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Abstract: The focus of our research is the examination of Hermitian curves over finite fields, specif-
ically concentrating on places of degree three and their role in constructing Hermitian codes. We
begin by studying the structure of the Riemann–Roch space associated with these degree-three
places, aiming to determine essential characteristics such as the basis. The investigation then turns
to Hermitian codes, where we analyze both functional and differential codes of degree-three places,
focusing on their parameters and automorphisms. In addition, we explore the study of subfield
subcodes and trace codes, determining their structure by giving lower bounds for their dimensions.
This presents a complex problem in coding theory. Based on numerical experiments, we formulate
a conjecture for the dimension of some subfield subcodes of Hermitian codes. Our comprehensive
exploration seeks to deepen the understanding of Hermitian codes and their associated subfield
subcodes related to degree-three places, thus contributing to the advancement of algebraic coding
theory and code-based cryptography.

Keywords: Hermitian curves; degree-three places; Riemann–Roch space; Hermitian codes; subfield
subcodes; automorphisms of Hermitian codes

1. Introduction

The advent of quantum computers presents significant threats to classical crypto-
graphic schemes, requiring the development of post-quantum cryptographic primitives
that resist quantum attacks. In this regard, algebraic geometry (AG) codes have gained
considerable attention due to their error-correcting capabilities and potential applications
in secure communication and cryptographic protocols. Among various classes of AG codes,
subfield subcodes stand out against structural attacks, making them good candidates for
deployment in post-quantum cryptography.

Within linear codes over finite field extensions, the process of generating subfield
subcodes, commonly referred to as restriction, entails converting a given linear code C
over a large field extension Fqn into a code that is defined over a subfield Fqm , where m
divides n. This strategic approach restricts the codewords of C to elements found within
the smaller field Fqm , effectively concealing the details about the structure inherent in
C. A classic example of this concept is the Reed–Solomon codes, which are algebraic
geometry (AG) codes constructed over a projective line. They are widely used in practical
applications, with their subfield subcodes represented by Goppa codes. In particular,
in cryptography, especially within a McEliece cryptosystem, subfield subcodes play a
crucial role in hiding the code structure, thus enhancing its resilience against distinguishing
attacks [1,2]. The long-lasting security of the McEliece cryptosystem based on Goppa
codes [3] emphasizes its effectiveness in preventing such attacks. Despite subsequent
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proposals exploring Reed–Solomon codes [4], AG codes, and their subcodes [5], all have
been susceptible to structural attacks. By imposing restrictions, cryptographic systems can
enhance their security by minimizing the risk of potential attacks aimed at distinguishing
the chosen subfield subcode. With growing interest in AG codes, particularly Hermitian
codes, they are being evaluated as feasible alternatives to Reed–Solomon codes in specific
applications [6]. Hermitian codes have been extensively studied in prior research [7–12],
particularly those associated with the point at infinity of the Hermitian curve. However,
in [13,14], the authors introduced an alternative construction of Hermitian codes associated
with higher-degree places on the Hermitian curve.

Our contribution involves conducting further research on Hermitian codes associated
with degree-three places, deriving additional properties, and establishing explicit bases
for the corresponding Riemann–Roch spaces; additionally, this should align with previous
findings in [13]. The stabilizer of a degree-three place has order 3(q2 − q + 1); the action of
this group and the associated quotient curve has been studied by Cossidente, Korchmáros,
and Torres [15]. We make heavy use of their approach which relates the Hermitian curve
with the curve projective curve XYq +YZq + ZXq = 0. Beelen, Montanucci, and Vicino [16]
studied another class of Hermitian quotient curves, which are obtained by automorphisms
stabilizing a degree-three place of the Hermitian curve.

One-point Hermitians of degree-three places have improved minimum distances,
as shown by the Matthews–Michel bound [14], and have been further strengthened by
Korchmáros and Nagy in [13]. Moreover, we explore the properties of their subfield
subcodes, with a particular focus on determining their true dimensions through explicit
constructions. This investigation aims to provide a precise understanding of the codes’
capabilities for our future work. Since the family of subfield subcodes of Hermitian codes
associated with degree-three places holds promise for the construction of an improved and
secure McEliece cryptosystem, the aforementioned investigation will enable a comparison
of these parameters with those of other existing codes (see [12], Table 1), such as Goppa
codes, to assess the potential improvement in the key size of the McEliece cryptosystem.
This suggests that such a proposal could reduce the key size and meet the security level
required by NIST [17]. Using bounds on the dimensions offers only an estimate of the
code’s performance, which means that this will not help us accurately decide whether these
codes can achieve the required security level with an improved key size.

The paper is structured as follows. In Section 2, we introduce the essential back-
ground of AG codes constructed from a Hermitian curve, including Hermitian curves,
divisors, and the Riemann–Roch space. In Section 3, we provide some facts on the geom-
etry of degree 3 places of the Hermitian curve, and the unitary transformations which
stabilize the given degree-three place. Our main tool is the Hermitian sesquilinear form
⟨u, v⟩ = u1vq

1 − u2vq
3 − u3vq

2 and the Frobenius map Frq2 . Section 4 deals with their corre-
sponding Riemann–Roch spaces. We explore their structure and give explicit and practical
bases over Fq6 , and a decomposition into invariant subspaces over Fq2 (Theorem 3). In
Section 5, we study the functional and differential Hermitian codes of a degree 3 place,
where we explicitly give the monomial equivalence between them (Theorem 4). In Section 6,
we give the main result on the dimensions of the subfield subcodes of degree 3 place Her-
mitian codes (Theorem 5). This result consists of a theorem that provides a lower bound on
the dimensions of the underlying codes, while the conjecture suggests a possible equality
based on numerical experiments.

The computational results were obtained using the HERMITIAN package [18] within
the GAP [19] computer algebra system. This involved implementing higher-degree places
of Hermitian curves, their divisors and the associated Hermitian codes. This package
employs a generic method for computing the bases of Riemann–Roch spaces, independent
of the results presented in this paper. Specifically, we acquired computational evidence
supporting Conjecture 1 without relying on the theoretical findings of this work.
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2. Algebraic Geometry (AG) Codes
2.1. Hermitian Curves and Their Divisors

For more details, we refer the reader to [15,20,21]. The Hermitian curve, denoted as
Hq, over the finite field Fq2 in affine coordinates is given by the equation:

Hq : Yq + Y = Xq+1.

This curve has a genus g = q(q−1)
2 , classifying it as a maximal curve because it achieves the

maximum number of Fq2-rational points, which is #Hq(Fq2) = q3 + 1. Furthermore, Hq
has a unique point at infinity, denoted Q∞.

A divisor on Hq is a formal sum D = n1Q1 + · · · + nkQk, where n1, · · · , nk are
integers and Q1, · · · , Qk are points on Hq. The degree of the divisor D is defined as
deg(D) = ∑k

i=1 ni. The valuation of D at a point Qi is vQi (D) = ni, and the support of D is
the set {Qi | ni ̸= 0}.

The Frobenius automorphism, denoted as Frq2 , is defined over the algebraic closure
Fq2 and acts on elements as follows:

Frq2 : Fq2 → Fq2 , x 7→ xq2
.

It acts on the points of Hq by applying Frq2 to their coordinates. A point Q on Hq

is Fq2-rational if and only if it is fixed by Frq2(Q). Over Fq2 , the points in Hq correspond
one-to-one to the places in the function field Fq2(Hq).

For a divisor D, its Frobenius image is given by

Frq2(D) = n1Frq2(Q1) + · · ·+ nkFrq2(Qk).

and D is Fq2-rational if D = Frq2(D). In particular, if all points Q1, . . . , Qk are in Hq(Fq2),
then D is inherently Fq2 -rational.

2.2. Riemann–Roch Spaces

For a non-zero function g in the function field Fq2 and a place P, vP(g) stands for
the order of g at P. If vP(g) > 0, then P is a zero of g, while if vP(g) < 0, then P is
a pole of g with multiplicity −vP(g). The principal divisor of a non-zero function g is
(g) = ∑P vP(g)P.

The Riemann–Roch space associated with an Fq2-rational divisor G is the Fq2 vec-
tor space

L (G) := {g ∈ Fq2(Hq) | (g) + G ≥ 0} ∪ 0.

From ([20], Riemann’s Theorem 1.4.17), we have

dim L (G) ≥ deg(G) + 1 − g,

with equality if deg(G) ≥ 2g− 1.
In this work, our primary focus is on an Fq2-rational divisor G of the form sP, where

P is a degree r place in Fq2(Hq) and s is a positive integer. In the extended constant field
Fq6(Hq) of Fq2(Hq) with degree r, let P1, P2, · · · , Pr be the extensions of P. These points are

degree-one places in Fq2r (Hq), and, after appropriately labeling the indices, Pi = Fri
q2(P1),

where the indices are considered modulo r.

2.3. Hermitian Codes

Here, we outline the construction of an AG code from the Hermitian curve.
In algebraic coding theory, Hermitian codes stand out as a significant class of algebraic

geometry (AG) codes, renowned for their distinctive properties. These codes are con-
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structed from Hermitian curves defined over finite fields. These codes are typically viewed
as functional AG codes, denoted by CL(D, G). In this standard approach, the divisor G
is usually a multiple of a single place of degree one. The set P , which encompasses all
the rational points in Hq, is listed as {Q1, . . . , Qn}. This approach gives rise to a structure
known as a one-point code. However, it is important to note that recent research in the field
suggests that the use of a more varied selection for the divisor G can result in the creation
of better AG codes [13,14].

Consider a divisor D = Q1 + Q2 + · · ·+ Qn, where all Qi are distinct rational points,
and an Fq2 -rational divisor G such that Supp(G) ∩ Supp(D) = ∅. By numbering the places
in the support of D, we define an evaluation map evD such that evD(g) = (g(Q1), . . . , g(Qn))
for g ∈ L (G).

The functional AG code associated with the divisor G is

CL(D, G) := {(g(Q1), g(Q2), · · · , g(Qn)) | g ∈ L (G)} = evD(L (G)),

Theorem 1 ([20], Theorem 2.2.2). CL(D, G) is an [n, k, d] code with parameters

k = dim L (G)− dim L (G − D) and d ≥ n − deg G.

The dual of an AG code can be described as a residue code (see [20] for more details), i.e.,

CL(D, G)⊥ = CΩ(D, G).

Furthermore, the differential code CΩ(D, G) is monomially equivalent to the func-
tional code

CL(D, W + D − G),

where W represents a canonical divisor of Fq2(Hq). The notion of monomial equivalence of
codes is defined as follows. Let C ≤ Fn

q be linear subspaces and µ = (µ1, . . . , µn) ∈ (F∗
q)

n

with non-zero entries. We define the Schur product

µ ⋆ C = {(µ1x1, . . . , µnxn) | (x1, . . . , xn) ∈ C}.

The vector µ is also called a multiplier. Clearly, µ ⋆ C ≤ Fn
q . Two linear codes C1, C2 ≤

Fn
q are monomially equivalent if C2 = µ ⋆ C1 for some multiplier µ. Monomially equivalent

codes share identical dimensions and minimum distances; however, this correspondence
does not preserve all crucial properties of the code.

2.4. Subfield Subcodes and Trace Codes

For the efficient construction of codes over Fq, one approach involves working with
codes originally defined over an extension field Fqm . When considering a code C within
Fn

qm , a subfield subcode of C is its restriction to the field Fq. This process, often employed
in the definition of codes such as BCH codes, Goppa codes, and alternant codes, plays a
fundamental role.

Let q be a prime power and m be a positive integer. Let C denote a linear code
of parameters [n, k] defined over the finite field Fqm . The subfield subcode of C over Fq,
represented as C|Fq , is the set

C|Fq = C ∩ Fn
q ,

which consists of all codewords in C that have their components in Fq.
The subfield subcode C|Fq is a linear code over Fq with parameters [n, k0, d0], satisfying

the inequalities d ≤ d0 ≤ n and n − k ≤ n − k0 ≤ m(n − k). Moreover, a parity check
matrix for C over Fq provides up to m(n − k) linearly independent parity check equations
over Fq for the subfield subcode C|Fq . Typically, the minimum distance d0 of the subfield
subcode exceeds that of the original code C.
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Let TrFqm /Fq denote the trace function from Fqm down to Fq, expressed as

TrFqm /Fq(x) = x + xq + xq2
+ . . . + xqm−1

.

For any vector c = (c1, c2, . . . , cn) ∈ Fn
q , we define

TrFqm /Fq(c) =
(

TrFqm /Fq(c1), TrFqm /Fq(c2), . . . , TrFqm /Fq(cn)
)

.

Furthermore, for a linear code C of length n and dimension k over Fqm , the code

TrFqm /Fq(C) = {TrFqm /Fq(c) | c ∈ C}

is a linear code of length n and dimension k1 over Fq.
A seminal result by Delsarte connects subfield subcodes with trace codes:

Theorem 2 ([22]). Let C be an [n, k] linear code over Fq. Then, the dual of the subfield subcode of
C is the trace code of the dual code of C, i.e.,

(C|Fq)
⊥ = TrFqm /Fq(C

⊥).

Finding the exact dimension of a subfield subcode of a linear code is typically a hard
problem. However, a basic estimation can be obtained by applying Delsarte’s theorem [22]:

dim C|Fq ≥ n − m(n − k). (1)

In [20] (Chapter 9), various results are discussed with respect to the subfield subcodes
and trace codes of AG codes. This motivated us to formulate the following propositions on
the dimension of the subfield subcodes of AG codes, which are useful for the case G = sP
with a place P of higher degree.

Proposition 1. Let G1 be a positive divisor of the Hermitian curve Hq and D = Q1 + · · ·+ Qn
be the sum of Fq2-rational places such that Supp(G) ∩ Supp(D) = ∅. Assume that deg G1 <
n/q. Then,

dim CL(D, G1) |Fq= 1.

Proof. Let f be a function in L (G1) such that f (Qi) ∈ Fq for i = 1, · · · , n. Then, f q − f ∈
L (qG1) (since L (G1)

q ⊆ L (qG1)), and hence f q − f ∈ L (qG1 − D), where

L (qG1 − D) = ker(evD) =
{

x ∈ L (qG1) | vPi (x) > 0 for i = 1, . . . , n
}

.

Since deg(qG1 − D) < 0, it follows that L (qG1 − D) = 0 and f q − f = 0, which
implies that f ∈ Fq. Consequently, dim CL(D, G1)|Fq = 1.

3. The Geometry of Hermitian Degree-Three Places

In this section, we collect useful facts on degree-three places of the Hermitian curve,
their stabilizer subgroups, and Riemann–Roch spaces.

3.1. The Hermitian Sesquilinear Form

The Hermitian curve Hq has the affine equation Xq+1 = Y + Yq. The Hermitian
function field Fq2(Hq) is generated by x, y so that xq+1 = y + yq holds. The Frobenius field

automorphism Frq2 : x 7→ xq2
of the algebraic closure Fq2 includes an action on rational

functions, places, divisors, and curve automorphisms. For this action, we continue to use
the notation Frq2 in the exponent: PFrq2 , f Frq2 , DFrq2 , etc.
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Let K be a field extension of Fq2 . An affine point is a pair (a, b) ∈ K2. A projective
point (a : b : c) is a one-dimensional subspace {(at, bt, ct) | t ∈ K} of K3. If c ̸= 0, then the
projective point (a : b : c) is identified with the affine point (a/c, b/c). For u = (u1, u2, u3),
v = (v1, v2, v3) ∈ K3, we define the Hermitian form

⟨u, v⟩ = u1vq
1 − u2vq

3 − u3vq
2.

Clearly, ⟨u, v⟩ is additive in u and v, ⟨αu, βv⟩ = αβq⟨u, v⟩, and

⟨u, v⟩q = ⟨vFrq2 , u⟩.

The point u is self-conjugate if

0 = ⟨u, u⟩ = uq+1
1 − u2uq

3 − uq
2u3.

This is the projective equation Xq+1 − YZq − YqZ = 0 of the Hermitian curve Hq.
Let u = (u1 : u2 : u3) be a projective point. The polar line of u has equation

u⊥ : ⟨(X1, X2, X3), u⟩ = uq
1X1 − uq

3X2 − uq
2X3 = 0.

If u is on Hq, then u⊥ is the tangent line at u. More precisely, u⊥ intersects Hq at u and

uFrq2 with multiplicities q and 1, respectively. If u is Fq2-rational, then u = uFrq2 , and the
intersection multiplicity is q + 1.

3.2. Unitary Transformations and Curve Automorphism

Let A be a 3 × 3 matrix. The linear map u 7→ uA will also be denoted by A. If A
is invertible, then it induces a projective linear transformation, denoted by Â : (u1 : u2 :
u3) 7→ (u′

1 : u′
2 : u′

3) = (u1 : u2 : u3)
Â, where

u′
1 = a11u1 + a21u2 + a31u3,

u′
2 = a12u1 + a22u2 + a32u3,

u′
3 = a13u1 + a23u2 + a33u3.

We use the same notation Â : (X, Y) 7→ (X′, Y′) = (X, Y)Â for the partial affine map:

(X, Y) 7→ (X′, Y′) =

(
a11X + a21Y + a31

a13X + a23Y + a33
,

a12X + a22Y + a32

a13X + a23Y + a33

)
.

The action f (X, Y) 7→ f ((X, Y)Â−1
) of Â on rational functions will be indicated by A∗.

The following lemma is straightforward.

Lemma 1. Let f (X, Y) be a polynomial of total degree n. Define the degree n homogeneous
polynomial F(X, Y, Z) = Zn f (X/Z, Y/Z). Then,

f A∗
(X, Y) =

F((X, Y, 1)A−1)

(a13X + a23Y + a33)n .

We remark that the line a13X + a23Y + a33 = 0 can be seen as the pre-image of the line
at infinity under Â.

The linear transformation A is unitary if

⟨uA, vA⟩ = ⟨u, v⟩

holds for all u, v. Since ⟨., .⟩ is non-degenerate, unitary transformations are invertible.
Moreover, for all u, v, one has
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⟨(vFrq2 )A, uA⟩ = ⟨vFrq2 , u⟩
= ⟨u, v⟩q

= ⟨uA, vA⟩q

= ⟨(vA)
Frq2 , uA⟩.

This implies (vFrq2 )A = (vA)
Frq2 for all v, that is, A and Frq2 commute. This shows

that unitary transformations are defined over Fq2 . They form a group which is denoted by
GU(3, q). A useful fact is that if b1, b2, b3 is a basis and

⟨bi A, bj A⟩ = ⟨bi, bj⟩

for all i, j ∈ {1, 2, 3}, then A is unitary.
Let A ∈ GU(3, q). If (x, y) is a generic point of Hq, then (x′, y′) = (x, y)Â satisfies

(x′)q+1 − y′ − (y′)q = ⟨x′, y′⟩ = ⟨x, y⟩ = 0.

Therefore, (x′, y′) is a generic point of Hq, and A∗ induces an automorphism of the function
field Fq2(Hq). If A is defined over Fq2 , then A∗ is an automorphism of Fq2(Hq).

3.3. Places of Degree Three and Their Lines

Let a1, b1 ∈ Fq6 \ Fq2 be scalars such that aq+1
1 = b1 + bq

1. In other words, (a1, b1) is an

affine point of Hq : Xq+1 = Y + Yq, defined over Fq6 . Write a2 = aq2

1 , b2 = bq2

1 , a3 = aq2

2 ,

b3 = bq2

2 , and pi = (ai, bi, 1). Then, pi+1 = p
Frq2

i , ⟨pi, pi⟩ = 0, and

0 = ⟨pi, pi⟩q = ⟨p
Frq2

i , pi⟩ = ⟨pi+1, pi⟩

hold for i = 1, 2, 3, with the indices taking modulo three. Since ⟨., .⟩ is non-trivial, γi =
⟨pi, pi+1⟩ ∈ Fq6 \ {0}. More precisely,

γ
q3

1 = ⟨p1, p2⟩q3
= ⟨p

Frq2

2 , p1⟩q2
= ⟨p

(Frq2 )
2

2 , p
Frq2

1 ⟩ = ⟨p1, p2⟩ = γ1,

which shows γi ∈ Fq3 \ {0}. Clearly, γi+1 = γ
q2

i and γi+2 = γ
q
i . By γi ̸= 0, the vectors

p1, p2, p3 are linearly independent over Fq6 .
Let K be a field containing Fq6 . Since p1, p2, p3 is a basis in K3, any u ∈ K3 can be

written as

u = x1 p1 + x2 p2 + x3 p3,

with xi ∈ K. Computing

⟨u, pi+1⟩ = ⟨x1 p1 + x2 p2 + x3 p3, pi+1⟩ = xi⟨pi, pi+1⟩,

we obtain xi = ⟨u, pi+1⟩/γi. In the basis p1, p2, p3, the Hermitian form has the shape

⟨u, v⟩ = ⟨x1 p1 + x2 p2 + x3 p3, y1 p1 + y2 p2 + y3 p3⟩
= x1yq

2⟨p1, p2⟩+ x2yq
3⟨p2, p3⟩+ x3yq

1⟨p3, p1⟩

= γ1x1yq
2 + γ

q2

1 x2yq
3 + γ

q4

1 x3yq
1.
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In this coordinate frame, the Hermitian curve has projective equation

γ1X1Xq
2 + γ

q2

1 X2Xq
3 + γ

q4

1 X3Xq
1 = 0.

Let x, y be the generators of the function field Fq2(Hq) such that xq+1 = y + yq. Write

ℓi = ⟨(x, y, 1), pi⟩ = aq
i x − y − bq

i .

Then,

(x, y, 1) =
ℓ2

γ1
p1 +

ℓ3

γ2
p2 +

ℓ1

γ3
p3

and

0 = xq+1 − y − yq = ⟨(x, y, 1), (x, y, 1)⟩ =
ℓ1ℓ

q
2

γ
q
1

+
ℓ2ℓ

q
3

γ
q
2

+
ℓ3ℓ

q
1

γ
q
3

. (2)

The Hermitian curve Hq is non-singular, the places of Fq2(Hq) correspond to the
projective points over the algebraic closure Fq2 . Let Pi denote the place corresponding to

(ai : bi : 1). Pi is defined over Fq6 , Pi+1 = P
Frq2

i , and

P = P1 + P2 + P3

is an Fq2 -rational place of degree three.
The line aq

i X − Y − bq
i = 0 is tangent to Hq at pi; the intersection multiplicities are

q and 1 at pi and pi+1, respectively. This implies that the zero divisor (ℓi)0 is qPi + Pi+1,
and the principal divisor of ℓi is

(ℓi) = qPi + Pi+1 − (q + 1)Q∞. (3)

3.4. The Stabilizer of a Degree-Three Place

Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1. Define β2 = β

q2

1 , β3 = β
q2

2 . Then,

βiβ
q
i+1 = β

q3+1
i = 1.

For p′i = βi pi, this implies that

⟨p′i, p′i+1⟩ = βiβ
q
i+1⟨pi, pi+1⟩ = ⟨pi, pi+1⟩.

Hence, for all i, j ∈ {1, 2, 3},

⟨p′i, p′j⟩ = ⟨pi, pj⟩.

This shows that we can extend the map pi 7→ p′i to a unitary linear map B = B(β1) :
u 7→ u′ in the following way. Write

u = x1 p1 + x2 p2 + x3 p3,

with xi = ⟨u, pi+1⟩/γi, and define

u′ = x1 p′1 + x2 p′2 + x3 p′3 = x1β1 p1 + x2β2 p2 + x3β3 p3. (4)
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The extension B is a unique unitary transformation. As we have seen in Section 3.2,
this implies that B = B(β1) is a well-defined element of the general unitary group GU(3, q).
The set

B = {B(β1) | β1 ∈ Fq6 , β
q3+1
1 = 1}

is a cyclic subgroup of GU(3, q), whose order is |B| = q3 + 1.
In the projective plane, B induces a projective linear transformation B̂. B̂ is trivial if

and only if β1 = β2 = β
q2

1 , that is, if and only if βi ∈ Fq2 . As gcd(q3 + 1, q2 − 1) = q + 1,

B̂ is trivial if and only if β
q+1
1 = 1. The set B̂ = {B̂ | B ∈ B} is a cyclic group of unitary

projective linear transformations, whose order is |B̂| = q2 − q + 1.
In a similar way, we fix the elements

δi = γ
q3−q

2
i .

since γ1 ∈ Fq3 , δi ∈ Fq3 . Moreover,

δ
q3+1
i = δ2

i = γ
q3−q
i = γ

1−q
i .

As before, the map
∆ : pi 7→ p′′i = δi pi−1

preserves the Hermitian form:

⟨p′′i , p′′i+1⟩ = ⟨δi pi−1, δi+1 pi⟩ = δ
q3+1
i ⟨pi−1, pi⟩ = γ

1−q
i γi−1 = γi.

Hence, ∆ extends to a unitary linear map, which commutes with Frq2 and normalizes
B. Indeed,

p∆−1B∆
i = (δ−1

i+1 pi+1)
B∆ = (δ−1

i+1βi+1 pi+1)
∆ = βi+1 pi,

and hence, ∆−1B∆ = Bq2
. ∆3 maps pi to δ1δ2δ3 pi, and

δ1δ2δ3 = δ
1+q+q2

1 =

(
γ

q3−q
2

1

)1+q+q2

=
(

γ
q3−1
1

) (q+1)q
2

= 1.

Therefore, ∆ has order 3.
As introduced in Section 3.2, the unitary transformations B and ∆ induce automor-

phisms B∗ and ∆∗ of the function field.

Proposition 2. The group B∗ = {B∗ | B ∈ B} of curve automorphisms has order q2 − q + 1,
and ∆∗ normalizes B∗ by

(∆∗)−1B∗∆∗ = (B∗)q2
= (B∗)q−1.

Both B∗ and ∆∗ stabilize the degree-three place P.

Proposition 3. Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1. Define β2 = β

q2

1 , β3 = β
q2

2 ,
and the unitary map B = B(β1) ∈ B. Then,(

ℓi
ℓi+1

)B∗

= β
q+1
i

(
ℓi
ℓi+1

)
.

Proof. By Lemma 1,
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ℓB∗
i =

⟨(x, y, 1)B−1, pi⟩
w

=
⟨(x, y, 1), piB⟩

w

=
⟨(x, y, 1), βi pi⟩

w

=
β

q
i ℓi

w
,

where the linear w = w1x + w2y + w3 over Fq2 depends only on B. Therefore,

(
ℓi
ℓi+1

)B∗

=
β

q
i

β
q
i+1

(
ℓi
ℓi+1

)
= β

q−q3

i

(
ℓi
ℓi+1

)
= β

q+1
i

(
ℓi
ℓi+1

)
.

4. Riemann–Roch Spaces Associated with a Degree-Three Place

In this section, we keep using the notation of the previous section: Pi is a degree-

one place of Fq6(Hq) associated with the projective point (ai : bi : 1). P
Frq2

i = Pi+1; the
index i = 1, 2, 3 always takes modulo three. P = P1 + P2 + P3 is an Fq2-rational place of
degree three of Fq2(Hq). The generators x, y of Fq2(Hq) satisfy xq+1 = y + yq. The rational
function ℓi = aq

i x − y − bq
i is obtained from the tangent line of Hq at Pi.

4.1. Basis and Decomposition of the Riemann–Roch Space

Let s, u, v be positive integers such that v ≤ q and s = u(q + 1)− v. Clearly, u, v are
uniquely defined by s. In [13], the Riemann–Roch space associated with the divisor sP is
given as

L (sP) =
{

f
(ℓ1ℓ2ℓ3)u | f ∈ Fq2 [X, Y], deg f ≤ 3u, vPi ( f ) ≥ v

}
∪ {0}.

The Weierstrass semigroup H(P) consists of the integers s ≥ 0 such that the pole divisor
( f )∞ = sP for some f ∈ Fq2(Hq), see [20] (Section 6.5) and [16]. If s ̸∈ H(P), then it is called
a Weierstrass gap; the set of Weierstrass gaps is denoted by G(P). By [13] (Theorem 3.1),
we have

G(P) = {u(q + 1)− v | 0 ≤ v ≤ q, 0 < 3u ≤ v}.

By the Weierstrass Gap Theorem ([20], Theorem 1.6.8), |G(P)| = g for a place of degree
one. In our case, P has degree three and the situation is slightly more complicated.

Lemma 2.

3|G(P)| =
{
g if q ≡ 0, 1 (mod 3),
g− 1 if q ≡ 2 (mod 3).

Proof. The lemma follows from

|G(P)| = ∑
1≤u≤q/3

|{3u, . . . , q}|

=
⌊q/3⌋

∑
i=1

q + 1 − 3u

=
⌊q/3⌋(2q − 1 − 3⌊q/3⌋)

2
.

The following proposition gives an explicit basis for the Riemann–Roch space L (sP)
over the extension field Fq6 .
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Proposition 4. Let t, u, v be positive integers such that v ≤ q and t = u(q + 1)− v. Define the
rational functions

Ut,i = ℓ2u−v
i ℓv−u

i+1 ℓ
−u
i+2 =

(
ℓi
ℓi+2

)u( ℓi+1

ℓi

)v−u
, i = 1, 2, 3.

Define U0,i = 1 as the constant function for i = 1, 2, 3. Then, the following holds:

(i) (Ut,i)
Frq2 = Ut,i+1.

(ii) The principal divisor of Ut,i is

(Ut,i) = −tP +
(
(3u − v − 1)q + (q − v)

)
Pi +

(
v(q − 2) + 3u

)
Pi+1.

In particular, if 3u ≥ v + 1, then (Ut,i) ≥ −tP.
(iii) The elements Ut,i, t ≥ 0, i = 1, 2, 3 are linearly independent with the following exception:

q ≡ 2 (mod 3), t = (q2 − q + 1)/3,

Ut,1

γ
q
1

+
Ut,2

γ
q
2

+
Ut,3

γ
q
3

= 0. (5)

(iv) The set

U (s) = {Ut,i | t ∈ H(P), t ≤ s, i = 1, 2, 3, (3t, i) ̸= (q2 − q + 1, 3)}

of rational functions is a basis of L (sP) over Fq6 .

Proof. Note first that u, v are uniquely defined by t; therefore, Ut,i is well defined. (i) is
trivial and (ii) is straightforward from (3). To show (iii), let us write a linear combination in
the form

α1Ut,1 + α2Ut,2 + α3Ut,3 = ∑
r<t

i=1,2,3

λr,iUr,i (6)

such that (α1, α2, α3) ̸= (0, 0, 0). The right-hand side has a valuation of at least −t + 1 at
P1, P2, P3. If t ̸= (q2 − q + 1)/3 and αi ̸= 0, then the right-hand side has valuation −t at
Pi+2. Hence, αi = 0 for all i = 1, 2, 3, a contradiction. Assume t = (q2 − q + 1)/3. Then,

Ut,i =
ℓiℓ

q
i+1

(ℓ1ℓ2ℓ3)
q+1

3

,

and (5) follows from (2). We can use (5) to eliminate Ut,3 from (6); that is, we can assume
α3 = 0. Then, again, the only term that has a valuation −t at Pi+2 is αiUt,i with αi ̸= 0. Since
the left- and right-hand sides of (6) must have the same valuations at P1, P3, α1 = α2 = 0
must hold, a contradiction.

(iv) By (iii), U (s) consists of linearly independent elements. To show that it is a basis
of L (sP), it suffices to show that |U (s)| = dim(L (sP)) for 3s ≥ 2g− 2. On the one hand,
in this case, dim(L (sP)) = 3s + 1 − g. On the other hand,

|U (s)| = 1 + 3(s − |G(P)|)− ε = 3s + 1 − (3|G(P)|+ ε),

where ε = 0 if q ≡ 0, 1 (mod 3), and ε = 1 if q ≡ 2 (mod 3). By Lemma 2, 3|G(P)|+ ε = g,
and the claim follows.

It is useful to have a decomposition of L (sP) over Fq2 .
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Theorem 3. For a t ≥ 0 integer and α ∈ Fq6 , define the Fq2 -rational function

Wt,α = αUt,1 + αq2
Ut,2 + αq4

Ut,3

and the Fq2 -linear space
Wt = {Wt,α | α ∈ Fq6}.

For t ∈ H(P), we have

dim(Wt) =


1 if t = 0,
2 if q ≡ 2 (mod 3) and t = (q2 − q + 1)/3,
3 otherwise.

The Fq2 -rational Riemann–Roch space L (sP) has the direct sum decomposition

L (sP) =
⊕

t∈H(P), t≤s

Wt. (7)

Proof. For t ∈ H(P), Wt is the set of Fq2-rational functions in the space spanned by
Ut,1, Ut,2, Ut,3. The claims follow from Proposition 4.

4.2. Invariant Subspaces of L (sP)

Lemma 3. Let b ∈ Fq6 such that bq3+1 = 1. Then, (bq+1)q2
= (bq+1)q−1 and (bq+1)q4

= (bq+1)−q.

Proof. By assumption, bq+1 has order q2 − q + 1. The claim follows from the facts that
q2 − (q − 1) and q4 − q are divisible by q2 − q + 1.

The following lemma shows that the basis elements in U (s) are eigenvectors of B∗.

Lemma 4. Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1. Define β2 = β

q2

1 , β3 = β
q2

2 , and the
unitary map B = B(β1) ∈ B. Then,

(Ut,i)
B∗

= β
t(q+1)
i Ut,i.

Proof. Proposition 3 implies (
ℓi
ℓi+2

)B∗

=
1

β
q+1
i+2

(
ℓi
ℓi+2

)

and (
ℓi+1

ℓi

)B∗

=
1

β
q+1
i

(
ℓi+1

ℓi

)
.

By Lemma 3, 1
β

q+1
i+2

= (β
q+1
i )−q4

= (β
q+1
i )q. Write t = u(q + 1)− v with 0 ≤ v ≤ q.

Then,

B∗ :
(

ℓi
ℓi+2

)u( ℓi+1

ℓi

)v−u
7→ (β

q+1
i )qu

(
ℓi
ℓi+2

)u
(β

q+1
i )−v+u

(
ℓi+1

ℓi

)v−u

The result follows from the definition of u and v.
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Proposition 5.

(i) Let β1 ∈ Fq6 be an element such that β
q3+1
1 = 1, and B = B(β1) ∈ B. Then,

(Wt,α)
B∗

= W
t,βt(q+1)

1 α
.

(ii) The subspaces Wt, t ∈ H(P) are B∗-invariant.
(iii) The Fq2B∗-modules Wt and Ws are isomorphic if and only if one of the following holds:

(a) s ≡ t (mod q2 − q + 1);
(b) s ≡ (q − 1)t (mod q2 − q + 1);
(c) s ≡ −qt (mod q2 − q + 1).

Proof. (i) and (ii) follow from Lemma 4. (iii) Let Φ : Wt → Ws be an Fq2B∗-module
isomorphism between Wt and Ws. It can be written as

(Wt,α)
Φ = Wt,αφ,

where φ : Fq6 → Fq6 is an Fq2 -linear bijection. Moreover,

(Wt,α)
B∗Φ = (W

t,βt(q+1)
1 α

)Φ = W
s,(β

t(q+1)
1 α)φ

,

(Wt,α)
ΦB∗

= (Ws,αφ)
B∗

= W
s,βs(q+1)

1 (αφ)
.

Since b = β
q+1
1 satisfies bq2−q+1 = 1, this means that for any α, b ∈ Fq6 , bq2−q+1 = 1,

we have
(btα)φ = bs(αφ).

Let b be an element of order q2 − q + 1 in Fq6 . If bt or bs is in Fq2 , then bt = bs and a)
hold. Assume that neither bt nor bs is in Fq2 . Then, Fq6 = Fq2(bt) = Fq2(bs), and over Fq2 ,
the minimal polynomial of bt has the degree three. Assume b3t + c1b2t + c2bt + c3 = 0 with
c0, c1, c2 ∈ Fq2 . Then,

0 = (b3t + c1b2t + c2bt + c3)φ

= (b3t φ) + c1(b2t φ) + c2(bt φ) + c3(1φ)

= (b3s + c1b2s + c2bs + c3)(1φ).

As φ is bijective, 1φ ̸= 0, 0 = b3s + c1b2s + c2bs + c3 follows. This means that bs has
the same minimal polynomial and bt → bs extends to a field automorphism of Fq6 over Fq2 .

This implies bs = bt, bs = (bt)q2
or bs = (bt)q4

, and the claim follows.

5. Hermitian Codes of Degree-Three Places and Their Duals

In this section, we explore the one-point Hermitian codes of degree-three places and
their dual codes. Let P be a degree-three place on the Hermitian curve Hq; Q1, . . . , Qn, Q∞
are its Fq2-rational places, where n = q3. We define the divisors D = Q1 + Q2 + · · ·+ Qn,

D̃ = D + Q∞, and G = sP for a positive integer s.

5.1. Functional Hermitian Codes of Degree-Three Places

Given a divisor D and G, we define the degree-three place functional Hermitian code
CL(D, sP) as:

CL(D, G) := {(g(Q1), g(Q2), · · · , g(Qn)) | g ∈ L (G)},
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This code forms an [n, k] AG code, where k ≥ 3s − g+ 1, achieving equality when
⌊ 2g−2

3 ⌋ < s < n/3. Furthermore, the code has a minimum distance d ≥ d∗ = q3 − 3s,
where d∗ is the designed minimum distance.

Furthermore, another degree-three place functional Hermitian code associated with
G, denoted by CL(D̃, G), is constructed by evaluating the functions in L (G) at all rational
points Q1, Q2, · · · , Qn and the point at infinity Q∞ as follows:

CL(D̃, G) := {(g(Q1), g(Q2), · · · , g(Qn), g(Q∞)) | g ∈ L (G)},

Clearly, CL(D̃, G) has a length of n + 1. Concerning the dimensions, we have the
following result.

Proposition 6. If s < q3/3, then L (sP), CL(D, G) and CL(D̃, G) have the same dimensions.

Proof. If f ∈ ker evD, then f ∈ L (sP − D), which is trivial if s < q3/3. In this case,
ker evD̃ is also trivial.

Remark 1. Numerical experiments show that L (sP), CL(D, G) and CL(D̃, G) have the same
dimension if s < (q3 + 1)/3 + q − 1.

In the study of the divisors D and D̃, we make use of the polynomial

R(X, Y) = X ∏
c∈Fq2

cq+c ̸=0

(Y − c).

As shown in [13] (Section 2), the principal divisor of R(x, y) ∈ Fq2(Hq) is

(R(x, y)) = D − q3Q∞. (8)

Further properties of R(x, y) are given in the following proposition.

Proposition 7. In the function field, we have

xqR(x, y) = yq2 − y and R(x, y) = xq2 − x.

The differential of R(x, y) is
d(R(x, y)) = −dx.

Proof. Clearly,
∏

c∈Fq2

cq+c=0

(Y − c) = Yq + Y,

and

∏
c∈Fq2

cq+c ̸=0

(Y − c) =

∏
c∈Fq2

(Y − c)

∏
c∈Fq2

cq+c=0

(Y − c)
=

Yq2 − Y
Yq + Y

.

Hence, by xq+1 = y + yq,

xqR(x, y) = xq+1 ∏
c∈Fq2

cq+c ̸=0

(y − c) = xq+1 yq2 − y
yq + y

= yq2 − y.

Using this, we obtain
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xq(xq2 − x) = (xq+1)q − xq+1 = yq + yq2 − (y + yq) = yq2 − y = xqR(x, y).

Canceling by xq, we get R(x, y) = xq2 − x, and d(R(x, y)) = −dx follows immediately.

5.2. Differential Hermitian Codes of Degree-Three Places

Differential Hermitian codes of degree-three places are essential counterparts to
functional codes on the Hermitian curve Hq. The dual code CΩ(D, G) of CL(D, G) is
called the differential code. It constitutes an [n, ℓ(G − D)− ℓ(G) + deg D, d⊥] code, where
d⊥ ≤ deg(G)− (2g− 2), with deg(G)− (2g− 2) being its designed distance.

Ref. [20] (Proposition 8.1.2) provides an explicit description of the differential code as
a functional code

CΩ(D, G) = CL (D − G + (dt)− (t)),

where t is an element of Fq2(Hq) such that vQi (t) = 1 for all i ∈ {1, . . . , q3, ∞}. If G = sP
and D = Q1 + · · ·+ Qq3 , then t = R(x, y) is a good choice, with

(dt) = (−dx) = (2g− 2)Q∞ = (q − 2)(q + 1)Q∞,

see [20] (Lemma 6.4.4). Then, (8) implies the following proposition:

Proposition 8.

CΩ(D, sP) = CL (D, (q3 + q2 − q − 2)Q∞ − sP).

The computation of CΩ(D̃, sP) is more complicated. We claim the next results for the
prime powers q ≡ 2 (mod 3), since the proofs are rather transparent in this case. We are
certain that they hold for q ≡ 1 (mod 3) as well. Our opinion is supported by numerical
experiments with q ≤ 8.

Lemma 5. Assume q ≡ 2 (mod 3) and define the Fq2 -rational function

T =
1
3

 ℓ
q2

1
ℓ2

+
ℓ

q2

2
ℓ3

+
ℓ

q2

3
ℓ1

.

Then,

d

 R

(ℓ1ℓ2ℓ3)
q2−q+1

3

 = −

 T

(ℓ1ℓ2ℓ3)
q2−q+1

3

dx.

Proof. We have dℓi = (ai − x)qdx, and

ℓ
q2

i − ℓi+1 = aq3

i xq2 − yq2 − bq3

i − (aq
i+1x − y − bq

i+1)

= aq
i+1(xq2 − x)− (yq2 − y)

= aq
i+1R(x, y)− xqR(x, y)

= (ai+1 − x)qR(x, y).

In one line,

(ai+1 − x))q

ℓi+1
=

ℓ
q2

1 /ℓ2 − 1
R(x, y)

. (9)

Hence,
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d(ℓ1ℓ2ℓ3) = ℓ1ℓ2ℓ3 ·
(
(a1 − x)q

ℓ1
+

(a2 − x)q

ℓ2
+

(a3 − x)q

ℓ3

)
dx

= ℓ1ℓ2ℓ3 ·

 ℓ
q2

1 /ℓ2 − 1
R

+
ℓ

q2

2 /ℓ3 − 1
R

+
ℓ

q2

3 /ℓ1 − 1
R

 dx

=
ℓ1ℓ2ℓ3

R
(3T − 3)dx.

This implies

d
(

R(ℓ1ℓ2ℓ3)
−q2+q−1

3

)
=

(
−(ℓ1ℓ2ℓ3)

−q2+q−1
3

)
dx+

R
(
−1

3
(ℓ1ℓ2ℓ3)

−q2+q−4
3

)
ℓ1ℓ2ℓ3

R
(3T − 3)dx.

By easy cancellation

d
(

R(ℓ1ℓ2ℓ3)
−q2+q−1

3

)
=

(
−(ℓ1ℓ2ℓ3)

−q2+q−1
3

)
dx +−1

3
(ℓ1ℓ2ℓ3)

−q2+q−1
3 (3T − 3)dx

= −

 T

(ℓ1ℓ2ℓ3)
q2−q+1

3

dx.

Lemma 6. Assume q ≡ 2 (mod 3) and define the Fq2 -rational functions

T =
1
3

 ℓ
q2

1
ℓ2

+
ℓ

q2

2
ℓ3

+
ℓ

q2

3
ℓ1

 and R1 =
R

(ℓ1ℓ2ℓ3)
q2−q+1

3

.

Let G be a divisor of Fq2(Hq) whose support is disjoint from the support of D̃. Then,

L (D̃ − G + (dR1)− (R1)) = L

(
(q2 − 1)(q + 1)

3
P − G

)
· (ℓ1ℓ2ℓ3)

q2−1
3

T
.

Proof. We have

D̃ − G + (dR1)− (R1) = D̃ − G + (T)− q2 − q + 1
3

(ℓ1ℓ2ℓ3) + (dx)

− (R) +
q2 − q + 1

3
(ℓ1ℓ2ℓ3)

= D̃ − G + (T) + (dx)− (R)

= Q∞ + q3Q∞ + (2g− 2)Q∞ − G + (T)

= (q2 − 1)(q + 1)Q∞ − G + (T)

=
(q2 − 1)(q + 1)

3
P −

(
(ℓ1ℓ2ℓ3)

q2−1
3

)
− G + (T).

For Riemann–Roch spaces, the results follow.

Lemma 7. For any i, j ∈ {1, 2, 3}, we have(
ℓi
ℓj

)
(Q∞) = 1.
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Proof. We use the local expansion τ(t) = (t : 1 : tq+1 + · · · ) of Hq at Q∞. The dots
represent terms of a higher degree.(

ℓi
ℓj

)
(τ(t)) =

aq
i t − 1 − bq

i (t
q+1 + · · · )

aq
j t − 1 − bq

j (t
q+1 + · · · )

,

which implies (
ℓi
ℓj

)
(Q∞) =

(
ℓi
ℓj

)
(τ(0)) = 1.

Lemma 8. Assume q ̸≡ 0 (mod 3) and define the Fq2 -rational functions

T =
1
3

 ℓ
q2

1
ℓ2

+
ℓ

q2

2
ℓ3

+
ℓ

q2

3
ℓ1

 and T1 =
(ℓ1ℓ2ℓ3)

q2−1
3

T
.

Then, T1(Q∞) = 1.

Proof. Since
ℓ

q2

i

ℓi+1(ℓ1ℓ2ℓ3)
q2−1

3

is the product of terms such as ℓi/ℓj, it takes the value of 1 at Q∞. This implies (1/T1)(Q∞) =
1.

Before stating our main result on differential codes, we remind the reader that two
linear codes C1, C2 are monomially equivalent if C2 = µ ⋆ C1 for some multiplier vector µ.

Theorem 4. Assume q ≡ 2 (mod 3) and define the Fq2 -rational functions

T =
1
3

 ℓ
q2

1
ℓ2

+
ℓ

q2

2
ℓ3

+
ℓ

q2

3
ℓ1

 and T1 =
(ℓ1ℓ2ℓ3)

q2−1
3

T
.

Let G be a divisor of Fq2(Hq), whose support is disjoint from the support of D̃. Define
µi = T1(Qi) for i ∈ {1, . . . , q3, ∞} and write µ = (µi). Then, all entries µi ∈ F∗

q2 , and

CΩ(D̃, G) = µ ⋆ CL (D̃,
(q2 − 1)(q + 1)

3
P − G).

Proof. If i ∈ {1, . . . , q3}, then ℓ
q2

i (Qi) = ℓi+1(Qi). Therefore, T(Qi) = 1 and T1(Qi) is a
well-defined non-zero element in Fq. Lemma 8 implies T1(Q∞) = 1. The theorem follows
from Lemma 6.

Corollary 1.

CΩ(D̃, sP) = µ ⋆ CL

(
D̃,
(
(q2 − 1)(q + 1)

3
− s
)

P
)

.

6. Hermitian Subfield Subcodes from Degree-Three Places

In this section, we study the subfield subcodes of CL(D, sP). As before, q is a prime
power, s ≥ 0 integer, and P is a place of degree three of the Hermitian curve Hq. The divisor
D = Q1 + · · ·+ Qn, n = q3, is defined as the sum of the Fq2-rational affine places of Hq.

The rational place at infinity is Q∞ and D̃ = D + Q∞.
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6.1. Trace Maps of Hermitian Functions and Hermitian Codes

We collect properties of the maps z 7→ zq + z and z 7→ zq − z, where z is either a field
element, a function, or a vector. We refer to zq + z as the trace of z, and to the map itself as
the trace map Tr = TrFq2 /Fq . Clearly, Tr is linear over Fq.

Lemma 9. Consider a positive divisor G1. The trace map satisfies the following properties:

(i) For any function f ∈ L (G1), its trace lies within L (qG1), implying Tr(L (G1)) ⊆ L (qG1).
(ii) Similarly, for any codeword c ∈ CL(D, G1), its trace resides in CL(D, qG1).
(iii) Tr(CL(D, G1)) is an Fq-linear subspace of CL(D, qG1) ∩ Fn

q .

Proof. Since G1 ≥ 0, we have L (G1), L (G1)
q ≤ L (qG1); hence, (i) holds. Then, (i)

implies (ii), and (iii) follows trivially.

Proposition 9. Let G1 be a positive divisor that satisfies deg G1 < n/q. Then, Tr(CL(D, G1)) is
an Fq-linear subfield subcode of CL(D, qG1). Its dimension is

dimFq(Tr(CL(D, G1))) = 2 dimFq2 (L (G1))− 1.

Proof. Tr(CL(D, G1)) is an Fq-linear subfield subcode by Lemma 9. The trace map Tr
and the evaluation map evD commute, and by deg(G1) < n, evD is injective. Define the
Fq-linear map

τ : L (G1) → CL(D, qG1) ∩ Fn
q , f 7→ evD(Tr( f )).

On the one hand,

dimFq(L (G1)) = 2 dimFq2 (L (G1)) = dim Im(τ) + dim ker(τ).

We have to show that ker(τ) = 1. Define ε ∈ Fq2 such that ε = 1 if q is even and

ε = g(q+1)/2 if q is odd and g is a primitive element in Fq2 . Then, εq−1 = −1. For the
rational function f ∈ Fq2(H (q)), we have

f ∈ ker(τ) ⇒ f q + f = 0

⇒ (ε f )q = ε f

⇒ ε f ∈ Fq

⇒ f ∈ ε−1Fq.

This finishes the proof.

6.2. An Explicit Subfield Subcode

In this subsection, we study a subfield subcode of CL(D, (q2 − q + 1)P). As q2 − q +
1 = (q − 1)(q + 1)− (q − 1), one has

Uq2−q+1,i =
ℓ

q
i ℓi+2

ℓi+1ℓ
q
i+2

.

The vector space Wq2−q+1 ≤ L ((q2 − q + 1)P) consists of the functions

Wq2−q+1,α = α
ℓ

q
1ℓ3

ℓ2ℓ
q
3
+ αq2 ℓ

q
2ℓ1

ℓ3ℓ
q
1
+ αq4 ℓ

q
3ℓ2

ℓ1ℓ
q
2

, α ∈ Fq6 .
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For rational functions f , g ∈ Fq6(Hq), we introduce the relation

f ≈ g ⇐⇒ f (Qi) = g(Qi) for all i ∈ {1, . . . , q3, ∞}.

This is clearly an equivalence relation, which can be also written in terms of the
principal divisor

f ≈ g ⇐⇒ ( f − g) ≥ D̃,

or in terms of the evaluation map

f ≈ g ⇐⇒ evD̃( f ) = evD̃(g).

Lemma 10.

(i) (Uq2−q+1,i)
q ≈ Uq2−q+1,i+2.

(ii) (Wq2−q+1,α)
q ≈ W

q2−q+1,αq3 .

Proof. Lemma 7 implies Uq2−q+1,i(Q∞) = 1. In the proof of Lemma 5, we have seen that

ℓ
q2

i − ℓi+1 = (ai+1 − x)qR(x, y). Therefore, (ℓq2

i − ℓi+1)(Qi) = 0 for all i ∈ {1, . . . , q3}.
This shows

(Uq2−q+1,i)
q(Qi) =

 ℓ
q2

i ℓ
q
i+2

ℓ
q
i+1ℓ

q2

i+2

(Qi)

=

(
ℓi+1ℓ

q
i+2

ℓ
q
i+1ℓi

)
(Qi)

= Uq2−q+1,i+2(Qi)

This proves (i). For (ii):

(Wq2−q+1,α)
q = (αUq2−q+1,1 + αq2

Uq2−q+1,2 + αq4
Uq2−q+1,3)

q

≈ αqUq2−q+1,3 + αq3
Uq2−q+1,1 + αq5

Uq2−q+1,2

= αq3
Uq2−q+1,1 + (αq3

)q2
Uq2−q+1,2 + (αq3

)q4
Uq2−q+1,3

= W
q2−q+1,αq3 .

Proposition 10. The set
W̃ = {evD(Wq2−q+1,α) | α ∈ Fq3}

is a three-dimensional Fq-linear subfield subcode of CL(D, (q2 − q + 1)P).

Proof. Lemma 10(ii) implies that evD(Wq2−q+1,α) has Fq-entries if and only if αq3
= α.

6.3. Main Result and a Conjecture

Theorem 5. Let q ≥ 3 be a prime power, n = q3, D = Q1 + · · ·+ Qn be the sum of rational
affine places of Fq2(Hq), and P be a place of degree three. The dimension of the subfield subcode of
the one-point Hermitian code is

dim CL(D, sP)|Fq ≥
{

7 for s = 2g = q(q − 1),
10 for s = 2g+ 1 = q2 − q + 1.

Proof. Set G1 = (q − 1)P. By Proposition 9,

T = evD(Tr(L (G1)))
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is an Fq-linear subspace in CL(D, q(q − 1)P)|Fq . Since dim(L ((q − 1)P)) = 4, T has
dimension seven. This proves dim CL(D, q(q − 1)P)|Fq ≥ 7.

Let W̃ be the three-dimensional Fq-linear subfield subcode of CL(D, (q2 − q+ 1)P) given
in Proposition 10. We show that T ∩ W̃ = {0}; the inequality dim CL(D, (q2 − q + 1)P)|Fq ≥
10 will follow. On the one hand,

W̃ ≤ evD(Wq2−q+1).

On the other hand, using Theorem 3, we have

T ≤ evD(L (q(q − 1)P)) = evD

 ⊕
t∈H(P), t≤q(q−1)

Wt

.

As evD is injective on L ((q2 − q + 1)P), and ⊕
t∈H(P), t≤q(q−1)

Wt

 ∩Wq2−q+1 = {0},

we obtain T ∩ W̃ = {0}. This completes the proof.

Our proof was constructive, we used the subfield subcodes given explicitly in the
previous subsections. Based on computer calculations for small q, we have the follow-
ing conjecture.

Conjecture 1. If q ≥ 4, then equalities hold in Theorem 5.

The claim of the conjecture has some equivalent formulations.

Proposition 11. The following are equivalent.

(i) dim CL(D, (q2 − q)P)|Fq = 7.
(ii) dim CL(D, (q2 − q − 1)P)|Fq = 1.
(iii) dim CL(D, sP)|Fq = 1 for all 0 ≤ s ≤ 2g− 1 = q2 − q − 1.

Proof. We use the notation of the proof of Theorem 5. Assume (i). We have L ((q − 1)P) =
W0 ⊕Wq−1. Moreover, T is an FqB-module that decomposes into the direct sum of a
one-dimensional submodule and a six-dimensional submodule. Note that any non-trivial
irreducible FqB-module has dimension six. Since T ∩ CL(D, (q2 − q − 1)P) is a proper
submodule, the only possibility is that it is one-dimensional over Fq. (ii) follows. Trivially,
(ii) implies (iii). Let us now assume (iii).

dimFq CL(D, (q2 − q)P)/CL(D, (q2 − q − 1)P) = 6,

and therefore,

dimFq CL(D, (q2 − q)P)|Fq /CL(D, (q2 − q − 1)P)|Fq ≤ 6.

This implies dim CL(D, (q2 − q)P)|Fq ≤ 7. Together with Theorem 5, we have (i).

We have a partial result related to case (iii) of Proposition 11.

Proposition 12. dim CL(D, sP)|Fq = 1 for all 0 ≤ s ≤ 2
3g.

Proof. Fix an arbitrary integer s in the range 0 ≤ s < 2
3g and consider a generic element

(c1, . . . , cq3) ∈ Cq(s). This corresponds to a function g in L (sP) such that ci = g(Qi) is an
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element of Fq for each i = 1, . . . , q3. We note that there exists a γ ∈ Fq such that at least
q2 of the ci values is equal to γ. In other words, the function g − γ is in L (sP) and has
at least q2 zeros on Hq. However, a non-zero function in L (sP) cannot have more than
deg(G) ≤ 2g = q(q − 1) zeros, leading us to conclude that g − γ must be the zero function.
This implies that every ci is equal to γ, and hence CL(D, sP)|Fq consists of constant vectors.
This completes the proof.

7. Conclusions

In summary, our research has uncovered important properties of the family of Hermi-
tian subfield subcodes associated with degree-three places. We achieved this by precisely
determining the dimension of these codes for certain parameters and providing explicit
bases for the corresponding Riemann–Roch spaces. Moreover, we conducted experiments
aimed at calculating the exact dimension of the underlying family of codes across a broad
spectrum of parameters. This process has contributed to the reformulation of certain con-
jectures, with some being proven. Additionally, we have established lower bounds on the
dimension of Hermitian subfield subcodes associated with the divisor sP, where P is a
degree-three Hermitian place, for specific cases such as 0 ≤ s ≤ 2

3g, s = 2g, and s = 2g+ 1,
utilizing the bases of the underlying family of codes. Our motivation to explore the prop-
erties of Hermitian subfield subcodes stems from their potential as a family of AG codes
for post-quantum cryptography use. In our future work, we anticipate using the param-
eters of subfield subcodes of degree-three Hermitian codes to enhance and secure the
McEliece cryptosystem.
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