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Abstract: In this paper, the problem of joint transmission and computation resource allocation for a
multi-user probabilistic semantic communication (PSC) network is investigated. In the considered
model, users employ semantic information extraction techniques to compress their large-sized data
before transmitting them to a multi-antenna base station (BS). Our model represents large-sized
data through substantial knowledge graphs, utilizing shared probability graphs between the users
and the BS for efficient semantic compression. The resource allocation problem is formulated as an
optimization problem with the objective of maximizing the sum of the equivalent rate of all users,
considering the total power budget and semantic resource limit constraints. The computation load
considered in the PSC network is formulated as a non-smooth piecewise function with respect to
the semantic compression ratio. To tackle this non-convex non-smooth optimization challenge, a
three-stage algorithm is proposed, where the solutions for the received beamforming matrix of the
BS, the transmit power of each user, and the semantic compression ratio of each user are obtained
stage by stage. The numerical results validate the effectiveness of our proposed scheme.

Keywords: semantic communication; resource allocation; knowledge graph; probability graph

1. Introduction

The rapid development of wireless communication technology has initiated an era of
unprecedented connectivity [1,2] that brings with it a growing complexity of data trans-
mission. Moreover, the principles of information theory have undeniably shaped modern
communication systems. While this model has been invaluable, it inherently falls short
of capturing the richer semantic dimension of the information being exchanged [3]. In
response to the limitations of traditional information theory, the concept of semantic com-
munication has emerged as a compelling technology [4] to handle the growing complexity
of data transmission. Semantic communication transcends the mere exchange of abstract
symbols, instead placing an emphasis on the meaning and purpose of a message [5]. Differ-
ent from conventional communication that focuses on data rate maximization, semantic
communication prioritizes data meaning transmission.

The advent of semantic communication has gained significant attention in the realm of
communication research, representing a departure from established paradigms [6]. How-
ever, despite its growing importance, the concept of semantic communication remains in a
state of ongoing evolution [7] characterized by the lack of a universally accepted definition,
a comprehensive theoretical framework, and a unified understanding [8]. Research in this
field is exploratory, reflecting the challenges and opportunities of semantic communication
in modern communication systems.
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To achieve the advantages of semantic communication, one of the intriguing challenges
is how to effectively obtain key performance indicators (KPIs) for performance evaluation.
These KPIs include various aspects such as semantic computation consumption, the quality
of semantic information extraction, and the semantic capacity. Current research mainly
employs two methodologies to derive KPIs in semantic communication. The first approach
relies on simulation, where semantic-related metrics, such as the semantic rate, are ob-
tained utilizing functions derived from simulation results [9–12]. The second approach
involves analysis, where expressions related to semantic communication, such as semantic
computation consumption, are derived through theoretical analysis [13–16]. In simulation-
based studies, Yan et al. achieved a maximum spectral efficiency by optimizing channel
assignment and the number of semantic symbols [9,17]. Addressing energy efficiency,
the authors of [18] conducted optimization for total energy consumption under latency
constraints. Cang et al. integrated semantic communication with mobile edge computing
(MEC), minimizing energy consumption by optimizing semantic-aware division factors
and managing communication and computation resources [19]. In analysis-based stud-
ies, the authors of [13] optimized the total energy of the entire system through strategic
semantic-level selections.

In addition to characterizing the KPIs of semantic communication, the representation
of semantic information is also a challenging aspect of semantic communication [20].
Although many approaches use auto-encoders for semantic compression [21–23], resulting
in data of a small size that are considered to be semantic information, this output often lacks
interpretability and cannot be directly validated by interaction with human understanding.
To address this limitation, some works [24,25] proposed the use of knowledge graphs
as a representation method aligned with human logic. A knowledge graph generally
consists of a set of nodes connected by edges [26]. Each node represents an entity, which
can be a real-world object, a concept, a temporal reference, etc. The edges represent the
semantic relationship between these entities. An illustrative example of a knowledge
graph is shown in Figure 1. Notably, knowledge graphs efficiently encapsulate substantial
information within a compact data size, making them an ideal candidate for semantic
information representation.
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Figure 1. Illustration of a knowledge graph.

Recently, there has been significant research investigating semantic communication
over wireless networks. The authors of [27] introduced deep learning techniques to join the
source–channel coding of text, which laid the foundation for a semantic communication
system for text transmission. This research offered novel perspectives and methods for
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effectively encoding and transmitting textual information. Building upon this, Yao et al.
further explored the design of text transmission by proposing an iterative semantic coding
approach [28]. The objective of this approach was to accurately capture and transmit the
semantic content of text, thereby enhancing the efficiency and accuracy of transmission.
Further, semantic triples and knowledge graphs have been employed to enable semantic
communication. Liu et al. investigated a task-oriented semantic communication approach
based on semantic triples [29]. This approach focused on effectively encoding and transmit-
ting key semantic information based on specific task requirements. Additionally, the work
in [30] proposed a cognitive semantic communication framework with knowledge graphs.
This work presented a simple, general, and interpretable solution for detecting semantic
information by utilizing triples as semantic symbols. Considering the unique properties
of semantic communication, resource allocation and performance optimization are crucial
factors to consider in the development of semantic communication systems. Wang et al. em-
ployed deep reinforcement learning to address the resource allocation problem in semantic
communication [31]. This study introduced new strategies to effectively allocate communi-
cation resources to ensure efficient transmission of semantic information. However, the
aforementioned works [27–31] did not take into account the computational power require-
ments of semantic communication systems, which is important for energy-constrained
wireless networks [32].

In this paper, we develop a multi-user probabilistic semantic communication (PSC)
framework that jointly considers transmission and computation consumption. The key
contributions of this work are summarized as follows:

• We consider a PSC network in which multiple users employ semantic information
extraction techniques to compress their original large-sized data and transmit the
extracted information to a multi-antenna base station (BS). In our model, users’ large-
sized data are extracted as extensive knowledge graphs and are compressed based on
the shared probability graph between the users and the BS.

• We formulate an optimization problem that aims to maximize the sum equivalent rate
of all users while considering total power and semantic resource limit constraints. This
joint optimization problem takes into account the trade-off between the transmission
efficiency and computation complexity.

• To solve this non-convex, non-smooth problem, a low-complexity three-stage algo-
rithm is proposed. In stage 1, the received beamforming matrix is optimized using the
minimum mean square error (MMSE) strategy. In stage 2, we substitute the transmit
power with the semantic compression ratio and develop an alternating optimization
(AO) method to perform a rough search for the semantic compression ratio. In stage 3,
gradient ascent is used to refine the semantic compression ratio. Numerical results
show the effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows. The system model and problem
formulation are described in Section 2. The algorithm design is presented in Section 3.
Simulation results are analyzed in Section 4. Conclusions are drawn in Section 5.

2. System Model and Problem Formulation

Consider an uplink wireless PSC network with one multi-antenna BS and N single-
antenna users, as shown in Figure 2. The BS is equipped with M antennas, and the set
of users is represented by N . Each user, denoted by n, has large-sized data Dn to be
transmitted. Due to limited wireless resources, the users need to extract the small-sized
semantic information Cn from the original data Dn. In the considered model, users first
extract the semantic information based on their individual local probability graphs and
then transmit the semantic data to the BS.
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Figure 2. An illustration of the considered probabilistic semantic communication (PSC) network.

2.1. Semantic Communication Model

We employ probability graphs as the knowledge base between the semantic transmitter
(each user) and the semantic receiver (BS). A probability graph integrates information from
multiple knowledge graphs, extending the conventional knowledge graph by introducing
the dimension of relational probability. An illustrative example of a probability graph is
depicted in Figure 3. A traditional knowledge graph comprises numerous triples, and each
triple can be represented by

ε = (h, r, t), (1)

where h is the head entity, t denotes the tail entity, and r represents the relation between h
and t. In a traditional knowledge graph, the relations are typically fixed. In contrast, in a
probability graph, each relation is associated with a specific probability, representing the
likelihood of that particular relation occurring under the given conditions of a fixed head
entity and tail entity.
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Figure 3. Illustration of the probability graph considered in the PSC system.

We assume that each user needs to transmit several knowledge graphs. These knowl-
edge graphs are generated from extensive textual data (picture/audio/video data can also
be applied) after undergoing named entity recognition (NER) [33] and relation extraction
(RE) [34], resulting in abstracted information. Using the shared probability graph between
a user and the BS, one can further compress the transmitted knowledge graphs.

The probability graph extends the dimensionality of relations by statistically enumer-
ating the occurrences of various relations associated with the same head and tail entities
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across diverse knowledge graph samples. Leveraging the statistical information from the
probability graph, a multidimensional conditional probability matrix can be constructed.
This matrix reflects the likelihood of a specific triple being valid under the condition that
certain other triples are valid. This enables the omission of relations in the knowledge
graph before transmission, resulting in data compression. However, it is crucial to note
that achieving a smaller data size necessitates a lower semantic compression ratio, which
demands higher-dimensional conditional probabilities. This decrease in semantic compres-
sion ratio comes at the cost of an increased computational load, thus presenting a trade-off
between communication and computation for the considered PSC network. The specific
implementation details of the probability graph can be found in [13].

Within the framework of the considered PSC network, each user possesses a personal-
ized local probability graph that stores statistical information about their historical data.
Each user n individually performs semantic information extraction, compressing original
large-sized data Dn based on its stored probability graph, with the semantic compression
ratio denoted by ρn. Subsequently, the obtained compressed data, Cn, are transmitted to
the BS with transmit power pt

n. Meanwhile, the BS maintains identical probability graphs
corresponding to all N users. Once the BS receives the semantic data from user n, it con-
ducts semantic inference to recover the compressed semantic information using the shared
probability graph of user n. The overall framework of the considered PSC network is
depicted in Figure 4.
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Figure 4. The framework of considered PSC network.

Remark 1. The fundamental concept of PSC is the utilization of the historical data transmitted by
the transceivers, which are then condensed into a probability graph containing specific data features.
This probability graph serves as a common knowledge base for the transceivers. The probability
graph is stored in the transceivers, and when new data are sent, the transceivers can compress and
recover the data according to the shared probability graph, thereby achieving the effect of saving
communication resources.

2.2. Transmission Model

As mentioned above, the BS is equipped with M antennas to serve N single-antenna
users. We assume that the number of users is not greater than the number of antennas in
the BS, that is, N ≤ M. Therefore, space-division multiple access (SDMA) can be employed.

We consider the uplink transmission from all users to the BS, and the received signal
at the BS can be mathematically represented by

y = WHHx + WHn, (2)

where W = [w1, w2, · · · , wN ] ∈ CM×N represents the received beamforming matrix at
the BS, with wn ∈ CM×1 being the receive beamforming vector for user n. The matrix
H = [h1, h2, · · · , hN ] ∈ CM×N denotes the multiple-access channel matrix from all N users
to the antenna array of the BS. Each vector hn ∈ CM×1 represents the channel vector be-
tween the BS and user n, and is determined by the specific propagation environment. Here,
we assume [H]i,j ∼ CN (0, β), where [·]i,j denotes an element in a matrix and β signifies
the long-term channel power gain. The vector x = [x1, x2, · · · , xN ]

T ∈ CN×1 denotes the
transmitted signals of the users with transmit power p = [pt

1, pt
2, · · · , pt

N ]
T, where the



Entropy 2024, 26, 394 6 of 22

transmit power of user n is denoted by pt
n. The vector n = [n1, n2, · · · , nM]T represents

additive white Gaussian noise (AWGN) at the BS. We assume that [n]i ∼ CN (0, σ2), where
[·]i denotes an element in a vector and σ2 denotes the average noise power.

For the uplink transmission that utilizes linear combining at the BS, the received
signal-to-interference-plus-noise ratio (SINR) for the signal from user n can be given by

γn =

∣∣wH
n hn

∣∣2 pt
n

N
∑

k=1,k ̸=n
|wH

n hk|
2 pt

k + ∥wn∥2
2σ2

, (3)

and the achievable rate of user n can be expressed as

Cn = log2(1 + γn). (4)

In the considered PSC network, the original large-sized data Dn are compressed into
small-sized data Cn with a semantic compression ratio prior to transmission. The semantic
compression ratio for user n is defined as

ρn =
size(Cn)

size(Dn)
, (5)

where the function size(·) quantifies the data size in terms of bits.
Hence, we can calculate an equivalent rate for user n, denoted by

Rn =
1
ρn

Cn, (6)

which represents the transmission rate perceived by the receiver following the process of
decoding. Due to the fact that one bit in the compressed data Cn can represent 1/ρn bits in
the original data Dn, we multiply by the factor 1/ρn in equivalent expression (6).

2.3. Computation Model

Each user n needs to perform semantic information extraction based on their local
probability graph to compress the original data Dn into smaller-sized data Cn. This op-
eration relies on computational resources, and it is important to note that the lower the
semantic compression ratio ρn, the higher the computation load becomes.

According to Equation (19) in [13], the computation load for the considered probability
graph-based PSC network can be expressed as

g(ρ) =


A1ρ + B1, L1 < ρ ≤ 1,
A2ρ + B2, L2 < ρ ≤ L1,
...
ASρ + BS, LS ≤ ρ ≤ LS−1,

(7)

where As < 0 represents the slope, Bs > 0 stands for the constant term, and Ls is the
boundary for each segment s = 1, 2, · · · , S. These parameters are system-specific and are
determined by the characteristics of the probability graphs. From (7), the computation
load expression is a piecewise function, which is due to the fact that semantic inference
involves multiple levels of conditional probability functions and each level of conditional
probability function results in one linear computation load expression.

Based on (7), the computation load, denoted by g(ρ), exhibits a segmented structure
with S levels, and the slope magnitude decreases in discrete segments, as depicted in
Figure 5. This is because when the compression ratio is high, only low-dimensional condi-
tional probabilities are employed, resulting in lower computational demands. However, as
the compression ratio decreases, the need for higher-dimensional information arises. With
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higher information dimensions, the computation load becomes more intensive. Each transi-
tion in the segmented function g(ρ) represents the utilization of probabilistic information
with more information for semantic information extraction.
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Figure 5. Illustration of computation load versus semantic compression ratio ρ.

Given the piecewise property of the computation load function, the computation
power of user n can be written as

pc
n = gn(ρn)p0, (8)

where p0 represents a positive constant denoting the computation power coefficient,
gn(ρn) = Ansρn + Bns, if Lns ≤ ρn ≤ Ln(s−1), ∀s = 1, 2, · · · , S, and Lns < Ln(s−1) <
· · · < Ln1 < Ln0 = 1.

In this paper, our primary focus is on the computation load at the user side, as we are
specifically addressing the uplink transmission scenario. In this context, each user needs
to perform an information transmission task, and as such, the computational overhead
associated with semantic decoding at the BS is ignored since the BS always has a high
power budget.

2.4. Problem Formulation

Given the considered system model, our objective is to maximize the sum of equivalent
rates for all users through jointly optimizing the semantic compression ratio of each user
and the transmit power of each user, and to receive the beamforming matrix of the BS while
considering the maximum total power of each user. The sum rate maximization problem
can be formulated as

max
ρ,p,W

N

∑
n=1

Rn, (9a)

s.t. pt
n + pc

n ≤ pmax
n , ∀n ∈ N , (9b)

pt
n ≥ 0, ∀n ∈ N , (9c)

ρmin
n ≤ ρn ≤ 1, ∀n ∈ N , (9d)

where ρ = [ρ1, ρ2, · · · , ρN ]
T,N = {1, 2, · · · , N}, and ρmin

n is the semantic compression limit
for user n. Constraint (9b) reflects a limit on the sum of the transmit power and computation
power for user n, ensuring it remains within the overall power limit pmax

n . Constraint (9c)
enforces the non-negativity of the user’s transmit power. Lastly, constraint (9d) bounds the
semantic compression ratio for each user.

It is essential to recognize that the semantic compression ratio and transmit power
are tightly coupled in problem (9a). Smaller compression ratios lead to larger values
of the objective function, but the presence of constraint (9b) limits the transmit power,
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consequently reducing the objective function. Therefore, achieving the right balance
between the effects of the semantic compression ratio and the transmit power is the key to
the solution of problem (9a). Another important aspect of problem (9a) is the inclusion of the
segmented function gn(ρn) in constraint (9b), which introduces a distinct challenge to the
optimization process. Since the objective function is highly non-convex and constraint (9b)
is non-smooth, it is generally hard to obtain the optimal solution of problem (9a) with
existing optimization tools in polynomial time. Thus, we develop a suboptimal solution in
the next section.

3. Algorithm Design

In this section, a three-step algorithm is proposed to solve problem (9a), i.e., MMSE
for the received beamforming matrix, rough search for the semantic compression ratio, and
refined search for the semantic compression ratio. These three stages will be explained in
detail below.

3.1. Stage 1: MMSE for the Received Beamforming Matrix

With the advancement of multiple-input multiple-output (MIMO) technology, various
beamforming methods, including maximum ratio combining (MRC), zero forcing (ZF),
and MMSE, have been developed to deal with multi-user interference. In this section,
we employ the MMSE strategy to identify the received beamforming matrix W, which is
effective in dealing with high noise power situations. Based on the MMSE technique, the
closed-form solution of received beamforming matrix W is given in the following lemma.

Lemma 1. For any given transmit power of each user, i.e., p, the optimal linear received beamform-
ing matrix W of the BS under the MMSE strategy can be written as

W(P) =
(

HPHH + σ2IM

)−1
HP, (10)

where P = diag{p} represents a diagonal matrix with [P]i,i = [p]i, and IM is an identical matrix
of size M×M.

Proof. See Appendix A.

According to Lemma 1, optimal MMSE received beamforming is achieved using a
closed-form solution, which is a function of the transmit power of all users. Based on the
obtained W(P), we have

wn = pt
n

(
HPHH + σ2IM

)−1
hn. (11)

For notation convenience, we define

Unk ≜
∣∣∣wH

n hk

∣∣∣2 =
(

pt
n
)2
∣∣∣∣hH

n

(
HPHH + σ2IM

)−1
hk

∣∣∣∣2, (12)

and

vn ≜ ∥wn∥2
2σ2 =

(
pt

nσ
)2
∥∥∥∥(HPHH + σ2IM

)−1
hn

∥∥∥∥2

2
. (13)

Thus, by substituting (11) into (3), the received SINR for the signal from user n can be
rewritten as

γn =
Unn pt

n
N
∑

k=1,k ̸=n
Unk pt

k + vn

. (14)
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With the above variable substitution, problem (9a) can be reformulated as

max
ρ,p

N

∑
n=1

1
ρn

log2

1 +
Unn pt

n
N
∑

k=1,k ̸=n
Unk pt

k + vn

, (15a)

s.t. pt
n + pc

n ≤ pmax
n , ∀n ∈ N , (15b)

pt
n ≥ 0, ∀n ∈ N , (15c)

ρmin
n ≤ ρn ≤ 1, ∀n ∈ N . (15d)

In this stage, the received beamforming matrix W is optimized using the MMSE
strategy with a closed-form solution. Hence, the variables that require optimization in
problem (9a) are reduced, and the problem we need to solve becomes problem (15a).

3.2. Stage 2: Rough Search for the Semantic Compression Ratio

In stage 2, we will roughly determine the semantic compression ratio ρn for each user
by identifying the segment in the piecewise function gn(ρn) where ρn falls.

Without loss of generality, it is assumed that when the semantic compression ratio is
equal to ρmin

n , the computation power pc
n exceeds the total power limit pmax

n , i.e.,

gn(ρ
min
n )p0 ≥ pmax

n , ∀n ∈ N . (16)

This is because as the semantic compression ratio tends to ρmin
n , the computation load rises

dramatically as the probability dimension of the computation becomes very high.
With the above assumption, the following theorem can be derived.

Theorem 1. The optimal semantic compression ratio ρ∗n and transmit power
(

pt
n
)∗ of problem (15a)

must satisfy (
pt

n
)∗

+ gn(ρ
∗
n)p0 = pmax

n , ∀n ∈ N . (17)

Proof. See Appendix B.

Remark 2. Theorem 1 enables our algorithm to achieve fairness [35] in terms of the equivalent rate
of each user in the considered PSC system. Due to the fact that each user possesses a specific power
budget for communication and computation, and our algorithm takes full advantage of each user’s
power for communication and computation in accordance with Theorem 1, it follows that every user
will receive a relatively fair equivalent rate with our algorithm.

Theorem 1 implies that constraint (15b) will always hold with equality for the opti-
mality of problem (15a). Based on Theorem 1, we can substitute pt

n = pmax
n − gn(ρn)p0 into

problem (15a). Thus, problem (15a) can be rewritten as

max
ρ

N

∑
n=1

1
ρn

log2

1 +
Unn[pmax

n − gn(ρn)p0]
N
∑

k=1,k ̸=n
Unk

[
pmax

k − gn(ρk)p0
]
+ vn

, (18a)

s.t. pmax
n − gn(ρn)p0 ≥ 0, ∀n ∈ N , (18b)

ρmin
n ≤ ρn ≤ 1, ∀n ∈ N . (18c)

Note that Unk and vn are variables associated with the transmit power p according to Equa-
tions (12) and (13). Since the transmit power pt

n is also a function of the semantic compression
ratio ρn, Unk and vn become variables only associated with the semantic compression ratio ρ.
Therefore, problem (18a) is related solely to the semantic compression ratio.
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However, the difficulty of solving problem (18a) still exists due to the non-convexity
of the objective function and the non-smoothness of the computation load function, gn(ρn).
To handle the non-smoothness of gn(ρn), it can be reformulated as

gn(ρn) =
S

∑
s=1

θns(Ansρn + Bns), θns ∈ {0, 1},
S

∑
s=1

θns = 1, (19)

where S is the number of segments of the piecewise function gn(ρn), and θns identifies the
specific segment within which ρn falls.

Therefore, problem (18a) can be rewritten as

max
Θ,ρ

N

∑
n=1

1
ρn

log2

1 +
Unn

[
pmax

n − p0
S
∑

s=1
θns(Ansρn + Bns)

]
N
∑

k=1,k ̸=n
Unk

[
pmax

k − p0
S
∑

s=1
θks(Aksρk + Bks)

]
+ vn

, (20a)

s.t.
S

∑
s=1

θns(Ansρn + Bns) ≤
pmax

n
p0

, ∀n ∈ N , (20b)

ρmin
n ≤ ρn ≤ 1, ∀n ∈ N , (20c)
S

∑
s=1

θns = 1, ∀n ∈ N , (20d)

θns ∈ {0, 1}, ∀n ∈ N , (20e)

where Θ = [θ1, θ2, · · · , θN ], and θn = [θn1, θn2, · · · , θnS]
T.

In problem (20a), both the binary integer matrix Θ and continuous variable ρ are in-
volved. Thus, problem (20a) becomes a challenging mixed-integer programming problem.

It is important to note that Θ and ρ are highly coupled in objective function (20a) and
constraint (20b). If ρ is determined, then so is Θ. However, a determined Θ cannot result in
a determined ρ, but it can narrow down the possible range of ρ by specifying the particular
segment in which ρ exists.

Therefore, we obtain an approximate estimation of the semantic compression ratio ρ
by determining Θ as follows.

For convenience, we define

ρns =
Ln(s−1) + Lns

2
, 1 ≤ s ≤ S, (21)

which represents the middle value of the semantic compression ratio in segment s for user n.
We can see that ρns is a fixed value denoting the midpoint of segment s in gn(ρn).

Therefore, we use ρns for approximating the value of ρn in every segment s. By making this
approximation, problem (20a) can be simplified as

max
Θ

N

∑
n=1

1

∑S
s=1 θnsρns

log2

1 +
Unn

[
pmax

n − p0
S
∑

s=1
θns(Ansρns + Bns)

]
N
∑

k=1,k ̸=n
Unk

[
pmax

k − p0
S
∑

s=1
θks(Aksρks + Bks)

]
+ vn

, (22a)

s.t.
S

∑
s=1

θns(Ansρns + Bns) ≤
pmax

n
p0

, ∀n ∈ N , (22b)

S

∑
s=1

θns = 1, ∀n ∈ N , (22c)

θns ∈ {0, 1}, ∀n ∈ N . (22d)
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Problem (22a) is an integer programming problem with respect to the Boolean matrix Θ.
Since the objective function of problem (22a) remains intractable and challenging to

convert into a convex function, we present an AO method to iteratively determine the
integer matrix Θ.

With the given semantic compression ratio level indicating vectors of other N − 1
users, we need to determine the optimal θn for the current user n. Then, we have the
following problem

max
θn

N

∑
n=1

1

∑S
s=1 θnsρns

log2

1 +
Unn

[
pmax

n − p0
S
∑

s=1
θns(Ansρns + Bns)

]
N
∑

k=1,k ̸=n
Unk

[
pmax

k − p0
S
∑

s=1
θks(Aksρks + Bks)

]
+ vn

, (23a)

s.t.
S

∑
s=1

θns(Ansρns + Bns) ≤
pmax

n
p0

, ∀n ∈ N , (23b)

S

∑
s=1

θns = 1, ∀n ∈ N , (23c)

θns ∈ {0, 1}, ∀n ∈ N . (23d)

Since θn is a one-hot vector of size S× 1, we can simply iterate through all the possible
locations where ‘1’ could occur, which has S possibilities. The θn corresponding to the
maximum objective function value is saved for subsequent iterations.

The iteration terminates when the objective function value of problem (23a) converges
or the iteration count reaches the maximum limit of Imax. Algorithm 1 summarizes the AO
method for solving the integer programming problem (22a).

Algorithm 1 Alternating Optimization for Determining Integer Matrix Θ

1: Initialize Θ(0). Set iteration index i = 0.
2: repeat
3: for n = 1 to N do
4: for s = 1 to S do
5: if Constraint (23b) is satisfied then
6: Calculate the objective value for θns = 1, θnt = 0, ∀t ̸= s.
7: else
8: Set the objective value as zero.
9: end if

10: end for
11: Update θn which corresponds to the maximum objective value.
12: end for
13: Obtain Θ(i+1).
14: Set i = i + 1.
15: until the objective value of problem (9a) converges or i > Imax.
16: Output: The optimized Boolean matrix Θ.

In this stage, the transmit power p is substituted with the semantic compression ratio
ρ according to Theorem 1. Furthermore, the matrix Θ, which determines the range of ρn
for each user, is optimized employing the AO method. Next, we need to perform a refined
search for the semantic compression ratio ρ.

3.3. Stage 3: Refined Search for the Semantic Compression Ratio

To achieve an accurate value for the semantic compression ratio, a refined search is
required in stage 3. This is because the result obtained in stage 2 is only an approximate
estimate of the semantic compression ratio.
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Based on the Boolean matrix Θ obtained in stage 2, we can determine the segment in
which ρ falls. Denote the selected segment for user n by Sn, which means

gn(ρn) = An(Sn)ρn + Bn(Sn), Ln(Sn) ≤ ρn ≤ Ln(Sn−1). (24)

Once the segment of ρn is determined, the computation load function gn(ρn) becomes a
linear function instead of a non-smooth piecewise function.

Therefore, the problem needing to be solved in stage 3 can be reformulated as

max
ρ

N

∑
n=1

1
ρn

log2

1 +
Unn

[
pmax

n − p0

(
An(Sn)ρn + Bn(Sn)

)]
N
∑

k=1,k ̸=n
Unk

[
pmax

k − p0

(
Ak(Sk)

ρk + Bk(Sk)

)]
+ vn

, (25a)

s.t. An(Sn)ρn + Bn(Sn) ≤
pmax

n
p0

, ∀n ∈ N , (25b)

L(Sn) ≤ ρn ≤ Ln(Sn−1), ∀n ∈ N . (25c)

Problem (25a) is no longer non-smooth, as the piecewise function gn(ρn) has been degraded
to a linear function. However, problem (25a) remains non-convex, as the objective function
is highly non-convex with respect to ρ. Thus, it is generally hard to obtain the globally
optimal solution for problem (25a). Next, we employ the gradient ascent method to obtain
a suboptimal solution.

For convenience, we define

f (ρ) =
N

∑
n=1

1
ρn

log2

1 +
Unn

[
pmax

n − p0

(
An(Sn)ρn + Bn(Sn)

)]
N
∑

k=1,k ̸=n
Unk

[
pmax

k − p0

(
Ak(Sk)

ρk + Bk(Sk)

)]
+ vn

, (26)

which is the objective function of problem (25a). Note that it is only related to the semantic
compression ratio ρ.

Thus, problem (25a) can be rewritten as

max
ρ

f (ρ), (27a)

s.t. ρn ≥
(pmax

n /p0)− Bn(Sn)

An(Sn)
, ∀n ∈ N , (27b)

Ln(Sn) ≤ ρn ≤ Ln(Sn−1), ∀n ∈ N . (27c)

To begin, set the initial semantic compression ratio as

ρ(0) =
[
ρ1(S1)

, ρ2(S2)
, · · · , ρN(SN)

]
. (28)

Let ρ(t−1) denote the semantic compression ratio obtained in the (t− 1)-th iteration.
Subsequently, we can calculate the gradient of the objective function f (ρ) at ρ(t−1) accord-
ing to the definition, i.e.,

[
∇ρ f

(
ρ(t−1)

)]
n
=

∂ f (ρ)
∂[ρ]n

∣∣∣∣∣
ρ=ρ(t−1)

= lim
δ→0

f
(

ρ(t−1) + δon
N

)
− f

(
ρ(t−1)

)
δ

, (29)

where on
N is a Boolean vector of size N × 1 with [on

N ]n = 1 and [on
N ]m = 0, m ̸= n.

Then, we can update ρ(t) in the t-th iteration towards the gradient ascent direction for
a higher f (ρ). The update strategy can be written as
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ρ(t) = B
{

ρ(t−1) + τ(t)∇ρ f
(

ρ(t−1)
)}

, (30)

where τ(t) represents the step size in the t-th iteration, and B{ρ} refers to a boundary func-
tion which ensures that the semantic compression ratio stays within the range determined
by constraints (27b) and (27c). Specifically, the boundary function B{ρ} can be expressed as

[B{ρ}]n =


[ρ]min

n , [ρ]n < [ρ]min
n ,

[ρ]n, [ρ]min
n ≤ [ρ]n ≤ [ρ]max

n ,
[ρ]max

n , [ρ]n > [ρ]max
n ,

(31)

where

[ρ]min
n = max

{
(pmax

n /p0)− Bn(Sn)

An(Sn)
, L(Sn)

}
, (32)

and
[ρ]max

n = Ln(Sn−1). (33)

Both the convergence rate and the ultimate outcome of the gradient ascent algorithm
exhibit a pronounced sensitivity to the chosen step size. Oversized step sizes may expedite
convergence but risk non-convergence. Conversely, overly small step sizes encourage con-
vergence with more iterations, although resulting in a more optimal solution. Consequently,
this paper employs the backtracking linear search method to ascertain a judicious step size.
Concretely, within the t-th iteration, the step size initiates with a sizeable positive value,
i.e., τ(t) = τ̄, and diminishes gradually by repeating

τ(t) ← ατ(t), α ∈ (0, 1), (34)

until the Armijo–Goldstein condition is satisfied, expressed as

f
(

ρ(t)
)
≥ f

(
ρ(t−1)

)
+ ξτ(t)

∥∥∥∇ρ f
(

ρ(t−1)
)∥∥∥2

2
, (35)

where ξ ∈ (0, 1) serves as a hyper-parameter regulating the step size magnitude.
The algorithm will terminate when the increase in f (ρ) between the two most recent

iterations is less than a very small positive number, denoted by ϵ, or the algorithm reaches
the maximum iteration limit of Tmax. Algorithm 2 provides a summary of the gradient
ascent algorithm.

Algorithm 2 Gradient Ascent Algorithm for a Refined Search of the Semantic Compression
Ratio

1: Initialize ρ(0). Set iteration index t = 0.
2: Obtain f (ρ) according to (26).
3: repeat
4: Calculate ∇ρ f

(
ρ(t−1)

)
according to (29).

5: Initialize the step size τ(t) = τ̄.
6: Update ρ according to (30).
7: repeat
8: Diminish the step size according to (34).
9: Update ρ according to (30).

10: until the Armijo–Goldstein condition (35) is satisfied.
11: Set t = t + 1.
12: until

∣∣∣ f
(

ρ(t)
)
− f

(
ρ(t−1)

)∣∣∣ < ϵ or t > Tmax.
13: Output: Semantic compression ratio ρ for all users.
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In this stage, the non-smooth computation function gn(ρn) is degenerated to a linear
function according to the Boolean matrix Θ obtained in stage 2. Then, a gradient ascent
algorithm is employed to tackle the non-convex problem (25a). This stage outputs the
refined semantic compression ratio ρ for all users.

3.4. Algorithm Analysis

The overall joint transmission and computation resource allocation algorithm for a
multi-user PSC network is presented in Algorithm 3. Algorithm 3 consists of three stages
that are executed sequentially. Therefore, the overall complexity of Algorithm 3 can be calcu-
lated as O(Stage 1) +O(Stage 2) +O(Stage 3), where O(Stage i) denotes the computation
complexity of stage i. The complexity of these three stages is analyzed as follows.

In stage 1, we derive the closed-form solution of the received beamforming matrix W
using the MMSE strategy. Therefore, the computation complexity of stage 1 lies in computing
W. To compute W, we need to perform four matrix multiplications and one matrix inversion.
Hence, the computation complexity of stage 1 can be expressed as O(MN2 + M2N + M3).

In stage 2, we employ the AO method to obtain the Boolean matrix Θ. If we exhaustively
search all possibilities of Θ, the computation complexity would beO(SN), which is infeasible.
Although the result obtained by the AO method may not be the globally optimal solution,
it significantly reduces the complexity to O(ImaxSN). In Algorithm 1, the computation
complexity for calculating the objective value in line 6 isO(N2). Therefore, the computation
complexity of stage 2 is O(ImaxSN3).

In stage 3, we utilize the gradient ascent algorithm to search for the refined semantic
compression ratio ρ. In Algorithm 2, the computation complexity for calculating the gradient
in line 4 is O(N3). Let Bmax denote the maximum iterations of the backtracking linear
search in lines 7 to 10 of Algorithm 2. Thus, the complexity of Algorithm 2 is O(BmaxN).
Consequently, the computation complexity of stage 3 is O(Tmax(N3 + BmaxN)).

As a result, the total complexity of Algorithm 3 can be expressed as O(MN2 + M2N +
M3 + ImaxSN3 + Tmax(N3 + BmaxN)) = O(M3 + ImaxSN3) since N ≤ M.

Algorithm 3 Joint Transmission and Computation Resource Allocation Algorithm for
Multi-User PSC Network

1: Initialize W, p, and ρ.
2: Stage 1:
3: Update the received beamforming matrix W according to (10).
4: Stage 2:
5: Substitute the transmit power p with the semantic compression ratio ρ according to

Theorem 1.
6: Rewrite gn(ρn) according to (19).
7: Calculate ρns according to (21).
8: Solve problem (22a) using Algorithm 1.
9: Stage 3:

10: Update gn(ρn) according to (24).
11: Solve problem (25a) using Algorithm 2.
12: Output: The optimized W, p and ρ.

Since deducing the optimality of problem (9a) is challenging in theory, obtaining the
globally optimal solution would generally lead to an exponential computation complexity,
which is unrealistic. Therefore, we propose Algorithm 3 to provide a suboptimal solution
for problem (9a) with a polynomial computation complexity.

Remark 3. A re-optimization process is needed when significant changes in the network state are
detected. This ensures that the allocations remain efficient and adaptive to the prevailing conditions.
Based on the aforementioned analysis, the computation complexity of our proposed optimization
algorithm is of polynomial complexity. Consequently, the re-optimization process will not have a
significant impact on performance.
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4. Simulation Results

In the simulations, the considered PSC network comprises eight users, while the BS
is equipped with 16 antennas. The multiple-access channel matrix H is configured with
a long-term channel power gain β set to −90 dB, and the noise power is set to −10 dBm.
Furthermore, we set the computation power coefficient to 1 and the maximum power limit
to 30 dBm. For the semantic information extraction task based on the probability graph,
we adopt the same parameters as in [15]. A summary of the main system parameters is
provided in Table 1.

The proposed multi-user PSC system, enhanced by the probability graph with joint
transmission and computation optimization, is labeled as the ‘PSC’ scheme. For compar-
isons, we incorporate several benchmark schemes as follows.

• ‘Non-semantic’: This benchmark scheme represents a conventional communication
approach where the original data are directly transmitted without employing semantic
compression. In this scheme, all users’ power is allocated solely to transmission,
without any optimization for joint transmission and computation.

• ‘PSC-S2’: This scheme is a simplified version of the ‘PSC’ scheme, where the optimiza-
tion process is performed only up to stage 2. The final result is the roughly estimated
semantic compression ratio obtained from this stage.

• ‘PSC-ZF’: In this scheme, the ZF strategy is employed at stage 1. This means that the
received beamforming matrix W is calculated as W = H(HHH)−1. The remaining
stages are the same with the ‘PSC’ scheme.

Table 1. Main system parameters.

Parameter Symbol Value

Number of users N 8
Number of antennas M 16

Long-term channel power gain β −90 dB
Noise power σ2 −10 dBm

Computation power coefficient p0 1
Maximum power limit pmax

n 30 dBm
Parameter in (29) δ 10−9

Initial step size τ̄ 10−3

Scaling factor in (34) α 0.5
Hyper-parameter in (35) ξ 0.1

Threshold in Algorithm 2 ϵ 10−6

Maximum iteration limit in Algorithm 2 Tmax 1000

In Figure 6, we assess the convergence of the proposed ‘PSC’ scheme. Two convergent
platforms are discernible: the first pertains to the AO algorithm, while the second corre-
sponds to the gradient ascent algorithm. During stage 2, the objective value exhibits a rapid
ascent and subsequent convergence. This can be attributed to the fact that, in this stage, the
AO algorithm addresses an integer programming problem with a discrete and relatively
small variable space. Upon convergence of the AO algorithm, the ‘PSC’ scheme progresses
to stage 3, wherein the gradient ascent algorithm is activated. In stage 3, the objective
function converges to a value higher than that achieved in stage 2. This observation serves
as validation for the effectiveness of the gradient ascent algorithm. Throughout the iterative
process, the objective value steadily increases, eventually reaching a highly stable value.
This outcome substantiates the efficacy of the comprehensive algorithm design.

In Figure 7, the correlation between the sum of the equivalent rate and the number
of users is depicted. The figure reveals a consistent increase in the sum of the equivalent
rate across all schemes as the number of users increases. However, it is observed that
this increase does not follow a linear trend with a slope of one. Specifically, when N = 8,
the sum of the equivalent rate is found to be less than twice as high as that when N = 4
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within the same scheme. This phenomenon is attributed to the emergence of inter-user
interference at the receiver. Furthermore, the growth rate of the ‘PSC’ scheme surpasses
that of the ‘PSC-ZF’ scheme, indicating that the MMSE strategy outperforms the ZF strategy
in the examined scenario. It is important to emphasize that, consistently, the ‘PSC’ scheme
demonstrates the highest performance, while the sum rate of the ‘non-semantic’ scheme
consistently remains the lowest. In Figure 8, the variation in the sum of the equivalent
rate with changing noise power is illustrated. The figure highlights a consistent decrease
in the sum of the equivalent rate across all schemes as the noise power increases. When
the noise power is small, the performance of the ‘PSC’ scheme and the ‘PSC-ZF’ scheme is
comparable, suggesting that the ZF strategy is more effective in low-noise environments. It
is important to note that, theoretically, when the noise power is zero, the formulas for both
MMSE and ZF strategies yield identical results. However, in real-world scenarios, complete
absence of noise is implausible. Consequently, the superiority of the MMSE strategy over
the ZF strategy becomes evident as the noise power increases. This is demonstrated in
Figure 8, where the ‘PSC’ scheme consistently outperforms the ‘PSC-ZF’ scheme across
various noise power levels, affirming the general superiority of the MMSE strategy. Note
that when the noise power is sufficiently high, the sum of the equivalent rate of all schemes
tends to saturate at zero, since the channel capacity tends to zero [? ].
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Figure 8. Sum of equivalent rate vs. noise power.

In Figure 9, the relationship between the sum of the equivalent rate and the com-
putation power coefficient is depicted. Notably, the ‘non-semantic’ scheme maintains a
constant sum of the equivalent rate across different p0 values due to its lack of utilization
of semantic communication techniques, consistently exhibiting the lowest performance
among the considered schemes. As the computation power coefficient decreases, the sum
of the equivalent rate for the other three schemes increases. This trend is attributed to the
enhanced efficiency in computation with a lower p0, facilitating a lower semantic compres-
sion ratio. Consequently, a higher sum of the equivalent rate is achieved. It is found that
the ‘PSC-S2’ scheme exhibits variable proximity to the ‘PSC’ scheme, illustrating a dynamic
relationship. A small gap between the two indicates that the solution of the ‘PSC’ scheme
closely aligns with the midpoint solution of the ‘PSC-S2’ scheme. Moreover, the sum of the
equivalent rate for the ‘PSC-S2’ scheme demonstrates a segmented function concerning the
computation power coefficient p0. This behavior arises because the solution of the ‘PSC-S2’
scheme jumps to the midpoint of another segment of the computation load function gn(ρn)
only when p0 changes significantly.
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Figure 9. Sum of equivalent rate vs. computation power coefficient.

In Figure 10, the evolution of the sum of the equivalent rate is traced across varying
maximum power limits. A consistent upward trajectory is observed for all schemes as
the maximum power limit increases. This behavior is a direct consequence of the positive
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correlation between augmented power levels and increased achievable rates for all users.
Distinctly, in comparison to the ‘non-semantic’ scheme, the advantages of the ‘PSC’ scheme
become more pronounced with higher maximum power limits pmax

n . This enhancement can
be attributed to the ‘PSC’ scheme’s ability to allocate more power to semantic compression
as the maximum power limit increases. The reduction in data size achieved through
semantic compression significantly contributes to the overall sum of the equivalent rate.
Conversely, the ‘non-semantic’ scheme can only allocate all power to transmission, which
does not contribute as significantly to the sum of the equivalent rate. Consequently, the
proposed ‘PSC’ scheme exhibits substantial superiority when there is sufficient power.

30 31 32 33 34 35 36

Maximum power limit pmax (dBm)

10

20

30

40

50

60

70

80

90

S
u

m
 o

f 
e

q
u

iv
a

le
n

t 
ra

te

PSC

PSC-S2

PSC-ZF

Non-Semantic

Figure 10. Sum of equivalent rate vs. maximum power limit.

To depict the allocation of computation power and transmission power within the
considered network, Figure 11 illustrates the distribution in both the ‘PSC’ and ‘PSC-S2’
schemes across various computation power coefficients. It can be seen that the sum of the
computation power and transmission power consistently equals the predefined maximum
power limit pmax

n , set at 30 dBm. This figure reveals no discernible pattern in the variation
in computation power with respect to p0, and the computation power of the ‘PSC-S2’
scheme fluctuates, at times surpassing and at other times falling below that of the ‘PSC’
scheme. This variability underscores the inherent challenge in achieving a balance between
transmission and computation within the considered PSC network.
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Figure 11. The allocation of the computation power and transmission power with different computa-
tion power coefficients.
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5. Conclusions

This paper has introduced the PSC network, a novel paradigm where multiple users
employ semantic information extraction techniques to compress extensive original data
before transmission to a multi-antenna BS. Our model represents large-sized data through
comprehensive knowledge graphs, utilizing a shared probability graph between users and
the BS to facilitate efficient semantic compression. We formulated an optimization problem
aimed at maximizing the sum of the equivalent rate for all users, while considering the
total power constraints and semantic requirements. To tackle the non-convex and non-
smooth nature of the optimization problem, we proposed a three-stage algorithm. This
algorithm determines the received beamforming matrix of the BS, transmit power, and
semantic compression ratio for each user step by step. The numerical results underscore
the effectiveness of our proposed scheme, emphasizing its ability to achieve a harmonious
equilibrium between transmission and computation.

In our model, we considered knowledge graphs extracted from various modal data and
compressed them to be transmitted based on shared probability graphs at the transceivers.
Fortunately, at the level of the knowledge graph, our semantic compression is lossless
because the receiver can recover the information that is vacant in the knowledge graph
through the probability graph. However, it is important to note that during the process of
extracting the knowledge graph from the original data and recovering the original data
from the knowledge graph, there exists a semantic loss problem, which is an area for
potential future research.
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Appendix A. Proof of Lemma 1

The received signals at the BS without beamforming can be expressed as

ŷ = Hx + n, (A1)

which means that y = WHŷ based on (2) and (A1).
The goal of the MMSE strategy is to minimize the mean square error (MSE) between

the transmitted signals x and the received signals y. The error between x and y is

e = y− x = WHŷ− x. (A2)

To minimize the MSE between x and y, represented by E
{

eHe
}

, where E{·} denotes the
expected value of a random variable, the following condition must be satisfied

E
{

eŷH
}
= 0, (A3)

which means there is no correlation between ŷ and e. Condition (A3) is equivalent to the
condition that minimizes E

{
eHe

}
, because if the correlation between ŷ and e is non-zero, it

can still be used to decrease E
{

eHe
}

.
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Substituting (A2) into (A3), we have

E
{
(WHŷ− x)ŷH

}
= 0, (A4)

which is equivalent to
WHE

{
ŷŷH

}
−E

{
xŷH

}
= 0. (A5)

According to (A5), we have

WH = E
{

xŷH
}
E
{

ŷŷH
}−1

. (A6)

Let us deal with E
{

xŷH}
first. Substituting (A1) into E

{
xŷH}

, we obtain

E
{

xŷH
}
= E

{
x(Hx + n)H

}
= E

{
xxHHH + xnH

}
. (A7)

Since there is no correlation between the transmitted signals x and the noise n, i.e.,
E
{

xnH}
= 0, we have

E
{

xŷH
}
= E

{
xxH

}
HH = PHH. (A8)

Following the similar procedure, we can obtain

E
{

ŷŷH
}
= HE

{
xxH

}
HH +E

{
nnH

}
= HPHH + σ2IM. (A9)

Now, substituting (A8) and (A9) into (A6), we have

WH = PHH
(

HPHH + σ2IM

)−1
, (A10)

which is equivalent to

W =
(

HPHH + σ2IM

)−1
HP. (A11)

From (A11), the obtained receive beamforming matrix is associated with the transmit
power P.

Appendix B. Proof of Theorem 1

Theorem 1 can be proved by the contradiction method. If there exists a user n such
that

pt
n + gn(ρn)p0 < pmax

n . (A12)

Then, for user n, we can always decrease its semantic compression ratio ρn due to (16) and
constraint (15c).

It is evident that the objective function of problem (15a) decreases monotonically for
ρn, indicating that a lower semantic compression ratio ρn produces a higher value of the
objective function in problem (15a). Therefore, when the objective function of problem (15a)
reaches its maximum, the semantic compression ratio ρn and transmit power pt

n of each
user must satisfy

pt
n + gn(ρn)p0 = pmax

n , ∀n ∈ N . (A13)

Hence, Theorem 1 is proved.
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