reward function is adjusted accordingly:

Rt,Intra−day(st, at) = −min
N

∑
i

T

∑
t
(CDG

t + CR
t + CESS

t + CIN
t + CE

t ) (16)

The authors of [25,26] have effectively addressed the issue of cost reduction by incor-
porating deep reinforcement learning (DRL) into the energy dispatch problem of energy
systems. The Deep Deterministic Policy Gradient (DDPG) algorithm has garnered attention
for its effective handling of continuous action space problems [27,28]. This algorithm
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combines the representational capabilities of deep learning with the decision optimization
techniques of policy gradient methods, adopting a variant of the Actor–Critic architec-
ture, implemented through deep neural networks to approximate both policy and value
functions [29]. The actor network directly maps states to deterministic actions, while the
Critic network evaluates the expected return for given states and actions [30]. Addition-
ally, DDPG incorporates an experience replay mechanism, storing past transitions (states,
actions, rewards, and new states) for reuse during training, thus reducing correlations
between samples and enhancing learning stability. To further stabilize the learning process,
DDPG also employs target network technology, setting up target networks for both the
Actor and Critic and slowly updating their parameters, which helps to mitigate the issue of
moving targets.

The flow of the algorithm is shown in Figure 5 and Algorithm 1.

Algorithm 1: DDPG

1. Initialize: The Critic networks Q(s, a
∣∣θQ) and Actor network µ(s|θµ) ; the weights are θQ and θµ.

The Critic target networks Q′(s, a
∣∣θQ) and Actor target network µ′ have weights

θQ′ ← θQ and θµ′ ← θµ

The experience playback buffer (R) has size n. Empty the experience playback buffer (R).
2. for episode = 1, 2, . . ., T do
3. Reset the simulation parameters of the energy dispatch system to obtain the initial

observation state, s1.
4. for i = 1, 2, . . ., I do
5. Normalize state si to si′.
6. Obtain Actor network action ai and noise ni:

ai = min(max(µ(si′|θµ) + ni,−1), 1)
7. Execute action ai, obtain the reward, ri, and observe the new state, si+1.
8. Store transmission (si′, ai, ri, si+1′) to the Replay Buffer (R).
9. Select a batch of transition (sj′, aj, rj, sj+1′) from R, ∀j = 1, 2, . . . , I

10. Calculate Qtarget,j = rj + γQ′(sj+1, aj′
∣∣∣θQ′)

11. Update the Critic network parameters θQ
j based on the mean square

loss function:

L(θQ) = 1
N

N
∑

N=1
( (Qtarget,j −Q(sj′, aj

∣∣∣θQ))
2
).

12. Update the Actor network using the stochastic policy gradient:

∇θµ J ≈ 1
N ∑

j
∇aQ(s, a

∣∣∣θQ)
∣∣∣s=sj,a=µ(sj)∇θµµ(s

∣∣∣θµ)
∣∣∣sj .

13. Update the target network parameters:
θQ′ ← τθQ

i + (1− τ)θQ′
i ,

θµ′ ← τθµ + (1− τ)θµ .
14. end for
15. end for

The initial stage involves day-ahead scheduling optimization, wherein the CNN-
LSTM network is utilized to obtain initial value sDay−ahead

i for the future 24 h renewable
energy generation, power demand, battery State of Charge (SOC), and current electricity
price. The Actor network gives the power scheduling plan aDay−ahead

i in state sDay−ahead
i

through aDay−ahead
i = min(max(µ(sDay−ahead

i ′
∣∣∣θµ) + ni,−1), 1) . The agent, upon executing

action aDay−ahead
i within the environment, receives rewards, rDay−ahead

i , and transitions

to the next state, sDay−ahead
i+1 . The reward function for day-ahead scheduling is detailed

in Equation (15). At this juncture, the Critic network assesses the action value function,
Q(sDay−ahead

i , aDay−ahead
i ), of the current scheduling plan, aDay−ahead

i , evaluating the plan’s

value. Then, the sDay−ahead
i+1 is fed into both the Target Actor and Target Critic networks.

The Target Actor proposes a scheduling plan, aDay−ahead
i+1 , for state sDay−ahead

i+1 , and the Target
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Critic calculates the maximum Q-value, QDay−ahead
target , for the optimal action of the next state

via the Bellman optimality in Equation (17), which is relayed back to the Critic network.
The quadruplet (sDay−ahead

i , aDay−ahead
i , rDay−ahead

i , sDay−ahead
i+1 ) is stored in the experience

replay pool (R) for subsequent training.

QDay−ahead
target,i = rDay−ahead

i + γQ′(sDay−ahead
i+1 , µ′(sDay−ahead

i+1 |θµ′)|θQ′) (17)
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Following this, the parameters of both the Actor and Critic networks are updated.
The Critic receives the evaluation QDay−ahead

target,i and compares it against its own calculations,

Q(sDay−ahead
i , aDay−ahead

i ), adjusting its objective function QDay−ahead
target,i −Q(sDay−ahead

i , aDay−ahead
i )

by minimizing the mean squared error loss function (18) to update the Critic network pa-
rameters.

L(θQ
j ) =

1
N

N

∑
N=1

((QDay−ahead
target,j −Q(sDay−ahead

j ′, aDay−ahead
j |θQ

j ))
2
) (18)

The Actor network employs the gradient ascent algorithm, aiming to maximize the ex-
pected return estimated by the Critic network, thus updating the network parameters. The
policy gradient for updating the Actor network is represented by the following equation:

∇θµ J ≈ 1
N
∇aQ(s, a|θQ

1 )|
s=sDay−ahead

j ,a=µ(sDay−ahead
j )

∇θµµ(s|θµ)|
sDay−ahead

j
(19)

Lastly, the target network parameters are updated through a soft update mechanism,
employing Equations (20) and (21) to control the update rate of the target network parame-
ters, thereby enhancing learning stability.

θQ′ ← τθQ
i + (1− τ)θQ′

i , (20)

θµ′ ← τθµ + (1− τ)θµ. (21)
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Thus, the DDPG day-ahead optimization algorithm completes a training iteration. It is
important to note that during each training session, the DDPG may randomly draw a batch
of experiences from the replay pool (R) to update the network. This process is repeated N
times to produce the optimal 24 h day-ahead scheduling plan.

In intra-day scheduling optimization, one hour prior to the actual operation, future
one-hour power generation and demand forecasts are obtained from the CNN-LSTM
network. Subsequently, the differences between these intra-day forecast results and the pre-
established day-ahead scheduling plan are calculated to determine the renewable energy
forecast deviation, PR−

t,i , and the load demand forecast deviation, PL−
t,i . The state space,

sIntra−day
i , for intra-day scheduling comprises a tuple (PR−

t,i , PL−
t,i , SOCDay−ahead, pt) that

includes these two forecast deviations, the State of Charge (SOC) coefficient of the energy
storage system from the day-ahead plan, and the current electricity price. The network
updating process thereafter follows the same procedure as for day-ahead optimization
scheduling, with the exception that the reward function is replaced with Equation (16).
After N training sessions, the intra-day optimized scheduling plan is output.

4. Simulation Analysis

Using the collected data, we created an original dataset. We designated the first
three weeks of each month as the training set and the remaining time as the test set. This
approach allows the trained algorithm to consider the seasonal variations in renewable
energy generation and electricity demand.

4.1. Power Generation Forecast

We compared the day-ahead forecast and intra-day forecast results for a typical day
and found discrepancies between them. This is because the forecasting error tends to
decrease as the time approaches closer to the actual operation. The day-ahead forecast is
conducted 24 h before the actual operation, while the intra-day forecast is carried out 1 h
prior, utilizing the latest meteorological data and system status information, which may
not be as accurate during the day-ahead forecast.

The forecast results of a typical day are shown in Figure 6a–d. From Figure 6, it can
be observed that the accuracy of day-ahead forecasts is significantly lower compared to
intra-day forecasts. This discrepancy can be attributed to two main reasons: (1) The dataset
for intra-day forecasting is updated more frequently, with a finer time scale, making it more
sensitive to fluctuations in data. (2) The day-ahead forecast involves making predictions
24 steps ahead for a 24 h period, whereas intra-day forecasting involves only 6 steps for
predicting 1 h ahead. Naturally, forecasts involving fewer steps tend to be more accurate.

4.2. Scheduling Results

The DDPG algorithm was implemented and trained 500 times in Python using Pytorch.
We simulated the system’s performance under various monsoon conditions, setting up
three renewable energy microgrids continuously to provide power output. The energy
storage system (ESS) has a rated capacity of 5000 kW with an efficiency of 0.9. The installed
capacities for WEC, WT, and PV are 600 kW, 1000 kW, and 1100 kW, respectively.

The forecast data were input into both the day-ahead optimization DRL model and
the day-ahead and intra-day rolling optimization DRL model, with the reward value
convergence curve shown in Figure 7. It can be observed that under the optimization of the
DDPG algorithm, the reward gradually increases and stabilizes quickly. The reward for
rolling optimization scheduling is greater than that for day-ahead optimization scheduling.
This is because the rolling optimization scheduling has a more precise scheduling plan,
which reduces penalty costs.
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Figure 7. The reward of the DDPG algorithm.

As indicated in the hypothetical Figure 8, the intra-day adjustment phase allows for
the precise allocation of electricity plans every 10 min, which is not feasible with day-
ahead scheduling. It is important to note that the intra-day adjustment phase of rolling
optimization scheduling outputs scheduling plans on a 10 min timescale, whereas day-
ahead scheduling operates on a 1 h basis. To more intuitively analyze the changes and
costs between rolling optimization scheduling and day-ahead optimization scheduling, we
standardized the time scale. We aggregated the 1 h intra-day adjustment plans, converting
the unit of measurement from power generation capacity (kW) to electricity generation and
consumption (kWh).
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Figure 8. Intra-hour scheduling plan.

The scheduling results obtained are shown in Figure 9. The rolling optimization schedul-
ing results are analyzed horizontally. As shown in Figure 9a,b, during a typical summer
day, the sunlight conditions are favorable, allowing for stable photovoltaic power generation.
Wind resources are concentrated between 01:00 and 7:00 and between 13:00 and 17:00, with
the generated surplus energy being stored in the ESS or sold to the main grid at appropriate
times. A peak load occurs between 9:00 and 13:00, with the ESS output compensating for the
shortage in generation. Notably, on this day, there is almost no renewable energy generation
between 19:00 and 22:00, with the ESS playing a key role in maintaining the power supply.
Unlike the summer, the typical winter day experiences poor sunlight conditions, resulting
in significantly insufficient energy from the photovoltaic system. However, abundant wind
resources on this day provide ample wave and wind energy, with the ESS again playing a
crucial role during the evening peak load period. The presence of the ESS allows the power
supply system to achieve peak shaving and valley filling from the generation side, enhancing
system supply stability while avoiding energy waste.
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Vertically comparing rolling optimization scheduling with day-ahead optimization
scheduling, Figure 9a,c and 9b,d, respectively, show their scheduling plans on a typical
summer monsoon day and a typical winter monsoon day. In Figure 9b,d from 11:00
to 19:00, there is a significant difference in the predicted power generation from wave
and wind energy. The rolling optimization scheduling algorithm, upon receiving more
accurate prediction results, timely adjusted the scheduling plan, reducing system costs. In
Figure 9a,c at 11:00–13:00 and 21:00–23:00, and in Figure 9b,d at 7:00–11:00 and 19:00–22:00,
there are significant load power fluctuations. The rolling optimization scheduling balanced
the power fluctuations by adjusting the renewable energy generation based on prediction
deviations and utilizing the energy storage system.

The analysis of climate conditions showed that under different monsoon conditions,
the output proportion of various renewable energy sources varies. During the summer
monsoon, the region experiences long sunshine hours and high-intensity solar radiation,
leading to a high proportion of photovoltaic power generation; wind resources are rela-
tively scarce, resulting in lower proportions of wind and wave energy. During the winter
monsoon, when the region experiences high wind speeds and stable wind directions, wind
and wave energy generation contribute more to the output.

With an analysis of electricity prices, the inclusion of the energy storage system
significantly contributes to reducing the system’s electricity purchasing costs. Observing
the State of Charge (SOC) of the energy storage system, it is evident that when the electricity
prices are high during the day, the system minimizes electricity purchases from the main
grid by releasing the stored energy from the ESS to the maximum extent.

The subsequent analysis focuses on how intra-day optimization adjustments address
the issue of power fluctuations. Here, “power curtailment” and “power deficit” specifically
relate to the dispatch plan, not the overall power supply system. This distinction is
crucial because, although the integration of energy storage systems and the main grid can
dynamically balance power fluctuations to prevent system-wide power curtailment and
power deficit, significant deviations in the dispatch plan can lead to substantial short-term
overload stress on the equipment. The power curtailment and power deficit in question
result from power fluctuations caused by dispatch deviations due to forecast inaccuracies.
The objective of the proposed rolling optimization scheduling algorithm is to significantly
reduce the occurrence of these issues, thereby lowering costs and enhancing the stability
of the system. Figure 10 illustrates the role of the rolling optimization scheduling strategy
in mitigating power fluctuations within the day-ahead scheduling plan, detailing how
intra-day adjustment plans counteract the effects of power fluctuations, thereby mitigating
instances of power curtailment and power deficit.
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In Figure 10a, during the 9:00 time slot, the power fluctuation is less than 0, indicating
that a power deficit occurred in the day-ahead scheduling plan for that period. In the
7:00–10:00 time slot in Figure 10b, the power fluctuation is greater than 0, indicating a need
for more electricity, hence a power curtailment event. Rolling scheduling optimization
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mitigates power fluctuations by adjusting the supply conditions of each generation unit
and the charging/discharging states of storage units in a timely manner.

4.3. Cost Analysis

Earlier, we mentioned the potential of wave energy to enhance the complementary
nature of the system’s energy resources, with a theoretical analysis provided. Next, we
aim to validate the impact of wave energy generation on the system through simulation
experiments. In these experiments, we excluded the wave energy generation microgrid.
To isolate the variable, the installed capacity of the WT was increased to 1600 kW, with all
other equipment specifications remaining as before.

Figure 11 presents the scheduling plans in two different scenarios. As observed from
the figure, despite the consistency in installed capacity of the power generation system, ESS
capacity, etc., across both simulations, the inclusion of WEC resulted in a greater reserve
of electricity. In Figure 11a, there is surplus electricity that is sold back to the main grid,
further reducing costs. Comparing periods 21:00–23:00 in Figure 11a,b, the system with
WEC still has enough energy in the ESS to cover the day’s energy shortfall, whereas the
system without WEC has to purchase more expensive electricity from the main grid.
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Table 5 compares the operating costs from two simulation experiments, demonstrating
that the system incorporating WT, PV, and WEC has an operating cost that is 5% lower than
the system solely comprising WT and PV.

Table 5. The costs of WT-PV-WEC and WT-PV.

Scenarios Operating Cost

WT-PV-WEC 7888.49

WT-PV 8198.15

Then, we compared the system costs of using only day-ahead optimization with
those of employing both day-ahead and intra-day rolling optimization. According to the
description in the previous section, the system costs are represented as follows:

CSystem =


N
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(a) and (b) are Day-ahead optimization and rolling optimization system costs, respec-
tively. Figure 12 illustrates the curtailment and deficit situations within the same typical
day for the two optimization strategies, where values greater than 0 represent power cur-
tailment and values less than 0 indicate power deficit. Figure 12a represents the scheduling
results for a typical summer monsoon day; Figure 12b represents the scheduling results for
a typical winter monsoon day. The system employing the day-ahead and intra-day rolling
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optimization strategy exhibits significantly lower power curtailment and deficits compared
to the system that only uses day-ahead optimization. As a result, the costs associated with
Cabandon

t and Cde f icit
t are significantly higher for the day-ahead optimization alone, leading

to increased overall costs. As shown in Table 6, the system costs using rolling optimization
scheduling are reduced by 16.1% and 22% on typical winter and summer days, respectively,
compared to using day-ahead scheduling.
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Table 6. The costs of optimization scheduling.

Seasonality Operating Cost Penalty Cost Total Cost

Day-ahead Optimization (Summer) 7888.49 5094.72 12,983.21

Rolling Optimization (Summer) 7253.11 2871.85 10,124.96

Day-ahead Optimization (Winter) 6489.58 5279.33 11,768.91

Rolling Optimization (Winter) 7400.75 2470.31 9871.06

5. Conclusions

This paper proposes a multi-time-scale rolling optimization scheduling model that
integrates offshore wind, wave, and photovoltaic energy sources in the Bohai and Yellow
Sea regions. This model can enhance grid stability and mitigate the impacts of renewable en-
ergy variability on the distribution system by leveraging the complementary characteristics
of these energy sources.

Through an in-depth analysis of the collected dataset on renewable energy generation
in the test maritime area, we confirmed the complementarity between wind, photovoltaic,
and wave energies. Using a CNN-LSTM network, we predicted the power generation for
both the day ahead (24 h) and intra-day (1 h), capturing short-term and long-term trends
effectively. Subsequently, the DDPG algorithm was employed to explore the predicted state
space and identify the optimal scheduling strategy.

Simulation experiments simulated the system’s performance in various monsoonal
conditions. The results demonstrate that day-ahead and intra-day rolling optimization can
effectively balance power fluctuations through timely intra-day adjustments. The applica-
tion of energy storage systems (ESSs) also bolstered the system’s capability to cope with
renewable energy fluctuations, reducing electricity purchase costs from the grid. Horizontal
and vertical analyses showed that rolling optimization scheduling reduces curtailment and
power deficits more effectively than traditional day-ahead scheduling, thereby lowering
the overall system costs. On typical summer and winter days, the costs of systems using
rolling optimization scheduling decreased by 16.1% and 22%, respectively. This study offers
valuable insights for the efficient management and optimization scheduling of renewable
energy grids in other maritime regions.
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