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Abstract: We investigate whether it is possible to distinguish chaotic time series from random time
series using network theory. In this perspective, we selected four methods to generate graphs
from time series: the natural, the horizontal, the limited penetrable horizontal visibility graph, and
the phase space reconstruction method. These methods claim that the distinction of chaos from
randomness is possible by studying the degree distribution of the generated graphs. We evaluated
these methods by computing the results for chaotic time series from the 2D Torus Automorphisms,
the chaotic Lorenz system, and a random sequence derived from the normal distribution. Although
the results confirm previous studies, we found that the distinction of chaos from randomness is not
generally possible in the context of the above methodologies.

Keywords: chaos; randomness; time series; network theory; visibility graph; phase space reconstruction
network

1. Introduction

Chaos was discovered by Poincaré by the end of the 19th century as non-analyticity and
dynamical instability in the three-body problem, while the computational limitations arising
from chaos were discovered by Lorenz [1] and were described as the “Butterfly Effect”.
Chaos has been found in most mathematical models involving applications, like physics,
engineering, biology, economics, medicine, sociology, geology, and astronomy. The main
feature of chaotic systems, that of the sensitive dependance on initial conditions, means that
very small variations in initial conditions can lead to very large, dramatic, and effectively
unpredictable variations of the evolving trajectories. As a result, chaotic systems cannot
be predicted and controlled systematically, although the trajectories are mathematically
unique. In other words, the deterministic trajectories are not effectively determinable.
This behavior is the essence of deterministic chaos, or simply chaos [1–5]. Chaos in time
series refers to the presence of unpredictable, seemingly random behavior in data. This can
occur when the underlying system generating the time series is highly sensitive to initial
conditions, leading to complex behavior that is difficult to model or predict.

Chaos is statistically indistinguishable from randomness. This fact has been confirmed
mathematically in terms of positive entropy production [6,7], as well as by difficulties in
applying statistical methods [8,9]. Among others, chaos is the mathematical mechanism for
random number generation [10,11].

The possibility to distinguish chaos from randomness should be based on algebraic
and/or topological arguments as statistical analysis fails on this task [6–9]. A way that
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has been proposed to achieve this distinction is to transform a time series into a complex
network and investigate whether this distinction can be achieved using network theory. In
recent years, network-based approaches have emerged as powerful tools to unravel the
underlying structure and dynamics of complex systems [12–15]. The goal of this work is
to evaluate and compare the visibility and phase space methods for distinguishing chaos
from randomness.

Visibility methods construct a visibility graph from a time series considering each
data point as a node in a network. Two nodes are connected by an edge if they obey
a certain visibility criterion, which is defined according to the chosen method. In this
way, one constructs the visibility network associated with the topology of the time series,
and this allows the system analysis from a network science viewpoint. A handful of
approaches applying the property of visibility on the points of a time series have been
proposed [14]. The main two methods are the Natural Visibility Graph (NVG) and the
Horizontal Visibility Graph (HVG) [16,17]. Both are aiming to extract the dynamical
properties of the corresponding systems by correlating the points of the studied time series.
The structure and the dynamics of the time series are claimed to be preserved in the graph
topology. Moreover, it has been claimed that the discrimination between deterministic
chaos and stochasticity for the studied system can be achieved through the calculation
of the degree distribution of the emerging network, by studying the time series of a state
variable of the system [16,17].

Phase space reconstruction involves converting a time series into a graph by recon-
structing the phase space of the system from its time series data. The resulting phase
space is a higher dimensional space that encompasses all the potential states of the system,
where each point signifies a unique state. The system’s dynamics can be portrayed as a
trajectory within this phase space. Phase space reconstruction entails the creation of a graph
representation of phase space, in which the nodes symbolize the states of the system and
the edges depict the transitions between these states. This facilitates the analysis of chaotic
system behavior over time and the identification of patterns and trends within the data.
This way allows to calculate typical metrics like correlation dimension and Kolmogorov
entropy. On the other hand, according to Provenzale et al. [18], distinguishing between
low dimensional chaos and any correlated noise should not be based solely on correlation
dimension estimates within the phase space, since there have been reported cases of other
types of stochastic processes mimicking the properties of low dimensional chaos, even
in the case of infinite data sets [19]. Considering this limitation, other approaches have
been proposed like the nonlinear analysis of the first differences or their equivalent, i.e.,
the numerical approximation of the derivative of the studied time series. In this case
coincidence in the calculation of the correlation dimension between the initial time series
and its first differences, provide a trustworthy conclusion of the deterministic or stochastic
nature of the studied time series [20]. Finally, it should be mentioned that the determin-
istic or stochastic nature of a system is decided by combining various metrics, according
to different methodologies [21]. In an attempt to exploit the emergence of properties of
deterministic chaotic systems, the Phase Space Network has been proposed. According to
this method, each point of the attractor is considered as a node and the links between the
nodes are constructed by the distance of the points of the attractor. The generated network
inherits the underlying structure and dynamics (deterministic chaos or randomness) of the
system. It is suggested [22] that by studying the topology of the network and calculating
the degree distribution, we can discriminate chaotic from random time series.

In order to assess the efficiency of visibility and phase space reconstruction methods
to discriminate chaos from randomness, we present the methods in Section 2. Then, we
review previous relevant work in Section 3. In Section 4, we obtain the degree distribution
for each generated network. The meaning of the results is presented in Section 5, and our
conclusions in Section 6.
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2. Networks from Time Series
2.1. Visibility Graphs (VG)

Visibility graph (VG) algorithms have gained attention since their introduction by La-
casa et al. in 2008 [17]. Several variations of the original VG algorithm have been proposed
utilizing geometric and ordering criteria [14,15,23]. More specifically, connections (edges)
are established between the time series values (nodes) using visibility lines [12,24,25].
Visibility graph theory has been used in different areas such as economics [26–28], geol-
ogy [29–31], traffic problems [32], tourism [33], the diagnose of Alzheimer’s disease, and
biology [34–36]. Extensive theory can be found in the literature on Visibility Graphs, con-
taining details of their properties and all the different variations of the method [14,15,23].
In the following, we will briefly present three variants of VGs.

2.1.1. Natural Visibility Graph

The first of the three VG algorithms is the Natural Visibility Graph (NVG), introduced
by Lacasa et al. in (2008) [17]. The graph is constructed by connecting points in the time
series that are “visible” to each other. A point is considered visible if there are no other
points with higher values that block the line of sight between them.

Let (xi)i=1,...,N with xi = x(ti) be a time series of N real data. A Natural Visibility
Graph is obtained by mapping a time series onto a network according to the following
visibility criterion: two arbitrary data (ti, xi) and

(
tj, xj

)
in the time series have visibility, if

any other data (tk, xk) such that ti < tk < tj fulfills [17]:

xk < xi + (tk − ti)
xj − xi

tj − ti
(1)

which can be written as [14],
xi − xk
tk − ti

>
xi − xj

tj − ti
(2)

The NVG was claimed to be planar (embeddable in a 2D surface with no overlapping
edges) by construction [37,38] without proof. Later, it was stated that this is not true in
general [39], again without proof. Below, we give a specific counterexample demonstrating
that NVGs are not planar.

Proposition 1. There exist non-planar NVGs.

Proof. We construct the following non-planar NVG. Consider the time series
(1.0, 0.58, 0.40, 0.30, 0.8). According to the visibility criterion (Equations (1) and (2)), a
Natural Visibility Graph is generated (Figure 1). All planar graphs with N ≥ 3 nodes and
E edges satisfy the inequality:

E ≤ 3N − 6 (3)

Inequality (2) is a corollary of the Euler’s Formula (1750) [40].
The generated NVG is a complete graph with 5 nodes and 10 edges, as illustrated in

Figure 1. It is obvious that the generated NVG does not satisfy inequality (3); therefore, it is
not planar. This graph is precisely the graph K5. Kuratowski proved in 1930 that a graph is
planar if and only if it does not contain a subdivision of the graph K5 or a subdivision of
the graph K3,3 [40,41]. □

2.1.2. Horizontal Visibility Graph

In 2009, Luque et al. suggested a modified version of the NVG algorithm, using a
simplified criterion of horizontal visibility to transform time series data into a complex
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network representation. Two arbitrary data (ti, xi) and
(
tj, xj

)
are connected in a horizontal

visibility graph, if and only if for all tk with ti < tk < tj [42]:

xk < min
{

xi, xj
}

(4)

If two nodes satisfy Equation (4), then the property of horizontal visibility is fulfilled.
Moreover, Equation (3) is also fulfilled; thus, the nodes possess the property of natural
visibility as well. Therefore, the degree of the HVG nodes will never be greater than the
degree of the corresponding NVG nodes, further implying that the HVG of a given time
series is always a subgraph of its NVG [12,14]. The difference between the two methods is
illustrated in Figure 2.
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Figure 2. The first row illustrates how a time series is transformed into a network using the natu-
ral visibility algorithm, while the second row depicts the same time series transformed using the
horizontal visibility algorithm. Notice that the HVG is a subgraph of NVG [23].

2.1.3. Limited Penetrable Horizontal Visibility Graph

The LPHVG is an enhancement of the HVG. By setting the limited penetrable distance
to ρ, a link between two nodes exists if the number of in-between nodes that block the
horizontal line is at most ρ [43–47]. If ρ = 0, LPHVG degenerates into HVG, but if ρ ̸= 0,
there are more connections between any two nodes in LPHVG than in HVG. In Figure 3,
we can see the new established connections (red lines) when inferring the LPHVG on the
HVG with a limited penetrable distance ρ = 1. In general, the LPHVG is denser compared
to the corresponding HVG [43]. The limited penetrable horizontal visibility graph inherits
many properties of the corresponding horizontal visibility graph, e.g., it is connected and
invariant under all affine transformations of the series data [17,42]. However, the HVG
planarity property is not inherited to the corresponding LPHVG:
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Figure 3. Example of (a) a time series with 10 data values and (b) its corresponding LPHVG with
ρ = 1, where every node corresponds to a time series data. The limited penetrable horizontal visibility
lines between data points define the links connecting nodes in the graph. Black lines generate the
HVG, and red lines are those added to generate the LPHVG for ρ = 1 [44].

Proposition 2. Although all HVG are planar, there exist non-planar LPHVGs.

Proof. All HVGs are known to be planar. More specifically, a graph is an HVG if and only
if it is outerplanar and has a Hamilton path [48]. We construct the following non-planar
LPHVG. Consider the time series (1.0, 0.7, 0.40, 0.50, 0.8). For limited penetrable distance
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ρ = 1, the generated graph Figure 4 is not planar as it is a K5 graph which is non-planar
as discussed in the proof of Proposition 1. Moreover, for the limited penetrable distance
ρ ≥ 1, the corresponding LPHVGs are also non-planar since all of them essentially include
as a subgraph the LPHVG with ρ = 1 which is the non-planar graph K5. □
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2.2. Phase Space Reconstruction Graphs (PSRG)

Reconstructing the phase space of a dynamical system from a time series was intro-
duced by Takens in 1981 [49]. According to this method, for a time series (xi)i=0,1,...,N ,
where N is the sampling size, we choose a delay time τ. Then, the vector point within the
m-dimensional phase space can be represented as follows:

Xk = {x(k), x(k + τ), x(k + 2τ), . . . , x(k + (m − 1)τ)} (5)

where k = 1, . . . , M and M = N − (m − 1)τ, represent all the vector points of the phase
space reconstruction.

In order to construct the complex network, the distances between each pair of vector-
points (in the delayed time series) are used as weights between nodes, with the vector-points
serving as the nodes themselves. The distance between vector-points in phase space is
defined as:

dij =
m

∑
n=1

∥∥Xi(n)− Xj(n)
∥∥ (6)

where Xi(n) = z(i + (n − 1)τ) and Xj(n) = z(j + (n − 1)τ) is the nth element of Xi and Xj,
m being the embedding dimension, and τ the delay time. In this way, a fully connected
weighted network has been constructed. Since this network may contain redundant
information, it can be converted into its unweighted counterpart by setting a threshold
on the weights. By selecting a threshold rc, the distance matrix D =

(
dij
)

gives rise to the
adjacency matrix A =

(
aij
)
:

aij =

{
1, dij ≤ rc
0, dij ≥ rc

(7)

To determine the optimal threshold, we examine the density of the network. The
selected threshold rc corresponds to the maximum value on the plot of the derivative of
density versus the threshold [22].
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3. Signature of Chaos in Networks Associated with Time Series
3.1. Signature of Chaos in Visibility Graphs

Lacasa et al. in 2008 demonstrated the applicability of the Natural Visibility Graph
(NVG) to a wide range of time series, including chaotic ones [17]. It was also found that the
structure of the time series is mapped in the resulting graph topology. Specifically, periodic
time series convert into regular graphs, random series into random graphs, and fractal
series convert into scale-free graphs, indicating that power law degree distributions are
related to fractality.

Luque et al. in 2009 proved that any uncorrelated random series maps to a graph with
an exponential degree distribution of the shape [42]:

P(k) =
1
3

(
2
3

)k−2
, k = 2, 3, 4, . . . (8)

Lacasa and Toral in 2010 tried to use the horizontal visibility graph to characterize and
distinguish between stochastic and chaotic processes [16]. They suggested that in every
case we get a network with exponential degree distribution P(k) ∼ e−λk, where the value
of λ indicates the type of process generating the time series. In specific, they claim that
for λ < ln

( 3
2
)

we have a chaotic process, whereas λ > ln
( 3

2
)

corresponds to a correlated
stochastic process. The boundary value λc = ln

( 3
2
)

corresponds to the uncorrelated case.
However, Ravetti et al. in 2014 found some examples of chaotic time series where

λ > λc and stochastic time series where λ < λc, indicating that the above rule does not
hold in a strict way [50]. Also, Zhang et al. in 2017 considered time series generated by
auto-regressive (AR) processes and provided some examples supporting that correlated
stochastic time series are characterized by λ > λc, slowly tending to an asymptotic value
of ln

( 3
2
)

for weak correlations. Moreover, they also found some peculiar results indicating
that λc should not be interpreted as a general critical value separating chaos from noise [51].

Although some time series were found for which the proposed λ—criterion fails to
successfully characterize them as chaotic or stochastic, several recent (post–2020) papers use
it to discriminate chaotic from stochastic time series. Specifically, in [52], the λ—exponent
criterion is applied to the HVG [16] to characterize magnetic fluctuation time series ob-
tained from PIC simulations. Also, the time series of streamflow [53], air traffic flow [54],
cryptocurrencies price [55], and the air mean temperature [56] are characterized as chaotic
or stochastic depending on the exponent λ.

Similar results have been obtained for LPHVG (Section 2.1.3). Wang et al. in 2018 found
that this graph can discriminate chaos from uncorrelated randomness [44]. In specific, they
showed that random time series map on an LPHVG with an exponential degree distribution
P(k) ∼ exp[−λ(k − 2ρ − 2)] with λ = ln

[
2ρ+3
2ρ+2

]
, ρ = 0, 1, 2, . . . and k = 2ρ + 2, 2ρ + 3, . . ..

The degree distribution was found to be independent of the probability distribution from
which the series was generated. It was also found that degree distribution corresponding to
chaotic systems can be approximated by the exponential function P(k) ∼ exp

(
−λ̂k

)
, with

λ̂ ̸= λ = ln
[

2ρ+3
2ρ+2

]
. Parameter λ̂ also indicates the boundary between random and chaotic

series; thus, it can be used to distinguish randomness from chaos.

3.2. Signature of Chaos in Phase Space Reconstruction Graphs

Zhongke Gao and Ningde Jin in 2009 [22] proposed the phase space graph method
and found that the constructed network inherits the main properties of the time series
in its structure. Specifically, periodic series are mapped into regular networks, noisy
series into random networks, and chaotic series (typically) into small world and scale-free
networks [22].

Similarly, the phase space coarse graining algorithm [57] converts the time series into
a directed and weighted complex network. It was also claimed that periodic series convert
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into regular networks, while random series convert into random networks and chaotic
series into scale-free networks [57].

Therefore, both PSRG and coarse grain PSRG constructions are expected to allow the
distinction between chaos and randomness [22,57].

4. Results

As mentioned in Section 1, chaos is expected to be statistically indistinguishable from
randomness. In order to discriminate chaos from randomness, we decided to map the time
series into complex networks and investigate whether the discrimination is possible by
comparing the associated networks.

We selected three different time series of 1000 values each, coming from three different
systems, namely, the Torus Automorphisms, the Lorenz System, and a random sequence.
The chaotic Torus Automorphisms are obtained using Equations (9)–(12), with parameters
h = 1, a = 2, b = 1, and h = 10, a = 1, b = 1000, the Lorenz System is obtained through
the dependence of variable x through the three Lorenz equations, with parameters σ = 10,
ρ = 28, β = 8

3 , and the Random Sequence is obtained from the Standard Gaussian Distribution
(mean 0 and standard deviation 1). For each time series, we constructed four associated
graphs, namely NVG, HVG, LPHVG, and PSRG, and computed their degree distributions
which are presented in Sections 4.1–4.3. Most studies claim that the discrimination of chaos
from randomness follows by observing the degree distributions [16,17,22,42,44,57]. We shall
examine whether the degree distributions obey a power law distribution P(k) ∼ k−γ, or an
exponential distribution P(k) ∼ e−λk. These distributions are claimed to correspond to chaos
and randomness (Sections 3.1 and 3.2).

We present the degree distributions in a lin–lin plot, and in a log–log plot in order to
identify power law and in a lin–log plot in order to identify exponential law. The slope
(exponent of the distribution) is computed with the least square method. In the case of
the LPHVG, we select two values of limited penetrable distance, namely ρ = 1 and ρ = 2.
In the case of PSRG, we use the technique proposed by Zhongke Gao and Ningde Jin to
find the optimal delay time, τ [22], and the technique proposed by Matthew B. Kennel and
Reggie Brown to determine the optimal embedding dimension, m (False Nearest Neighbor
algorithm, FNN) [58]. The FNN method requires the selection of certain parameters in
order to find the optimal value of m, so we decided to use Cao’s method as well [59].

4.1. Results for Torus Automorphisms

The Torus Automorphisms are transformations of the 2—Torus Y = [0, 1) × [0, 1)
given by the formula:

S : Y → Y :
(

xn+1
yn+1

)
= A

(
xn
yn

)
(mod1), n ∈ Z (9)

where A =

(
a b
c d

)
a 2 × 2 matrix with a, b, c, d ∈ Z and det(A) = 1.

The matrix element c of A can be expressed in terms of the entropy production rate h
as follows [60]:

A =

(
a b

ad−1
b d

)
, b ̸= 0, d > 2 − a (10)

The entropy production h can be expressed in terms of the positively Lyapunov
exponent as:

h = log2 λ+ = log2

(a + d) +
√
(a + d)2 − 4

2
= log2

tr(A) +
√
(tr(A))2 − 4

2
(11)
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Therefore:

A =

(
a b

a(2h+2−h−a)−1
b 2h + 2−h − a

)
, h > 0 (12)

Entropy production is defined by Kolmogorov [6]. Using the above formulas, we
generated 6 chaotic time series (from the 2—Torus automorphisms) of 1000 values each and
with entropy production for each of them: h = 1 and h = 10. We obtained 12 chaotic time
series, with the least chaotic ones having an entropy production of 1, which goes up to 10.
In the paper, we present two chaotic time series of the variable y, with entropy production
h = 1 and h = 10.

4.1.1. Natural Visibility Graph of Torus Automorphisms

The NVGs generated by the 2D Torus Automorphisms are sparse with density
d ≈ 0.0057. For both values of entropy production, we obtained scale-free networks
(middle column, Figure 5) with degree distributions that asymptotically follow a power law
P(k) ∼ k−γ and with exponents (slopes) γh=1 = −2.886 and γh=10 = −2.45. The error of
the least square fit is R2

h=1 = 0.96 and R2
h=10 = 0.95. The contribution of fat tails is neglected.

One may also consider the degree distributions as exponential distribution P(k) ∼ e−λk

(right column, Figure 5) with exponents (slopes) λh=1 = −0.218 and λh=10 = −0.245 with
errors R2

h=1 = 0.96 and R2
h=10 = 0.92.
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Figure 5. Degree distribution of the Natural Visibility Graphs of two Torus Automorphisms corre-
sponding to the chaotic time series with h = 1 (first row) and h = 10 (second row), in lin–lin scale
(left column), in log–log scale (middle column), and in lin–log scale (right column).

4.1.2. Horizontal Visibility Graph of Torus Automorphisms

The HVGs generated by the 2D Torus Automorphisms are sparse with density
d ≈ 0.004. For both values of entropy production, we obtained scale-free networks (mid-
dle column, Figure 6) with degree distributions that asymptotically follow a power law
P(k) ∼ k−γ and with exponents (slopes) γh=1 = −3.05 and γh=10 = −3.256. The error of
the least square fit is R2

h=1 = 0.93 and R2
h=10 = 0.96. The contribution of fat tails is neglected.

One may also consider the degree distributions as exponential distribution P(k) ∼ e−λk
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(right column, Figure 6) with exponents (slopes) λh=1 = −0.386 and λh=10 = −0.411 with
errors R2

h=1 = 0.96 and R2
h=10 = 0.97.
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4.1.3. Limited Penetrable Horizontal Visibility Graph of Torus Automorphisms

The LPHVGs generated by the 2D Torus Automorphisms are sparse for both values
of ρ, with density dρ=1 ≈ 0.008 and dρ=2 ≈ 0.012. For both values of entropy production,
we obtained scale-free networks (middle column, Figure 7 for ρ = 1 and Figure 8 for
ρ = 2) with degree distributions that asymptotically follow a power law P(k) ∼ k−γ

and with exponents (slopes) γρ=1 = −2.528 and γρ=2 = −2.255 for h = 1, as well as
γρ=1 = −2.462 and γρ=2 = −2.35 for h = 10. The error of the least square fit is R2

ρ=1 = 0.94
and R2

ρ=2 = 0.93 for h = 1, and R2
ρ=1 = 0.96 and R2

ρ=2 = 0.93 for h = 10. The contribution
of fat tails is neglected. One may also consider the degree distributions as exponential
distribution P(k) ∼ e−λk (right column, Figure 7 for ρ = 1 and Figure 8 for ρ = 2) with
exponents (slopes) exponent λρ=1 = −0.226 and λρ=2 = −0.162, with errors R2

ρ=1 = 0.96
and R2

ρ=2 = 0.97 for h = 1, as well as λρ=1 = −0.214 and λρ=2 = −0.15, with R2
ρ=1 = 0.96

and R2
ρ=2 = 0.95 for h = 10.

4.1.4. Phase Space Reconstruction Graph of Torus Automorphisms

The PSRGs generated by the 2D Torus Automorphisms are dense with density
dh=1 ≈ 0.4 and dh=10 ≈ 0.46. The parameters chosen to generate the network are τ = 1,
m = 2, and rc = 0.62 for h = 1 and τ = 1, m = 2, rc = 0.56 for h = 10. As illustrated from
the degree distribution in Figure 9, the distribution follows neither a power law nor an
exponential law.
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Figure 9. Degree distribution of the Phase Space Reconstruction Graphs of two Torus Automorphisms
corresponding to the chaotic time series with h = 1 (first row) and h = 10 (second row), in lin–lin
scale (left column), in log–log scale (middle column), and in lin–log scale (right column).

4.2. Results for the Lorenz System
4.2.1. Natural Visibility Graph of the Lorenz System

The NVG generated by the Lorenz System is sparse with density d ≈ 0.018, and
scale-free (middle column, Figure 10) with degree distribution that follows an asymptotic
power law P(k) ∼ k−γ for log(k) ≥ log(12), and with exponent (slope) γ = −3.324. The
error of the least square fit is R2 = 0.9. The contribution of fat tails is neglected. One may
also consider the degree distribution as exponential distribution P(k) ∼ e−λk for k ≥ 12,
(right column, Figure 10) with exponent (slope) λ = −0.126 and error R2 = 0.94.
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4.2.2. Horizontal Visibility Graph of the Lorenz System

The HVG generated by the Lorenz System is sparse with density d ≈ 0.004, and
scale-free (middle column, Figure 11) with degree distribution that asymptotically follows
a power law P(k) ∼ k−γ and with exponent (slope) γ = −7.244. The error of the least
square fit is R2 = 0.98. One may also consider the degree distribution as exponential
distribution P(k) ∼ e−λk (right column, Figure 11) with exponent (slope) λ = −0.942 and
error R2 = 0.97.
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Figure 11. Degree distribution of the Horizontal Visibility Graph of the Lorenz System in lin–lin scale
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4.2.3. Limited Penetrable Horizontal Visibility Graph of the Lorenz System

The LPHVGs generated by the Lorenz System are sparse for both values of ρ, with
density dρ=1 ≈ 0.008 and dρ=2 ≈ 0.012. For both values of ρ, we obtained scale-free
networks (middle column, Figure 12) with degree distributions that follow an asymp-
totic power law P(k) ∼ k−γ for log(k) ≥ log(6) and log(k) ≥ log(9), for ρ = 1 and
ρ = 2, respectively, and with exponents (slopes) γρ=1 = −5.47 and γρ=2 = −4.953. The
error of the least square fit is R2

ρ=1 = 0.94 and R2
ρ=2 = 0.96. One may also consider the

degree distributions as exponential distribution P(k) ∼ e−λk for k ≥ 6 and k ≥ 9, (right
column, Figure 12) with exponents (slopes) λρ=1 = −0.43 and λρ=2 = −0.284 and errors
R2

ρ=1 = 0.93 and R2
ρ=2 = 0.96.
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 Figure 12. Degree distribution of the Limited Penetrable Horizontal Visibility Graphs with limited
penetrable distance ρ = 1 (first raw) and ρ = 2 (second raw) of the Lorenz System in lin–lin scale
(left column), in log–log scale (middle column), and in lin–log scale (right column).

4.2.4. Phase Space Reconstruction Graph of the Lorenz System

The PSRG generated by the Lorenz System is dense with density d ≈ 0.88. The
parameters chosen to generate the network are τ = 2, m = 3, rc = 44. As illustrated from
the degree distribution in Figure 13, the distribution follows neither a power law nor an
exponential law.
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4.3. Results for the Random Sequence with Gaussian Distribution
4.3.1. Natural Visibility Graph of the Random Sequence

The NVG generated by the Random Sequence is sparse with density d ≈ 0.0059. We
obtained a scale-free network (middle column, Figure 14) with degree distribution that
asymptotically follows a power law P(k) ∼ k−γ and with exponent (slope) γ = −2.807.
The error of the least square fit is R2 = 0.95. The contribution of fat tails is neglected. One
may also consider the degree distribution as exponential distribution P(k) ∼ e−λk (right
column, Figure 14) with exponent (slope) λ = −0.235 and with error R2 = 0.97.
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4.3.2. Horizontal Visibility Graph of the Random Sequence

The HVG generated by the Random Sequence is sparse with density d ≈ 0.004. We
obtained a scale-free network (middle column, Figure 15) with degree distribution that
asymptotically follows a power law P(k) ∼ k−γ and with exponent (slope) γ = −3.372.
The error of the least square fit is R2 = 0.93. One may also consider the degree distribution
as exponential distribution P(k) ∼ e−λk, (right column, Figure 15) with exponent (slope)
λ = −0.374 and error R2 = 0.95.
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4.3.3. Limited Penetrable Horizontal Visibility Graph of the Random Sequence

The LPHVGs generated by the Random Sequence are sparse for both values of ρ,
with density dρ=1 ≈ 0.008 and dρ=2 ≈ 0.012. For both values of ρ, we obtained scale-free
networks (middle column, Figure 16) with degree distributions that asymptotically follow
a power law P(k) ∼ k−γ, with exponents (slopes) γρ=1 = −2.51 and γρ=2 = −2.374.
The error of the least square fit is R2

ρ=1 = 0.95 and R2
ρ=2 = 0.89. The contribution of

fat tails is neglected. One may also consider the degree distributions as exponential
distribution P(k) ∼ e−λk, (right column, Figure 16) with exponents (slopes) λρ=1 = −0.215
and λρ=2 = −0.158 and with errors R2

ρ=1 = 0.98 and R2
ρ=2 = 0.94.
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4.3.4. Phase Space Reconstruction of the Random Sequence

The PSRG generated by the Random Sequence is dense with density d ≈ 0.43. The
parameters chosen to generate the network are τ = 1, m = 7, and rc = 7.6. As illustrated
from the degree distribution in Figure 17, the distribution follows neither a power law nor
an exponential law.
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5. Meaning of the Results
5.1. Visibility Graphs

The visibility methods [17,42,44] concluded with some robust results, generating
sparse, topologically similar networks, with the degree distribution obeying most of the
cases in terms of both power and exponential law. The chaotic 2D Torus Automorphisms
and the Random Sequence generated pure scale-free networks with similar, indistinguish-
able slopes (exponents of the power/exponential law) for both log–log and lin–log plots.
Similar but not identical results were found for the network constructed by the Lorenz
System, for which degree distribution follows both an asymptotic power law and an expo-
nential law, for k ≥ 12. The slopes calculated were not identical with the other two systems
studied. In summary, no distinguishment is found among the values of the exponents of
the power or exponential law for the chaotic systems and the Random Sequence.

5.2. Phase Space Reconstruction Graphs

The PSRGs were a lot denser than the VGs. The proposed methodology for the Phase
Space Reconstruction method [22] did not generate scale-free networks as expected for
either of the systems studied. In fact, the degree distribution of both the chaotic time series
and the Random Sequence is similar, but it cannot be fitted in power or exponential law.

6. Concluding Remarks

The purpose of this study is to investigate the extent to which networks generated
from time series can distinguish the presence of chaos or randomness in the time series.
We examined three representative visibility methods for mapping time series to networks,
namely NVG [17], HVG [42], LPHVG [44], and the phase space reconstruction method [22].

It has been suggested that chaotic time series generate networks with power law degree
distributions. This has been confirmed in several cases [61]. However, we found that such
a distinction is not possible in general. In the case of Phase Space Reconstruction, we found
chaotic time series generating non scale-free networks, while for the visibility methods,
we found that both chaotic time series and random sequence generate indistinguishable
scale-free networks (Sections 4 and 5).

In the case of the networks constructed using the visibility methods, the degree
distribution may also be interpreted as following an exponential law. We demonstrated
(Section 5.1) that the λ—exponent criterion applied to HVG (Section 3.1) [16,50–56] cannot
reliably distinguish chaos from randomness since practically indistinguishable exponents
are found for both chaotic and random processes. Therefore, the distinction cannot rely
only on the λ—exponent criterion. The confirmation of the distinction requires further
investigation. Similar conclusions are obtained for the λ—exponent criterion applied to
LPHVG (Section 3.1) [44], where we also found that both chaotic and random processes
give rise to the same exponents (Section 5.1).

Also, two proofs regarding the VGs are provided. The first one is that there exist non-
planar NVGs (Proposition 1) and the second one is that although all HVGs are planar, there
exist non-planar LPHVGs (Proposition 2). Both propositions are proved by constructing
counter-examples. Although the discussion of planarity is not connected directly to the
results of this research, it is a property of the NVG and LPHVG.

We observe a significant difference between VGs and PSRGs. Visibility methods generate
scale-free networks for every case studied, with robust and stable results, while the phase space
reconstruction method does not give rise to scale-free networks (Sections 4 and 5). However,
although VGs have power law degree distributions, the exponents are indistinguishable
(Table 1, Section 5).
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Table 1. The slopes of the log–log and lin–log plots for the VGs and PSRGs indicating power law and
exponential representation of the underlying degree distribution.

Time Series
Source

NVG
Power|Exp

log–log|lin–log

HVG
Power|Exp

log–log|lin–log

LPHVG (ρ = 1)
Power|Exp

log–log|lin–log

LPHVG (ρ = 2)
Power|Exp

log–log|lin–log

Torus, h = 1 −2.8863|−0.2185 −3.0502|−0.3865 −2.5282|−0.2260 −2.2552|−0.1620

Torus, h = 10 −2.4501|−0.2450 −3.2561|−0.4113 −2.4627|−0.2141 −2.3508|−0.1508

Lorenz System −3.3244|−0.1255 −7.2443|−0.9420 −5.4701|−0.4298 −4.9530|−0.2844

Random Sequence −2.8066|−0.2354 −3.3724|−0.3741 −2.5099|−0.2149 −2.3740|−0.1580

Our conclusion is not quite unexpected, as remarked by Ravetti et al. [50] and
Zhang et al. [51]. However, the arguments presented in [50,51] referred only to the case
of HVG and, specifically, the λ-criterion proposed by Lacasa and Toral [16]. The idea
that chaos can be discriminated from randomness via complex networks was discussed
without reservation [52–56]. We explored all other cases which claim the possibility of the
distinction of chaos from randomness using the degree distribution of the associated VGs
and PSRGs.

Concluding, neither method was able to efficiently distinguish between chaos and
randomness. Power law degree distributions cannot be considered as a generic feature of
chaos. Although the methods we studied are topological, apparently the diagnosis is made
with statistical tools and, consequently, no satisfactory distinction can be achieved without
additional information.

Author Contributions: Conceptualization, S.G.S., M.P.H. and I.E.A.; methodology, A.K.A., K.G.,
S.G.S., M.P.H., C.B. and I.E.A.; software, A.K.A., K.G., G.C.M. and C.B.; validation, A.K.A., K.G.,
G.C.M. and C.B.; formal analysis, A.K.A., K.G., G.C.M., C.B. and I.E.A.; investigation, A.K.A., K.G.,
C.B., S.G.S., M.P.H. and I.E.A.; data curation, A.K.A., K.G. and G.C.M.; writing—original draft
preparation, A.K.A. and K.G.; writing—review and editing, A.K.A., K.G., G.C.M., C.B., S.G.S., M.P.H.
and I.E.A.; visualization, A.K.A. and K.G.; supervision, C.B., S.G.S., M.P.H. and I.E.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lorenzelli, F. The Essence of Chaos, 1st ed.; CRC Press: London, UK, 1993. [CrossRef]
2. Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd ed.; Academic

Press: Cambridge, MA, USA, 2013. [CrossRef]
3. Devaney, R.L. An Introduction to Chaotic Dynamical Systems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2021. [CrossRef]
4. Hilborn, R.C. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, 2nd ed.; Oxford University Press:

New York, NY, USA, 2000. [CrossRef]
5. Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed.; CRC Press:

Boca Raton, FL, USA, 2015. [CrossRef]
6. Cornfeld, I.P.; Fomin, S.V.; Sinai, Y.G. Ergodic Theory, 1st ed.; Springer: New York, NY, USA, 1982. [CrossRef]
7. Ornstein, D.S.; Weiss, B. Statistical properties of chaotic systems. Bull. Am. Math. Soc. 1991, 24, 11–122. [CrossRef]
8. Berliner, L. Statistics, Probability and Chaos. Stat. Sci. 1992, 7, 69–90. Available online: https://www.jstor.org/stable/2245991

(accessed on 12 November 2023). [CrossRef]
9. Chatterjee, S.; Yilmaz, M.R. Chaos, Fractals and Statistics. Stat. Sci. 1992, 6, 49–121. [CrossRef]
10. Knuth, D. The Art of Computer Programming, Seminumerical Algorithms, 3rd ed.; Addison-Wesley: Reading, MA, USA, 1997.
11. Szczepanski, J.; Kotulski, J. Pseudorandom Number Generators Based on Chaotic Dynamical Systems. Open Syst. Inf. Dyn. 2001,

8, 137–146. [CrossRef]

https://doi.org/10.1201/9781482288988
https://doi.org/10.1016/C2009-0-61160-0
https://doi.org/10.1201/9780429280801
https://doi.org/10.1093/acprof:oso/9780198507239.001.0001
https://doi.org/10.1201/9780429492563
https://doi.org/10.1007/978-1-4615-6927-5
https://doi.org/10.1090/S0273-0979-1991-15953-7
https://www.jstor.org/stable/2245991
https://doi.org/10.1214/ss/1177011444
https://doi.org/10.1214/ss/1177011443
https://doi.org/10.1023/A:1011950531970


Entropy 2024, 26, 341 18 of 19

12. Silva, V.F.; Silva, M.E.; Ribeiro, P.; Silva, F. Novel features for time series analysis: A complex networks approach. Data Min.
Knowl. Discov. 2022, 36, 1062–1101. [CrossRef]

13. Donner, R.V.; Small, M.; Donges, J.F.; Marwan, N.; Zou, Y.; Xiang, R.; Kurths, J. Recurrence-based time series analysis by means of
complex network methods. Int. J. Bifurc. Chaos 2011, 21, 1019–1046. [CrossRef]

14. Zou, Y.; Donner, R.V.; Marwan, N.; Donges, J.F.; Kurths, J. Complex network approaches to nonlinear time series analysis. Phys.
Rep. 2019, 787, 1–97. [CrossRef]

15. Silva, V.F.; Silva, M.E.; Ribeiro, P.; Silva, F. Time Series Analysis via Network Science: Concepts and Algorithms. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov. 2021, 11, 1404. [CrossRef]

16. Lacasa, L.; Toral, R. Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 2010, 82, 036120. [CrossRef]
17. Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time series to complex networks: The visibility graph. Proc. Natl.

Acad. Sci. USA 2008, 105, 4972–4975. [CrossRef]
18. Provenzale, A.; Smith, L.A.; Vio, R.; Murante, G. Distinguishing between low-dimensional dynamics and randomness in measures

time series. Phys. D Nonlinear Phenom. 1992, 58, 31–49. [CrossRef]
19. Weron, R. Estimating long-range dependence: Finite sample properties and confidence intervals. Phys. A Stat. Mech. Its Appl.

2002, 312, 285–299. [CrossRef]
20. Hanias, M.; Tsakonas, S.; Magafas, L.; Thalassinos, E.I.; Zachilas, L. Deterministic chaos and forecasting in Amazon? s share

prices. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 253–273. [CrossRef]
21. Stavrinides, S.G.; Hanias, M.P.; Gonzalez, M.B.; Campabadal, F.; Contoyiannis, Y.; Potirakis, S.M.; Al Chawa, M.M.; de Benito, C.;

Tetzlaff, R.; Picos, R.; et al. On the chaotic nature of random telegraph noise in unipolar RRAM memristor devices. Chaos Solitons
Fractals 2022, 160, 112224. [CrossRef]

22. Gao, Z.; Jin, N. Complex network from time series based on phase space reconstruction. Chaos 2009, 19, 033137. [CrossRef]
[PubMed]

23. Nuñez, A.M.; Lacasa, L.; Patricio, J.; Luque, B. Visibility Algorithms: A Short Review. In New Frontiers in Graph Theory;
BoD—Books on Demand: Norderstedt, Germany, 2012; pp. 119–152. [CrossRef]

24. Mira-Iglesias, A.; Navarro-Pardo, E.; Conejero, J.A. Power-Law Distribution of Natural Visibility Graphs from Reaction Times
Series. Symmetry 2019, 11, 563. [CrossRef]

25. Xu, P.; Zhang, R.; Deng, Y. A novel visibility graph transformation of time series into weighted networks. Chaos Solitons Fractals
2018, 117, 201–208. [CrossRef]

26. Wang, N.; Li, D.; Wang, Q. Visibility graph analysis on quarterly macroeconomic series of China based on complex network
theory. Phys. A Stat. Mech. Its Appl. 2012, 391, 6543–6555. [CrossRef]

27. Qian, M.-C.; Jiang, Z.-Q.; Zhou, W.-X. Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world
stock market indices. J. Phys. A Math. Theor. 2010, 43, 335002. [CrossRef]

28. Sun, M.; Wang, Y.; Gao, C. Visibility graph network analysis of natural gas price: The case of North American market. Phys. A
Stat. Mech. Its Appl. 2016, 462, 1–11. [CrossRef]

29. Donner, R.V.; Donges, J.F. Visibility graph analysis of geophysical time series: Potentials and possible pitfalls. Acta Geophys. 2012,
60, 589–623. [CrossRef]

30. Stephen, M.; Gu, C.; Yang, H. Visibility Graph Based Time Series Analysis. PLoS ONE 2015, 10, e0143015. [CrossRef]
31. Telesca, L.; Lovallo, M. Analysis of seismic sequences by using the method of visibility graph. Europhys. Lett. 2012, 97, 50002.

[CrossRef]
32. Tang, J.; Liu, F.; Zhang, W.; Zhang, S.; Wang, Y. Exploring dynamic property of traffic flow time series in multi-states based on

complex networks: Phase space reconstruction versus visibility graph. Phys. A Stat. Mech. Its Appl. 2016, 450, 635–648. [CrossRef]
33. Baggio, R.; Sainaghi, R. Mapping time series into networks as a tool to assess the complex dynamics of tourism systems. Tour.

Manag. 2016, 54, 23–33. [CrossRef]
34. Ahmadlou, M.; Adeli, H.; Adeli, A. New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. J. Neural

Transm. 2010, 117, 1099–1109. [CrossRef]
35. Ahmadlou, M.; Adeli, H.; Adeli, A. Improved visibility graph fractality with application for the diagnosis of Autism Spectrum

Disorder. Phys. A Stat. Mech. Its Appl. 2012, 391, 4720–4726. [CrossRef]
36. Hou, F.Z.; Li, F.W.; Wang, J.; Yan, F.R. Visibility graph analysis of very short-term heart rate variability during sleep. Phys. A Stat.

Mech. Its Appl. 2016, 458, 140–145. [CrossRef]
37. Lacasa, L.; Flanagan, R. Time reversibility from visibility graphs of nonstationary processes. Phys. Rev. E 2015, 92, 022817.

[CrossRef]
38. Iacovacci, J.; Lacasa, L. Sequential visibility-graph motifs. Phys. Rev. E 2016, 93, 042309. [CrossRef]
39. Iacovacci, J.; Lacasa, L. Sequential motif profile of natural visibility graphs. Phys. Rev. E 2016, 94, 052309. [CrossRef]
40. Rahman, M.S. Basic Graph Theory, 1st ed.; Planar Graphs; Springer: Cham, Switzerland, 2017; pp. 77–89. [CrossRef]
41. Kuratowski, K. Sur le probleme des courbes gauches en topologie. Fundam. Math. 1930, 15, 271–283. [CrossRef]
42. Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E 2009,

80, 046103. [CrossRef]
43. Gao, Z.K.; Cai, Q.; Yang, Y.X.; Dang, W.D.; Zhang, S.S. Multiscale limited penetrable horizontal visibility graph for analyzing

nonlinear time series. Sci. Rep. 2016, 6, 35622. [CrossRef]

https://doi.org/10.1007/s10618-022-00826-3
https://doi.org/10.1142/S0218127411029021
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1002/widm.1404
https://doi.org/10.1103/PhysRevE.82.036120
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1016/0167-2789(92)90100-2
https://doi.org/10.1016/S0378-4371(02)00961-5
https://doi.org/10.24136/eq.2020.012
https://doi.org/10.1016/j.chaos.2022.112224
https://doi.org/10.1063/1.3227736
https://www.ncbi.nlm.nih.gov/pubmed/19792017
https://doi.org/10.5772/34810
https://doi.org/10.3390/sym11040563
https://doi.org/10.1016/j.chaos.2018.07.039
https://doi.org/10.1016/j.physa.2012.07.054
https://doi.org/10.1088/1751-8113/43/33/335002
https://doi.org/10.1016/j.physa.2016.06.051
https://doi.org/10.2478/s11600-012-0032-x
https://doi.org/10.1371/journal.pone.0143015
https://doi.org/10.1209/0295-5075/97/50002
https://doi.org/10.1016/j.physa.2016.01.012
https://doi.org/10.1016/j.tourman.2015.10.008
https://doi.org/10.1007/s00702-010-0450-3
https://doi.org/10.1016/j.physa.2012.04.025
https://doi.org/10.1016/j.physa.2016.03.086
https://doi.org/10.1103/PhysRevE.92.022817
https://doi.org/10.1103/PhysRevE.93.042309
https://doi.org/10.1103/PhysRevE.94.052309
https://doi.org/10.1007/978-3-319-49475-3_6
https://doi.org/10.4064/fm-15-1-271-283
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1038/srep35622


Entropy 2024, 26, 341 19 of 19

44. Wang, M.; Vilela, A.L.M.; Du, R.; Zhao, L.; Dong, G.; Tian, L.; Stanley, H.E. Exact results of the limited penetrable horizontal
visibility graph associated to random time series and its application. Sci. Rep. 2018, 8, 5130. [CrossRef]

45. Hu, X.; Niu, M. Degree distributions and motif profiles of Thue–Morse complex network. Chaos Solitons Fractals 2023, 176, 114141.
[CrossRef]

46. Cai, Q.; Gao, Z.K.; Yang, Y.X.; Dang, W.D.; Grebogi, C. Multiplex Limited Penetrable Horizontal Visibility Graph from EEG
Signals for Driver Fatigue Detection. Int. J. Neural Syst. 2019, 29, 1850057. [CrossRef]

47. Wang, M.; Vilela, A.L.M.; Du, R.; Zhao, L.; Dong, G.; Tian, L.; Stanley, H.E. Topological properties of the limited penetrable
horizontal visibility graph family. Phys. Rev. E 2018, 97, 052117. [CrossRef]

48. Gutin, G.; Mansour, T.; Severini, S. A characterization of horizontal visibility graphs and combinatorics on words. Phys. A Stat.
Mech. Its Appl. 2011, 390, 2421–2428. [CrossRef]

49. Taken, F. Dynamical Systems and Turbulence; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; p. 898.
[CrossRef]

50. Ravetti, M.G.; Carpi, L.C.; Gonçalves, B.A.; Frery, A.C.; Rosso, O.A. Distinguishing Noise from Chaos: Objective versus Subjective
Criteria Using Horizontal Visibility Graph. PLoS ONE 2014, 9, e108004. [CrossRef]

51. Zhang, R.; Zou, Y.; Zhou, J.; Gao, Z.-K.; Guan, S. Visibility graph analysis for re-sampled time series from auto-regressive
stochastic processes. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 396–403. [CrossRef]

52. Acosta-Tripailao, B.; Pastén, D.; Moya, P.S. Applying the Horizontal Visibility Graph Method to Study Irreversibility of Electro-
magnetic Turbulence in Non-Thermal Plasmas. Entropy 2021, 23, 470. [CrossRef]

53. Ghimire, G.R.; Jadidoleslam, N.; Krajewski, W.F.; Tsonis, A.A. Insights on Streamflow Predictability Across Scales Using
Horizontal Visibility Graph Based Networks. Front. Water 2020, 2, 17. [CrossRef]

54. Zhang, Z.; Zhang, A.; Sun, C.; Xiang, S.; Li, S. Data-Driven Analysis of the Chaotic Characteristics of Air Traffic Flow. J. Adv.
Transp. 2020, 2020, 17. [CrossRef]

55. Provenzano, D.; Baggio, R. Complexity traits and synchrony of cryptocurrencies price dynamics. Decis. Econ. Financ. 2020, 44,
941–955. [CrossRef]

56. Gómez-Gómez, J.; Carmona-Cabezas, R.; Sánchez-López, E.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Analysis of Air Mean
Temperature Anomalies by Using Horizontal Visibility Graphs. Entropy 2021, 23, 207. [CrossRef]

57. Wang, M.; Tian, L. From time series to complex networks: The phase space coarse graining. Phys. A Stat. Mech. Its Appl. 2016, 461,
456–468. [CrossRef]

58. Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical
construction. Phys. Rev. A At. Mol. Opt. Phys. 1992, 45, 3403–3411. [CrossRef]

59. Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom.
1997, 110, 43–50. [CrossRef]

60. Makris, G.; Antoniou, I. Chaos Cryptography: Relation Of Entropy with Message Length and Period. Chaotic Model. Simul.
(CMSIM)-Proofs 2013, 4, 571–581.

61. Bashkirov, A.G.; Vityazev, A.V. Information entropy and power-law distributions for chaotic systems. Phys. A Stat. Mech. Its Appl.
2000, 277, 136–145. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-018-23388-1
https://doi.org/10.1016/j.chaos.2023.114141
https://doi.org/10.1142/S0129065718500570
https://doi.org/10.1103/PhysRevE.97.052117
https://doi.org/10.1016/j.physa.2011.02.031
https://doi.org/10.1007/bfb0091924
https://doi.org/10.1371/journal.pone.0108004
https://doi.org/10.1016/j.cnsns.2016.04.031
https://doi.org/10.3390/e23040470
https://doi.org/10.3389/frwa.2020.00017
https://doi.org/10.1155/2020/8830731
https://doi.org/10.1007/s10203-021-00319-w
https://doi.org/10.3390/e23020207
https://doi.org/10.1016/j.physa.2016.06.028
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1016/S0378-4371(99)00449-5

	Introduction 
	Networks from Time Series 
	Visibility Graphs (VG) 
	Natural Visibility Graph 
	Horizontal Visibility Graph 
	Limited Penetrable Horizontal Visibility Graph 

	Phase Space Reconstruction Graphs (PSRG) 

	Signature of Chaos in Networks Associated with Time Series 
	Signature of Chaos in Visibility Graphs 
	Signature of Chaos in Phase Space Reconstruction Graphs 

	Results 
	Results for Torus Automorphisms 
	Natural Visibility Graph of Torus Automorphisms 
	Horizontal Visibility Graph of Torus Automorphisms 
	Limited Penetrable Horizontal Visibility Graph of Torus Automorphisms 
	Phase Space Reconstruction Graph of Torus Automorphisms 

	Results for the Lorenz System 
	Natural Visibility Graph of the Lorenz System 
	Horizontal Visibility Graph of the Lorenz System 
	Limited Penetrable Horizontal Visibility Graph of the Lorenz System 
	Phase Space Reconstruction Graph of the Lorenz System 

	Results for the Random Sequence with Gaussian Distribution 
	Natural Visibility Graph of the Random Sequence 
	Horizontal Visibility Graph of the Random Sequence 
	Limited Penetrable Horizontal Visibility Graph of the Random Sequence 
	Phase Space Reconstruction of the Random Sequence 


	Meaning of the Results 
	Visibility Graphs 
	Phase Space Reconstruction Graphs 

	Concluding Remarks 
	References

