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Abstract: The nature of the input features is one of the key factors indicating what kind of tools,
methods, or approaches can be used in a knowledge discovery process. Depending on the charac-
teristics of the available attributes, some techniques could lead to unsatisfactory performance or
even may not proceed at all without additional preprocessing steps. The types of variables and their
domains affect performance. Any changes to their form can influence it as well, or even enable some
learners. On the other hand, the relevance of features for a task constitutes another element with a
noticeable impact on data exploration. The importance of attributes can be estimated through the
application of mechanisms belonging to the feature selection and reduction area, such as rankings. In
the described research framework, the data form was conditioned on relevance by the proposed pro-
cedure of gradual discretisation controlled by a ranking of attributes. Supervised and unsupervised
discretisation methods were employed to the datasets from the stylometric domain and the task of
binary authorship attribution. For the selected classifiers, extensive tests were performed and they
indicated many cases of enhanced prediction for partially discretised datasets.
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1. Introduction

The knowledge discovery in databases (KDD) process refers to discovering useful
knowledge or patterns from databases [1]. It encompasses a range of techniques and
methodologies from various fields, such as machine learning, data mining, statistical analy-
sis, and use of database systems [2]. The KDD process involves several stages, including
data selection, preprocessing, transformation, mining, evaluation, and interpretation of
results. It often begins with identifying relevant data sources, followed by cleaning and
preprocessing the data to handle noise, missing values, and inconsistencies. Subsequently,
various data mining techniques are applied to discover patterns, associations, or clusters
within the input data [3]. The discovered patterns are then evaluated to assess their signif-
icance and reliability. Finally, the results are presented in a meaningful way to facilitate
decision-making and knowledge utilisation and interpretation.

Feature selection [4] plays one of the key roles in the KDD process, more specifically in
the data preparation stage. The objective is to identify significant attributes from the entire set
of available variables, while at the same time preserving the descriptive and representative
qualities of the original set of the input features [5]. One of the means to assess the quality
of selected features is the construction of a ranking of attributes [6]. It enables ordering of
variables from the most to the least important, based on some adopted criterion. Feature
ranking is also referred to as feature weighting. It encompasses the evaluation of individual
attributes through the allocation of weights determined by their relevance [7].
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Another important step in the KDD process is data preprocessing [8], as the outcome of
this stage is subject to exploration, and, therefore, it forms the basis for deriving the results
of the data mining process. Proper data preparation and selection of relevant attributes can
influence the algorithms used, their range, and operation, which, in turn, translates into
the classification results and the discovery of patterns that exist in the input data.

Discretisation represents an aspect of data preprocessing. It involves the conversion of
numerical attributes into discrete or categorical ones with a finite number of intervals [9].
It is classified as a data reduction method because it condenses a continuous spectrum of
attribute values into a smaller set of discrete values. This simplification process helps to
make the data more comprehensible, interpretable, and usable, while potentially eliminat-
ing noise. However, it can also result in some loss of information due to the disregard of
some properties or relationships present in the continuous nature of attributes [10]. There
are many discretisation methods and approaches, and the choice of a particular algorithm
has an impact on the obtained discrete form of the features [11].

Supervised discretisation methods take into account class information to find proper
intervals among the ranges of attribute values, as opposed to unsupervised algorithms,
where the discretiser considers only the range of values being translated, and the number
of intervals is given as an input parameter [12]. In the standard procedures used, transfor-
mations are applied to all continuous variables at once, before knowledge discovery, and
the same mechanism is employed to translate all attribute domains [13].

Taking into account the above characteristics of the knowledge discovery and dis-
cretisation processes, in the framework of the research presented in this paper, the authors
propose a methodology related to the data preprocessing stage, more specifically, data
discretisation. The modification involves conditioning transformations of attribute domains
on their relevance. The procedure of data discretisation is performed gradually, separately
for each feature, and the selection of features is driven by constructed rankings [14]. As a
consequence, not only the original continuous input space is explored, but all the partially
discretised variants as well. The processing stops when all variables are translated into
their discrete domains.

The proposed methodology was verified through extensive experiments, including two
well-known methods for ranking construction, examined in both ascending and descend-
ing orders, for selected representatives of both supervised and unsupervised discretisation
approaches, and three state-of-the-art classification algorithms. The procedure of gradual
discretisation controlled by use of ranking was applied to the datasets from the stylometry
domain with authorship attribution as a supervised machine learning task [15,16].

The research presented in the paper makes the following main contributions:

• Illustration of a research framework dedicated to a gradual discretisation procedure
directed by selected rankings of features;

• Exploitation of multiple discretisation algorithms, with supervised and unsupervised
interval construction;

• Comparison between domain transformations following rankings in ascending and
descending directions;

• Analysis of trends in performance of state-of-the-art classifiers with varied operational
backgrounds from the point of view of data representation and interpretation;

• Observation of the impact of considering information on the relevance of attributes
during their discretisation on the performance of the selected classifiers;

• Application of the proposed methodology in the stylometric domain for authorship
attribution tasks.

The paper is organised into six sections. Section 2 constitutes a presentation of the
research background, with comments on important issues, methods, and tools employed.
Section 3 provides a description of the framework of the research procedure in which
attributes are discretised gradually, while following a ranking of attributes, with all relevant
considerations. The range of experiments performed and their limitations and parameters
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are included in Section 4, while Section 5 is dedicated to analysis of the obtained results.
Concluding remarks and possible future research directions are provided in Section 6.

2. Background

In this section, some aspects related to the nature of data are considered. In relation to
the data preparation stage during the KDD process, approaches to data discretisation and
methods of attributes ranking construction are described. Finally, popular classifiers used
in the experiments are outlined.

2.1. Nature of Input Space

The nature of data refers to various aspects of the input space. It involves identifying
characteristic features and their importance, including the type of data and their complexity,
the structures in which they are stored, and the selection of tools, methods, and algorithms
aimed at extracting knowledge from the data and discovering useful new patterns. Under-
standing the nature of data is crucial when designing systems for their processing, selecting
analytical tools, and implementing appropriate data management and protection strategies.
One of the important concerns in this context is the possible existence of data irregularities,
which can be considered from various points of view [17]. This may involve issues related
to data discretisation, the uneven distribution of decision classes within a dataset [18], or
possible stratification visible in the data [19].

Knowledge mining algorithms often require data in a discrete form, necessitating the
process of transformation for these data [20]. In cases where the data are continuous, their
normalisation or standardisation could be needed to ensure that different attributes have a
comparable scale. If discretisation is performed, it can lead to a loss of information regarding
the relationships and dependencies present in the data. Transforming the data into a discrete
form reduces memory usage and computational power requirements and ensures that the
data are easier to understand and interpret [21]. However, selecting an appropriate data
discretisation method is not a trivial task [22]. Standard approaches apply the transformations
to all available features at once, and supervised methods are most often considered superior
to unsupervised ones. In the investigations described, representatives of both approaches
were involved, but discretisation was executed gradually on attributes, selected based on
constructed rankings, which reflected how their importance was estimated.

The problem of imbalanced decision classes [23], where some classes are represented
in the dataset to a significantly higher degree than others, can cause difficulties in classifi-
cation, as algorithms may favour the dominant class. This, in turn, translates into a low
accuracy of identification for objects belonging to minority classes and can lead to erroneous
conclusions about the effectiveness of the model. Despite high overall accuracy, the model
may struggle with accurately recognising important but less frequently occurring cases.
In the conducted experiments, to ensure unbiased observations, the considered decision
classes were balanced and had equal representation in all datasets.

Stratification, as a technique used in statistics and research, involves dividing a pop-
ulation or a dataset into smaller groups based on one or more attributes. The goal is to
ensure the representativeness of the sample for the entire population, which allows for
more accurate statistical estimations and translates into classification results. By reducing
variance within groups, stratification can lead to a better understanding of population
diversity and enables an analysis specific to individual groups. The application of this
technique requires resources for data collection and comparative analysis with methods
that overlook stratification. When stratification is a known characteristic of the input space,
it needs to be taken into account in the performance evaluation step for algorithms involved
in knowledge mining. In the performed experiments, stratification was applied and used
during the division of datasets into the train and test sets for classification purposes.

All these characteristics of the input data significantly influence any KDD process.
They affect every stage, from preprocessing to final analysis, and interpretation as well.
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Therefore, their understanding is critical for effective pattern recognition. They must be
considered in the context of any observations or conclusions drawn from the executed tests.

2.2. Data Transformations

Within the realm of supervised machine learning, numerous algorithms rely on data
in discrete forms. In this context, discretisation assumes a critical role during the stages of
input data preparation. Its primary function involves converting numerical characteristic
features into discrete or nominal ones with a finite number of intervals representing the
attribute domains [24]. Discretisation serves as a means of reducing features, aiming to
diminish the multitude of values associated with a continuous variable, by segmenting
its range into bins. It can also provide some insight into how important the attributes
are [25], which can lead to the reduction of entire domains by transforming them into a
single categorical representation.

Typically, discretisation follows a series of steps [26]: (i) arranging the continuous
values of an attribute to be discretised either in ascending or descending order; (ii) de-
termining and assessing cut-points to divide a range of continuous values or combine
neighbouring intervals; (iii) dividing or merging intervals of the attribute’s values based on
the chosen discretisation method and criteria; (iv) verifying the stopping criterion using a
measure to regulate the entire discretisation process.

Discretisation techniques can be categorised based on various criteria. Among the
most commonly recognised classifications are supervised versus unsupervised, local versus
global, static versus dynamic, and top-down versus bottom-up approaches [9]. The proper-
ties associated with any specific processing are reflected in how intervals are constructed
and the cut-points between them selected, and how many categorical values are defined
for the variables.

In contrast to supervised methods, unsupervised algorithms disregard instance labels
when transforming attribute values [11]. Local approaches focus on a subset of the dis-
cretised object space, while global methods consider the entire instance space. Dynamic
discretisation involves examining interdependencies among variables, while static methods
treat each attribute independently. In top-down processing, a large range is divided into
smaller intervals, whereas in the bottom-up approach, small original intervals are merged
into larger ones.

Discretisation algorithms from the group of supervised methods are widely considered
as resulting in obtaining the most advantageous representation of the data in a discrete
domain. Popular standard approaches from this category are Fayyad and Irani [27] and
Kononenko [28]. They rely on the class entropy [29] within the intervals under consideration
to evaluate cut-points and utilise the Minimum Description Length (MDL) principle [30,31]
as a stopping criterion. The process of determining cut-points works in a top-down
direction. It begins with a single interval that encompasses all values of the attribute to be
discretised. Partitioning continues recursively until a stopping criterion is satisfied.

For the Fayyad and Irani method, firstly, the class entropy Ent(S) is calculated:

Ent(S) = −
k

∑
i=1

P(Ci, S) log(P(Ci, S)), (1)

where S is a set of N instances with k decision classes C1, . . . , Ck, and P(Ci, S) is the
proportion of class Ci instances in S.

For the case of binary discretisation of a continuous attribute A, the optimal selection of
cut-point Topt is performed by testing and evaluating all possible candidate cut-points T. The
entropy for a cut-point T, which splits the set S into two subsets, S1 and S2, where the S1 ⊂ S
contains instances with attribute values ≤ T and S2 = S \ S1, is calculated as follows:

Ent(A, T; S) =
|S1|
|S| Ent(S1) +

|S2|
|S| Ent(S2). (2)
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For the optimal cut-point Topt, the class information entropy Ent(A, Topt; S) is minimal.
The stopping criterion referring to the MDL principle is connected with the informa-

tion gain:
Gain(A, T; S) = Ent(S)− Ent(A, T; S). (3)

The discretisation process is applied recursively until the inequality (4) is satisfied,

Gain(A, T; S) >
log2(N − 1)

N
+

∆(A, T; S)
N

, (4)

where

∆(A, T; S) = log2(3
k − 2)− [k · Ent(S)− k1 · Ent(S1)− k2 · Ent(S2)]. (5)

In the case of the Kononenko method, the discretisation process is applied recursively
until the inequality (6) is satisfied,

log
(

N
NC1 . . . NCk

)
+ log

(
N + k− 1

k− 1

)
>

∑
j

log
(

NAj

NC1 Aj . . . NCk Aj

)
+ ∑

j

(
NAj + k− 1

k− 1

)
+ log NT , (6)

where
N—the number of training instances,
NCi —the number of training instances from the class Ci,
NAx —the number of instances with the x-th value of the given attribute,
NCi Ay —the number of instances from class Ci with the y-th value of the given attribute,
NT—the number of possible cut-points.

The two most commonly used representatives of the unsupervised approaches are
equal-width binning and equal-frequency binning. For both, the number of intervals k to
be constructed is defined by a user [9]. For the two algorithms, the values of a continuous
attribute are sorted and the minimum and maximum values of the discretised feature are
identified. In the case of the equal-width method, the range of attribute values is divided
into k equal-width discrete intervals. In the case of equal-frequency binning, the range is
divided into k intervals such that each bin contains the same number of sorted values.

Both techniques are relatively straightforward but can be influenced by the number
of bins specified by the user. A drawback is that when values of a continuous attribute
are unevenly distributed, the discretisation process may result in the loss of some informa-
tion [22]. In the case of the equal-frequency method, numerous instances of a continuous
value might lead to that value being allocated into different bins. Therefore, during the
determination of cut-points, it is crucial to ensure that duplicate values are assigned to one
bin only. In the case of the equal-width algorithm, intervals can be defined for regions of
space where no datapoints exist.

In standard discretisation approaches, all attributes receive the same treatment and are
processed at the same time, typically in the data preprocessing step, before data exploration.
In the paper, a different way of proceeding is illustrated through the proposed methodology,
where discretisation is performed gradually, with transformation of one attribute at a
time. In the investigations carried out, selected representatives of both supervised and
unsupervised discretisation methods were used, and the procedure involved taking into
account the importance of the features to be discretised.

2.3. Importance of Attributes

Feature selection can be executed through two distinct methods: by choosing a subset
of attributes or by establishing a ranking of variables based on their significance [32,33].
In both cases, the main goal is to reduce the dimensionality of the data by eliminating
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irrelevant or redundant attributes. It helps in building more efficient and faster models and
facilitates the interpretation of the data. Decreasing the number of features can also reduce
the computational and memory requirements.

Creating a ranking of attributes involves evaluating and ordering the features available
in a dataset according to their significance or impact on a specific analytical objective, such
as model prediction. Various methods can be utilised for ranking construction [34]: statisti-
cal tests, entropy-based methods, principal component analysis, or machine learning algo-
rithms, e.g., random forests offer built-in feature importance assessment mechanisms [35].
Some approaches apply a scoring function whose values can be treated as assigned weights,
while others, for example, sequential search [36], just return an ordering of attributes. The
evaluation of features allows for the identification of the most significant ones and their
ordering from the most to the least important, or in reverse order.

Relief and OneR are popular ranking mechanisms, which were studied in the research
framework presented. Their implementation is available in the WEKA software [37]. They
belong to the category of algorithms that treat all available attributes as relevant and always
assign a non-zero score. Both algorithms can handle categorical as well as numerical types
of features.

The Relief algorithm falls under methods that rely on the instances present in the
training data [38]. When it is applied, each variable accumulates a score that indicates its
effectiveness in distinguishing between different classes. At the beginning of the algorithm,
all the features are assigned weights with a value of zero. In the iterative process, the
nearest instance (neighbour) of the same class (nearest hit H) and the nearest instance of a
different class (nearest miss M) are identified. Based on the calculated differences between
the feature values of the current instance and its nearest hit and nearest miss instances, the
weights of the attributes are updated. Higher scores are assigned to those attributes that
demonstrate larger differences for nearest hits and smaller differences for nearest misses.
The pseudo-code is listed as Algorithm 1.

Algorithm 1 Pseudo-code for Relief

Input: set of learning instances X,
set A of all N attributes,
set of classes Cl,
probabilities of classes P(Cl),
number of iterations m,
number k of considered nearest instances from each class;

Output: vector of weights w for all attributes;
begin
for i = 1 to N do

w(i) = 0
end for
for i = 1 to m do

choose randomly an instance x ∈ X
find k nearest hits Hj
for each class Cl ̸= class(x) do

find k nearest misses Mj(Cl)
end for
for l = 1 to N do

w(l) = w(l)−
k
∑

j=1

diff (l,x,Hj)

m×k + ∑
Cl ̸=class(x)

P(Cl)
1−P(class(x))

k
∑

j=1
diff (l,x,Mj(Cl))

m×k

end for
end for
end {algorithm}
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The difference function for categorical attributes returns one if the values are distinct,
and zero if they are the same. For numerical attributes, it provides the normalised difference.
After iterating through the dataset, the weights assigned to the features represent their
importance. Attributes with higher weights are considered more relevant for classification
as they contribute more effectively to discrimination between classes [39].

OneR (One Rule) is a simple and effective algorithm used to evaluate the importance
of features in a dataset during classification tasks [40]. It examines attributes individually
and ranks them based on their ability to discriminate between different classes in the
dataset. For each unique value of the chosen feature, the algorithm generates one rule,
collectively forming the basis of the classification model. The feature selected by OneR is
the one that results in the lowest error rate when predicting the class labels. This algorithm
is a straightforward approach to feature ranking; it can provide valuable insight regarding
which features are the most informative for classification [41]. However, it may not always
capture complex relationships between features, and its effectiveness can vary depending
on the dataset and the nature of the problem. Algorithm 2 presents the pseudo-code of the
OneR algorithm.

Algorithm 2 Pseudo-code for OneR classifier

Input: set A of all attributes,
set of learning instances X;

Output: 1-rule 1-rB;
begin
CandidateRules← ∅
for each attribute a ∈ A do

for each value va of attribute a do
count how often each class appears
find the most frequent class ClF
construct a rule IF a = va THEN ClF

end for
calculate classification accuracy for all rules
choose the best rule rB
CandidateRules← rB

end for
choose as 1-rB the best one from CandidateRules
end {algorithm}

2.4. Exploration of Input Space

Classification stands as a fundamental activity within the realms of knowledge discov-
ery and pattern recognition. It can be viewed as a function that assigns a class label to the
instances characterised by a set of attributes. In this work, three state-of-the-art classifiers
were employed, including Naive Bayes, J48 and k-Nearest Neighbours.

The Naive Bayes (NB) classifier is a probabilistic machine learning algorithm used for
classification tasks. It is based on Bayes’ theorem, which describes the probability of an
event, based on prior knowledge of conditions that might be related to the event [42]. The
“naive” part of its name comes from the assumption of independence among features. NB
assumes that the presence of a particular feature in a class is unrelated to the presence of
any other feature. This simplifies the computation and makes it more efficient, although it is
often an oversimplification of real-world scenarios. Despite their simplicity and the “naive”
assumption, Naive Bayes classifiers often perform well, especially with high-dimensional
data, and they are computationally efficient, making them a popular choice for many
classification problems [43].

J48 is a decision tree algorithm used in the field of machine learning and data mining.
It is an implementation of the C4.5 algorithm, created by R. Quinlan [44]. J48 is often used
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in data classification and prediction. The name “J48” refers to the file format that creates
the decision tree. The algorithm constructs a data model in the form of a decision tree. In
the structure of this tree, every internal node represents an attribute, and each terminal
node, referred to as a leaf, corresponds to a class label. By traversing the tree from the root
to the leaves, a decision can be made for a given object under consideration. This approach
allows understanding the rationale behind a specific decision and offers a straightforward
and intuitive way to represent complex decision-making processes. Thus, decision trees
are not only recognised as effective classifiers but also serve as a widely adopted form of
knowledge representation [45].

The k-Nearest Neighbours (k-NN) classifier is a simple and intuitive machine learn-
ing algorithm that operates on continuous as well as discrete data [46]. The parameter
k represents the number of neighbours to consider. They are identified on the basis of a
distance metric that depends on the nature of the data—very often the Euclidean distance
is used. In the framework of a classification task, the k-NN algorithm classifies the given
new object by finding the majority class among its k nearest neighbours in the feature space.
In regression tasks, instead of class labels, the algorithm predicts a continuous value by
averaging the values of the k nearest neighbours. k-NN is a non-parametric algorithm
which is categorised as a lazy learning method—it does not make any assumptions about
the underlying data distribution and it does not learn a model during the training phase.
Instead, it stores all the training data and makes predictions only when required during
the testing phase. The latter property means that in the case of a large data size, the com-
putational cost of determining the distance between objects increases, which significantly
affects the performance of the algorithm.

3. Framework for Discretisation Controlled by Attribute Importance

The current investigation sought to provide as unbiased observations on the experi-
ments as possible. Therefore, the algorithm for selective discretisation of the characteristic
features, controlled and directed by their rankings, required certain limitations, assump-
tions, and decisions on the processing paths to take. This section provides comments on all
the relevant considerations and explanations for all the steps.

3.1. Input Data and Attributes

All attributes are expected to be of the same fundamental nature, with the continuous
domains and comparable ranges of their values. Only then are their representations before
and after discretisation transformations similar. Variables should be selected based only on
domain knowledge, without applying algorithms dedicated to feature selection, otherwise
such double processing would make distinguishing their individual impacts impossible.
To avoid the influence of imbalance or the existence of multiple classes on recognition, the
classification task to be solved is binary, with balanced classes, and where both classes are
considered to be of the same importance.

3.2. Rankings

Some ranking mechanisms evaluate and then select a subset of attributes, while to the
remaining ones a zero rank is assigned. In effect, this means rejecting such non-ranking
variables as entirely irrelevant. This could result from applying the notion of entropy
in the evaluation of features, which could lead to finding that they do not support class
recognition. The methods to be used in the proposed framework must belong to the other
category of weighting approaches, which treat all the variables as relevant to some non-
zero degree, by always assigning a rank different from zero. It is not necessary for any
specific score to be given to the features, as the focus is only on the ordering obtained. The
evaluation of importance must take place in the continuous domain. A ranking is assumed
to involve a standard ordering of attributes, with the most important features at the top,
and the least important variables placed at the bottom.
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3.3. Discretisation Approaches

A static discretisation process is required, where transformations are executed inde-
pendently on a learner used. All attributes should be separately translated into a discrete
domain, and the algorithm should be univariate, that is, not taking into account any interde-
pendencies among the variables. For transformations, supervised as well as unsupervised
methods can be used. However, typically, supervised discretisation reflects to some extent
how variables support recognition, which can be perceived as their importance, making it
similar to ranking procedures. Furthermore, in a top-down algorithm, which starts with
constructing a single interval to represent the entire range of continuous values translated
to a discrete domain, if all the candidate cut-points are evaluated and rejected, then this
single bin remains a sole discrete value for an attribute. In such a case, the attribute is
practically removed from considerations in a discrete domain, as nothing can be learnt
from its constant value in all samples.

3.4. Inducers

To observe the impact of the discretisation of attributes on the performance of a clas-
sifier, the inducer is required to be capable of efficient operation on both continuous and
nominal values of variables, without any inherent transformations of features correspond-
ing to discretisation. Since learners are sensitive to forms of attributes in varying degrees,
more varied mathematical backgrounds and diverse modes of operation of employed
classification systems provide a wider scope of observations.

3.5. Starting and Stopping Point

The processing starts with exploration of the datasets in the continuous domain. The
performance is evaluated by labelling previously unknown samples in the test sets with
reference to knowledge discovered in the train sets, expressed through patterns detected
in the real-valued variables. The performance observed in this step constitutes one of the
reference points for comparisons in further processing.

The stopping point for the procedure is reached once the set of variables is exhausted,
when all are processed, and the entire datasets become discrete. The performance of
inducers for the discretised data is the second reference point. Transformations can also be
stopped sooner, when some noticeable worsening or increase in performance is observed.
However, it can result in missing global maxima and too narrow a focus on some local
trends in monotonicity.

3.6. Intermediate Steps and Directions of Processing

The pseudo-code for the ranking-driven discretisation procedure is shown in
Algorithm 3. At each processing step, a single attribute is discretised. The variables
chosen for the transformation are indicated by their position in a ranking. The ranking
can be followed either in descending order, starting with the top positions taken by the
most important features and then of gradually decreasing relevance, or in ascending order,
beginning with the least important variables, placed at the bottom of the ranking, and then
climbing up the ranks. Therefore, putting aside the starting point (all attributes continuous)
and the stopping point (all variables discretised), for the rest of the processing, the datasets
are partially continuous and partially discrete, and the number of middle steps to take
equals the number of available features minus one.
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Algorithm 3 Pseudo-code for ranking driven discretisation

Input: ranking of attributes RankingA,
dataset in the continuous domain Data-R,
direction Direction to pursue ranking RankingA,
number of attributes N;

begin
TMP-Data← Data-R
mine knowledge from TMP-Data
evaluate performance for TMP-Data
if Direction = Descending then k = 1 else k = N
while (k > 0) AND (k < N + 1) do

select attribute from the ranking attr= RankingA[k]
discretise attr in TMP-Data
mine knowledge from TMP-Data
evaluate performance for TMP-Data
if Direction = Descending then k = k + 1 else k = k− 1

end while
end {algorithm}

4. Experiments

The experiments that were carried out began with preparation of the input datasets,
with all attributes in the continuous domain. For the available features, the rankings were
calculated next. Then, the procedure of selective discretisation controlled by a ranking
was applied to the data. All data variants, continuous, partially discrete, and completely
discrete, were explored by the selected classifiers. Performance was studied in the context
of data form, ranking, and inducer.

The research included L= 2 rankings, examined in both ascending and descending
order. They were applied to N= 12 attributes, and exploited in the gradual discretisation
procedure with M = 20 discretisation approaches tested (two supervised discretisation
methods, and two unsupervised discretisation methods with nine variants each). Therefore,
per dataset, 1 + M(2L(N − 1) + 1) versions of the data (making a total of 901) were ex-
plored by three selected classifiers, and their performance was evaluated with the test sets,
discretised accordingly. The parameters of these extensive experiments are commented on
in this section, while the results obtained are shown and discussed in the next one.

4.1. Data Preparation

To minimise the number of factors that could influence and bias the results of the
experiments, a binary authorship attribution was selected as a classification task under
study. The problem of attribution of authorship belongs to the stylometric domain [47]. It
can be treated as a classification task by training an inducer on samples of known authorship
to detect the linguistic characteristics of writing styles. It leads to the construction of stylistic
profiles for authors [48]. Then, such profiles are matched to text samples of questionable
origin to either confirm authorship, or to deny it [49].

For the stylometric analysis, two pairs of well-known writers were taken: the literary
works of Edith Wharton and Mary Johnston formed the basis for the female writer dataset
(F-writers), and the novels by Henry James and Thomas Hardy were used for the con-
struction of the male writer dataset (M-writers). To increase the numbers of available text
samples, these long texts were partitioned into much smaller parts, keeping comparable
lengths [50]. For all these text chunks, the values were calculated for the arbitrarily selected
group of lexical descriptors [51] in the form of frequency of occurrence [52] for twelve
common two-letter function words as follows: as, at, by, if, in, no, of, on, or, so, to, up.
Since these attributes are regular words, when they are referred to in descriptions of the
experiments, formatting in italics is employed (e.g., the frequency of occurrence of of ).
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Due to the division of the novels into smaller parts, the samples obtained were grouped
in the input space by these longer works, which led to a stratified space. In such a situation,
to arrive at reliable observations, the original works need to be separated into sets to be
used for training and testing. Samples based on one and the same novel are more similar,
and using them for both stages would result in leaking information and overoptimistic
predictions. The conditions for such unreliable evaluation would be given by the popular
standard cross-validation technique employed in estimations of performance [19].

Cross-validation relies on multiple execution of train and test procedures, over which
an average is calculated, and samples for all steps are selected randomly. In the stratified
space, where groupings of points form a specific and known pattern, a completely random
selection would increase the probability of biased recognition. To avoid this problem,
non-standard cross-validation can be used, not exchanging single samples but rather their
groups between the training and test sets. However, such processing results in very high
additional computing costs. As a compromise, a different approach can be employed, with
a single train and multiple test sets, all constructed based on separate long texts. Then, with
respect to performance, the predictions averaged over all test sets are reported. The latter
approach was implemented in the research. Apart from the train set, each dataset included
two test sets. All the original sets were continuous with balanced data.

4.2. Rankings Employed

In the investigations, two ranking mechanisms were applied to the available features
with the continuous domains. Relief and OneR are popular algorithms, implemented in the
WEKA workbench [37]. Both rankings assign a non-zero rank to all the available attributes,
treating all of them as relevant to some extent. For the two rankings, the resulting order of
attributes for the male and female writer datasets is shown in Table 1.

Table 1. Rankings of attributes.

F-Writers M-Writers
Rank

Relief OneR Relief OneR

1 on to by by
2 to on if or
3 of of so in
4 as as or if
5 by by in at
6 if if as so
7 or in at as
8 up up on on
9 at so no no

10 in or of to
11 so at up of
12 no no to up

Although the studied datasets share stylometric features, their role for each dataset
is considered locally; therefore, they were mostly placed differently in the rankings. For
the F-writers the orderings obtained by Relief and OneR were relatively close, in particular
in the upper half, for the more important attributes. For the M-writers, there were more
differences noted. Despite the similarities, the two rankings were not identical, and both
were exploited in the next stage of the experiments as indicators of attributes to discretise
one-by-one in a sequential process.

When a ranking was processed upward (in an ascending direction), it meant starting
at the bottom of the ranking, with the least important variables and transforming them
before moving on to the more relevant variables. Going down the ranking (in a descending
direction) was understood as translating in the first discretisation steps the most important
features, with the highest ranks, placed at the top of the ranking, and only then proceeding
to less relevant variables.
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4.3. Discretisation Algorithms

The discretisation methods used were from both supervised and unsupervised cate-
gories [24]. Unsupervised equal-width binning (duw) was employed, varying the number
of bins to be constructed from two to ten, which returned nine variants of the datasets
(duw02 ÷ duw10). In the same way, nine discrete variants of the data were obtained
by applying unsupervised equal-frequency binning (duf), with the number of intervals
ranging from two to ten (duf02 ÷ duf10).

The supervised discretisation methods (ds), that is, the Fayyad and Irani (dsF) and
Kononenko (dsK) approaches, returned single variants of the data. These two algorithms
rely on the MDL principle and calculation of entropy when the construction of intervals
is performed. It led to some variables for which one interval was found to represent the
entire range of values in a discrete domain. These attributes were effectively excluded
from the data mining that followed discretisation. For F-writers, for both the supervised
discretisation algorithms, there were six such features (if, in, no, or, so, up). For M-writers
and dsK, six variables also had only single bins (as, no, on, so, to, up). For dsF, this set was
expanded to seven elements (by adding of ).

When a dataset consists of some constituent sets with the same input features, several
different approaches to their discretisation can be attempted [53], all with some advantages
and disadvantages, in particular, when irregularities in the data are observed [17]. In the
experiments, all the sets were discretised independently, based on the characteristics of
each individual set.

4.4. Performance Evaluation for Classifiers

In the investigations, three types of classification systems were used, Naive Bayes, J48
and k-NN. The differences in their operation mode and mathematical foundations enabled
widening the scope for observations. As the goal of the research was to discover the relations
between the attributes’ importance and their form, either continuous or discrete, and how
they reflect on the performance of inducers, some measure for the estimation of quality
was needed. Classification accuracy was chosen as the suitable indicator, showing how
good the inducers were overall at attributing the considered authors to the text samples.

The samples to be labelled were entirely unknown to the classifiers and came from
long texts that were not used for training. This way of proceeding prevented possible
bias in recognition. The samples were grouped into two test sets; predictions obtained for
them were averaged, and then, finally, reported as the percentage of texts for which correct
authors were found in relation to the total number of samples.

For all inducers, their powers were studied under three conditions. The starting point
was in a continuous domain, with all variables real valued. The end point was in a discrete
domain, with all features discretised, for all variants of discrete datasets. And, in addition, a
space was studied where some features were still continuous while others were discretised.

5. Results and Their Discussion

The results of the experiments can be studied from several perspectives. The per-
formance of classifiers in the original input space needs to be contrasted with the results
obtained for all variants of discretised space, with partial or complete transformations of
the attributes. The first part of this section includes comments regarding reference points;
the second part shows the performance trends observed inside the procedure of gradual
discretisation. The third part is dedicated to an examination of the ranges of classification
accuracy obtained, using selected calculated statistics.

5.1. Reference Points

To find out if the overall change in representation for attributes from continuous to
discrete was advantageous to recognition by a classifier, the performance at the starting
point, with all variables real-valued, needs to be compared with the performance at the
finish line, with all attributes discretised, which then both constitute reference points. For
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all three inducers used in the described research, the classification accuracy, evaluated by
labelling samples from the test sets, is shown in Table 2. Each column of the table shows
the performance of a specific inducer for a dataset, with each row listing the result obtained
for a certain data variant, either continuous or discrete. The highest accuracy discovered is
marked in bold.

Table 2. Performance [%] of classifiers for all attributes in the continuous domain and all discrete domains.

F-Writers M-Writers F-Writers M-Writers
Domain

NB J48 k-NN NB J48 k-NN
Domain

NB J48 k-NN NB J48 k-NN

Cont. 93.33 89.79 85.56 84.03 75.63 77.29

dsF 50.00 87.78 62.22 69.44 80.76 83.54 dsK 62.22 93.40 62.22 68.89 80.76 82.43

duf02 91.18 91.18 83.89 75.35 73.82 68.47 duw02 87.01 85.35 88.06 73.82 72.71 70.14
duf03 92.85 85.63 86.94 75.69 79.72 71.25 duw03 89.38 83.68 85.83 78.68 77.29 72.36
duf04 93.40 86.46 88.61 81.60 69.31 75.21 duw04 91.67 86.94 82.78 80.63 79.24 71.32
duf05 92.85 86.18 85.07 81.11 78.96 73.54 duw05 90.56 80.42 84.10 79.38 75.76 69.51
duf06 94.10 88.19 89.17 80.35 74.79 73.47 duw06 92.22 85.69 85.21 82.22 75.21 77.22
duf07 95.76 81.74 85.63 80.42 78.75 77.85 duw07 91.11 89.65 86.46 81.04 71.94 72.29
duf08 92.29 88.19 88.47 80.49 77.92 75.28 duw08 91.67 90.97 85.76 77.64 75.42 73.61
duf09 94.58 88.26 86.81 80.42 79.79 77.57 duw09 90.56 90.35 88.68 81.53 76.46 74.58
duf10 93.47 87.15 86.88 79.86 80.90 75.35 duw10 91.67 87.01 86.32 80.00 76.25 73.61

From these results, it can be observed that for all three inducers and both datasets,
translation from the continuous into a discrete domain was not always advantageous.
However, only for the Naive Bayes classifier, for M-writers, the maximum was obtained
in the original input space before transformations. For all variants of the discretisation
procedures, when translation was executed for all features, predictions in this case were
brought down. On the other hand, for the NB and the female writer dataset, maximum
precision was found for unsupervised discretisation with the equal-frequency binning
approach, with seven bins constructed for all variables.

For the other two classifiers, J48 and k-NN, the maximum classification accuracy was
detected in discrete spaces. For the J48 and the F-writers, it was for supervised discretisation
by the Kononenko algorithm, and for M-writers, again for duf binning with 10 intervals
defined. On the other hand, for k-NN, the maximum was found for M-writers for the
Fayyad and Irani discretisation processing, and for F-writers, once again for unsupervised
discretisation by equal-frequency binning, for six bins.

Since supervised discretisation is popularly considered superior to unsupervised trans-
formations, it is worth observing that this opinion was not confirmed in these experiments.
There were cases where supervised processing led to better results, but also conditions oc-
curred when unsupervised algorithms returned variants of the data that caused improved
predictions. However, a maximum was never found for processing with unsupervised
equal-width binning, regardless of the number of intervals defined.

5.2. Performance Trends

The discretisation process referring to the importance of attributes shown by a ranking
was studied for the three inducers in the context of a particular discretisation method, rank-
ing, and direction of transformations. The results obtained are displayed in Figures 1–12.
Each figure shows the performance reported by a classifier for one ranking, for both as-
cending (left half of a figure) and descending (right part of a figure) directions, for all four
types of discretisation algorithms, for either the female or male writer dataset.

In the charts showing the performance of classifiers, for the unsupervised discretisa-
tion methods, the categories on the x-axis show the number of bins constructed for the
transformed variables, and for supervised discretisation, the method is given. The data
series specify the number of attributes after discretisation, where 0 means that all variables
were continuous (the original input space before any transformations), and 12 denotes the
situation where the entire set of available features was translated (the final form, with all
discrete attributes). The charts on the left display processing in an ascending direction
of a ranking; that is, for discretisation, the least important variable was chosen first, then
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another more relevant, and so on, until the top of a ranking was reached. On the right are
included the charts for transformations going in descending order, starting with the most
important features, and then those less and less relevant.

For the Naive Bayes classifier and the Relief ranking (see the charts in Figure 1),
for the female writer dataset for both ascending and descending order, discretisation
by unsupervised equal-frequency binning was noticeably advantageous; yet, in the vast
majority of cases, when only some subset of the attributes was transformed instead of
all of them. Only when proceeding upward and constructing seven or nine bins, or
downward with two or seven intervals, did the maximum performance occur for all 12
discrete variables. For equal-width binning, the ascending order still resulted in benefits
from partial discretisation, but less so, as for eight or ten bins, for discrete data, the
predictions were only lower than the reference point in the continuous domain. For
descending order, this reference point was higher than any classification accuracy obtained
for partially or completely discretised sets for five out of nine data variants. Only when
5, 8, 9, or 10 intervals were constructed was there some small improvement, when only
either two or three of the least important variables were transformed. When both the
supervised discretisation methods were applied, for processing up the Relief ranking,
enhanced predictions were detected for just three translated variables. Then, a very steep
decrease followed. When the order of features was descending, only degradation of the
classifier power was observed.

Figure 1. Performance [%] for the Naive Bayes classifier observed in the discretisation of the female
writer dataset while following the Relief ranking. For unsupervised equal-frequency (duf) and
equal-width (duw) binning, the categories reflect the number of constructed bins, and for supervised
approaches, the method is given. The series specify the number of discretised attributes.



Entropy 2024, 26, 404 15 of 32

Recognition of the male writers with the NB classifier (see Figure 2) for variables
transformed along the Relief ranking led to the conclusion that for ascending order, for all
four discretisation methods, there was some improvement when a subset of variables was
processed. For the unsupervised methods, only for duf03 and duw08 was the reference
point in the continuous domain better than the results observed in partial discretisation.
The descending order resulted in rather disappointing predictions for both supervised
approaches, and for most duw versions of the data. Only for duw06 and duw07 could
some benefits of discretisation be found. Equal-frequency binning returned slightly more
advantageous cases, as for six out of a total of nine variants, the classifier working in the
continuous domain was outperformed by the NB operating on partially discretised data.

Figure 2. Performance [%] for the Naive Bayes classifier observed in the discretisation of the male
writer dataset while following the Relief ranking. For unsupervised equal-frequency (duf) and
equal-width (duw) binning, the categories reflect the number of constructed bins, and for supervised
approaches, the method is given. The series specify the number of discretised attributes.

The operation of the Naive Bayes classifier on the F-writer dataset discretised while
following the OneR ranking is shown in the charts included in Figure 3. Discretisation
using supervised methods for both ascending and descending orders of transformations
resulted only in some gradually decreased predictions, dropping to very low levels when
all attributes were translated. For unsupervised equal-frequency binning, for the ascending
direction, when either 6, 7 or 9 bins were formed, the highest performance was reached
only in the last processing step—when all variables were discrete. For the descending order,
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both reference points were the best for some variant of the data—for two bins constructed,
discretisation brought only a decrease in predictions, and for seven intervals defined, when
all features were transformed, the accuracy was the highest. For all the remaining cases,
the maximum was found for partial discretisation. Unsupervised equal-width binning
returned such data variants for which the results were poorer, but still some improvement
was also noted. For upward direction and eight or ten bins, and for downward direction
and three or six bins, the classifier working in the continuous domain was not outperformed
in any other case, only degradation in power was observed. However, for other numbers of
intervals constructed for variables, in both directions of processing along the OneR ranking,
increased predictions were reported.

Figure 3. Performance [%] for the Naive Bayes classifier observed in the discretisation of the female
writer dataset while following the OneR ranking. For unsupervised equal-frequency (duf) and
equal-width (duw) binning, the categories reflect the number of constructed bins, and for supervised
approaches, the method is given. The series specify the number of discretised attributes.

For the male writer dataset shown in Figure 4, in transformations following the OneR
ranking, there were more instances where the NB inducer worked best in the continuous
domain, in particular, for processing downward. From all the discretisation methods and
their variants, only for equal-width binning with four or seven bins, or equal-frequency
binning with 4, 5, 7, 9 or 10 intervals, was some enhanced accuracy observed, when only the
first few most important attributes were discretised. On the other hand, for transformations
starting with the least relevant variables, in all cases except one (for duw06), partial
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discretisation was advantageous to the classifier performance, for both supervised and
unsupervised methods.

Figure 4. Performance [%] for the Naive Bayes classifier observed in the discretisation of the male
writer dataset while following the OneR ranking. For unsupervised equal-frequency (duf) and
equal-width (duw) binning, the categories reflect the number of constructed bins, and for supervised
approaches, the method is given. The series specify the number of discretised attributes.

Figure 5 displays charts illustrating the performance for the J48 classifier when discreti-
sation was executed while following the Relief ranking for the F-writer dataset. For some
conditions, the transformation resulted only in either the same or worsened predictions.
This happened for unsupervised equal-width binning with six bins for ascending order,
and for descending, when for duf either 3, 5 or 9 intervals were constructed, and for duw
with two or seven bins. The complete path of discretisation was beneficial in the case of
duw08 while processing upward and, for dsK, for both directions. For other transformation
conditions, translation of a subset of attributes resulted in the greatest advantage.
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Figure 5. Performance [%] for the J48 classifier observed in the discretisation of the female writer
dataset while following the Relief ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

For the male writer dataset (see Figure 6), only in one instance were the predictions
of the J48 inducer for the continuous variables the best, when unsupervised equal-width
binning with two bins was applied starting with the highest ranking features. On the other
end, the maximum accuracy for all discretised variables was detected for both supervised
discretisation approaches and both directions of transformations, and also for duf03, duf07,
duf09, and duf10 for going up the Relief ranking, and for going down for duf05, duf09,
and for duw03. This leaves twelve other circumstances for ascending and fourteen for
descending the ranking with some form of discretisation where partial transformation led
to the greatest improvement.
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Figure 6. Performance [%] for the J48 classifier observed in the discretisation of the male writer
dataset while following the Relief ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

For all discretisation variants driven by the OneR ranking, the performance trends
of the J48 classifier are shown in Figure 7 for the cases where the female writers were
recognised. Here, only for processing downward and unsupervised equal frequency and
equal width with three intervals constructed, did discretisation cause worsened accuracy.
For this dataset, the maximum performance was rarely observed for the translation of
all attributes into a discrete domain, for the supervised Kononenko approach for both
directions, and for duw08 for going upward. With the other transformation parameters,
enhanced predictions were reported, yet typically for higher numbers of processed features
when starting with the least ranked variables, or smaller numbers of attributes when a
downward direction was considered.
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Figure 7. Performance [%] for the J48 classifier observed in the discretisation of the female writer
dataset while following the OneR ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

When the samples were attributed to the male authors, which is shown in Figure 8,
only unsupervised equal-width binning with two bins for descending OneR resulted
in a decreased power of the J48 inducer. Discretisation of all variables was the most
advantageous case when the equal-frequency binning approach with 2, 9 or 10 intervals was
applied to the attributes processed up the ranking, and for five or ten bins when proceeding
downward. For the Fayyad and Irani and the Kononenko supervised algorithms, in
ascending and descending order, the maximum performance was reported in the last
few steps or just the last step of the procedure. The remaining conditions, from all 20
discretisation paths, 13 for going up the ranking and 15 for going down, led to improved
predictions when some groups of variables, but not all of them, were transformed.
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Figure 8. Performance [%] for the J48 classifier observed in the discretisation of the male writer
dataset while following the OneR ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

How the k-NN classifier fared in the gradual discretisation procedure based on the
Relief ranking for the female writers can be seen in Figure 9. Changing the domain
from continuous to discrete for a subset or all variables was always beneficial, and the
performance was improved at some point. An entirely discrete domain worked best with
processing by the equal-frequency approach with 3, 4 or 6 bins while proceeding down
the ranking, and for the equal-width algorithm with two intervals constructed for going
down. For other numbers of intervals defined, only for subsets of variables in unsupervised
algorithms for both directions of ordering were increased numbers of samples correctly
attributed to authors. For supervised discretisation, the highest accuracy was detected
after transformation of the three least relevant attributes, and for translating only the most
important variable.
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Figure 9. Performance [%] for the k-NN classifier observed in the discretisation of the female writer
dataset while following the Relief ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

On the other hand, for the male writers, the trends in performance visible in Figure 10
were noticeably different. Discretisation brought many cases of worsened predictions.
When starting the transformations with the least relevant attributes, this occurred for the
duf algorithm applied with 2, 3, 6 or 8 bins, and for the duw approach for almost all numbers
of intervals formed, with the exception of two and seven bins. For discretisation of the
higher ranking variables first, the reference point in the continuous domain was also better
than the results obtained for duf02, duf04, duf05, duf08, and duw02. The second reference
point, with all attributes transformed, was the maximum for duf07 while processing up the
Relief ranking, and for both supervised discretisation methods for proceeding down. This
implies that for ascending direction in 8, and for descending order in 12, out of a total of 20
discretisation paths, the maximum was detected for partial transformations.
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Figure 10. Performance [%] for the k-NN classifier observed in the discretisation of the male writer
dataset while following the Relief ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

Figure 11 includes charts that allow for analysis of performance for the kNN classifier,
when discretisation of the female writer dataset was based on the OneR ranking. For
this ranking, the benefits of partial or complete discretisation can also be observed, as the
obtained results were always better than in the continuous domain. Complete discretisation
was the most advantageous in just a few instances; for the duf procedure with 3, 4, 6,
and 8 bins for transformations starting with the least relevant features, and for the duw
algorithm with two intervals when the highest ranking variables were translated first. Both
supervised methods led to the maximum detected after only either the least or the most
important attribute was discretised. For other discretisation conditions, the number of
transformed features that led to the maximum predictions ranged from 1 to 7 for following
the ascending ordering of variables, and from 1 to 10 for the reverse.
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Figure 11. Performance [%] for the k-NN classifier observed in the discretisation of the female writer
dataset while following the OneR ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

In contrast, for the male writers, discretisation conditioned on the OneR ranking
brought (see Figure 12) similar observations to the Relief ranking referred to before, that is,
rare cases of improvement over the performance in the continuous domain. For going up
the ranking, partial discretisation gave the best results only for both supervised methods,
and for duf02, duf04, and duf09. For proceeding down, the same happened for duf07,
duf09, and duf10, as well as for almost all the duw variants, when four or more intervals
were constructed. For the descending order, the supervised discretisation of all variables
was most beneficial to author recognition.

Overall, these substantial experiments show a relatively high number of cases when
transformation of domains from continuous to discrete, not for all but some selected
variables, resulted in improved accuracy of the employed classifiers. This happened for
all three inducers used in the research, for all discretisation approaches, both processing
directions, and for both datasets. Finding which conditions were most advantageous
requires further study, but the obtained results validate the research framework that was
proposed and are sufficiently promising to provide motivation for deeper investigation.
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Figure 12. Performance [%] for the k-NN classifier observed in the discretisation of the male writer
dataset while following the OneR ranking. For unsupervised equal-frequency (duf) and equal-width
(duw) binning, the categories reflect the number of constructed bins, and for supervised approaches,
the method is given. The series specify the number of discretised attributes.

5.3. Summary of Results

To evaluate the usefulness of the selective discretisation procedure, some standard
statistics were calculated, as shown in Tables 3–5. They included the average classification
accuracy and standard deviation (per sample), as well as the minimum and maximum
performance observed. These elements were established based on the procedure with the
starting point of a single variable out of N available attributes being discretised, and the
last stage taken into consideration was when N − 1 features became discrete. From the
calculations, the performance in the original continuous domain, and the performance in
the final discretisation step where all variables were in a discrete domain were excluded.
For each discretisation method and each ranking, both directions, ascending (starting with
less important variables) and descending (starting at the top of a ranking with the most
relevant features), were considered for each classifier. For the unsupervised methods,
the results include detailed values obtained for each variant of a method (depending on
the number of bins constructed for the variables), the overall averages calculated for the
approach, and the overall extrema as well.

From these statistics, the highest values were preferred for all but one. For the standard
deviation, the smallest values show how stable the process was, that the obtained predic-
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tions were close to each other. For classification accuracy, whether for averages calculated
or extrema found, a higher percentage of correctly attributed samples was considered
advantageous, as always in classification tasks. These preferred minimal and maximal
values were marked in the tables in the context of each ranking and direction of processing
for a dataset and a classifier.

In all three tables, it was observed that the standard deviation had values over a
relatively wide range. There were always some cases of double digits in the integer parts.
They were calculated for the supervised discretisation algorithms applied to the attributes,
either one or both, and this happened for both ranking directions and both rankings. For the
unsupervised discretisation approaches, the results were smaller, in single digits, and quite
often just fractional. The minimum value was always found for one of the unsupervised
transformations of the variables.

For the Naive Bayes classifier, the statistics presented in Table 3 show that, for the
most part, for both rankings studied, for the female writer dataset, discretisation brought
improved performance. For the male writer dataset, there were many cases of degra-
dation when just the average was studied. For unsupervised equal-frequency binning
and F-writers, in the vast majority of cases, the average performance was better than the
one reported in the input continuous domain. However, for M-writers, the predictions
decreased, although the change was mostly small. The best results were rarely observed
for unsupervised equal-width binning, and, surprisingly, also for supervised discretisation
methods. The maximum level of predictions for the female writer dataset was the same for
both rankings, and for ascending order, the same as the highest performance detected for
all variables transformed at once. For the male writer dataset, the maximum classification
accuracy was always higher than the performance in the continuous domain and than for
all discretised variables.

Comparison of the two orderings of variables in this case leads to the conclusion that
the Relief ranking processed in the ascending direction for the female writers brought
better results than the OneR, while for the male writers the opposite was true. Comparison
of the directions indicates that going upward was more advantageous than following a
ranking downward.

The J48 inducer (see Table 4) was generally not as good at prediction as Naive Bayes.
It benefited more from discretisation. For the ascending direction of the Relief and OneR
rankings, the average performance was almost always better than in the continuous do-
main for both the female and male writer datasets. For the descending direction of both
rankings, these values showed some decrease with respect to the reference point. The
maximum predictions found for the male writers were higher than the best result obtained
for all discretised variables. For the female writers, the same situation occurred for the
Relief ranking processed in both directions, and for ascending order, only Relief led to
higher precision.

Of the three classifiers studied, k-NN (see Table 5) returned the worst predictions
for the female writers, lower than the other two inducers. When only some parts of
attributes were discretised, for the ascending direction of processing a ranking, the average
performance was lower than when all variables were transformed. For the descending
direction, there were some cases of improvement. However, the maximum classification
accuracy detected was always higher, both for the rankings and in both directions. For
the male writers, the average performance was close, yet below the reference point in the
continuous domain, and noticeably below the predictions for all discrete attributes. The
maximum found was improved only when processing a ranking up.
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Table 3. Statistics of performance [%]: average classification accuracy, standard deviation, and
minimum and maximum classification accuracy of the NB classifiers, for the procedure of the gradual
discretisation controlled by rankings, starting with 1 out of N discretised attributes, and ending with
N − 1 discretised variables.

F-Writers M-Writers

Ascending Descending Ascending Descending

Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max

Domain Relief ranking

dsF 80.38 ± 12.94 56.18 95.14 60.18 ± 14.52 50.00 88.61 83.74 ± 1.79 81.53 87.08 76.60 ± 4.13 72.29 82.85

dsK 83.67 ± 07.50 74.17 95.14 78.57 ± 11.70 61.11 90.56 83.15 ± 1.29 81.32 84.79 75.96 ± 4.71 70.83 82.85

duf 94.07 ± 00.19 92.71 95.76 93.00 ± 00.49 89.38 95.21 82.73 ± 1.80 77.43 85.21 80.95 ± 1.84 73.13 85.76

duf02 94.58 ± 00.58 93.89 95.76 90.16 ± 00.60 89.38 91.11 81.98 ± 2.33 77.43 84.51 77.14 ± 3.64 73.13 83.54
duf03 94.35 ± 00.50 93.89 95.21 93.20 ± 00.98 91.67 94.58 82.64 ± 1.49 79.93 84.03 79.07 ± 3.28 74.03 83.40
duf04 94.34 ± 00.63 93.89 95.76 93.16 ± 00.81 92.29 94.51 83.13 ± 2.12 79.93 85.21 81.76 ± 1.47 79.79 84.65
duf05 93.67 ± 00.40 92.71 93.89 92.34 ± 01.00 90.49 93.96 82.68 ± 1.93 79.24 84.65 82.96 ± 1.69 80.56 85.21
duf06 93.95 ± 00.32 93.33 94.51 93.54 ± 00.47 92.85 94.51 82.80 ± 2.00 79.38 85.21 80.90 ± 1.22 79.79 83.40
duf07 94.12 ± 00.49 93.33 95.14 94.53 ± 00.44 93.33 95.21 82.69 ± 1.85 79.93 85.14 81.52 ± 1.61 79.24 84.65
duf08 93.73 ± 00.38 92.71 93.89 93.11 ± 00.94 91.74 95.07 82.60 ± 1.93 79.31 85.21 81.87 ± 1.69 80.35 84.58
duf09 93.90 ± 00.27 93.33 94.51 94.00 ± 00.57 93.33 95.14 82.73 ± 1.92 79.86 85.21 82.14 ± 1.43 80.42 84.58
duf10 94.00 ± 00.38 93.89 95.14 93.01 ± 00.82 92.29 94.51 83.33 ± 1.44 80.49 85.21 81.18 ± 1.88 79.24 85.76

duw 93.15 ± 00.61 90.69 95.76 91.12 ± 00.97 85.21 93.89 83.30 ± 1.11 79.86 86.46 81.01 ± 0.92 76.88 84.17

duw02 93.88 ± 00.92 92.22 95.76 88.17 ± 02.26 85.21 92.22 83.67 ± 0.79 82.71 85.14 78.87 ± 1.19 77.29 80.76
duw03 92.99 ± 01.05 91.04 94.51 89.64 ± 01.22 88.13 92.08 83.42 ± 2.03 79.93 86.46 79.65 ± 1.89 76.88 82.85
duw04 93.24 ± 00.66 91.67 94.03 91.46 ± 00.84 90.56 93.33 82.66 ± 1.26 80.00 84.51 81.75 ± 1.09 80.00 83.96
duw05 92.84 ± 00.94 90.69 93.89 91.18 ± 01.60 89.38 93.89 83.24 ± 2.05 79.86 85.28 81.11 ± 1.00 79.86 83.47
duw06 93.25 ± 00.54 91.74 93.96 92.17 ± 00.87 91.04 93.33 83.48 ± 1.09 81.04 84.58 81.22 ± 1.32 79.44 84.10
duw07 93.05 ± 00.86 91.11 94.03 92.01 ± 00.52 91.53 92.78 83.40 ± 1.03 80.49 84.51 82.59 ± 0.90 81.11 84.17
duw08 93.08 ± 00.46 92.22 93.33 92.08 ± 00.87 91.04 93.89 82.38 ± 1.26 79.93 83.96 80.64 ± 1.47 78.75 82.85
duw09 92.89 ± 00.59 91.67 93.89 91.28 ± 01.28 89.93 93.26 83.43 ± 1.10 81.53 84.58 81.72 ± 0.83 80.49 83.47
duw10 93.09 ± 00.67 91.11 93.33 92.07 ± 01.06 91.11 93.89 83.99 ± 1.21 81.67 85.76 81.55 ± 1.00 79.38 82.85

OneR ranking

dsF 78.54 ± 12.29 52.22 93.33 60.61 ± 15.34 50.00 92.78 84.32 ± 1.58 81.46 87.08 76.06 ± 3.87 71.67 83.33

dsK 81.07 ± 08.04 61.88 93.33 82.92 ± 08.32 61.11 92.78 83.59 ± 0.94 81.94 84.72 75.56 ± 4.49 68.33 83.33

duf 93.88 ± 00.19 92.22 95.76 93.14 ± 00.51 89.38 95.21 83.09 ± 1.60 79.24 85.28 80.81 ± 1.73 73.06 85.76

duf02 94.42 ± 00.73 93.33 95.76 90.33 ± 01.12 89.38 93.33 82.47 ± 1.64 79.65 84.51 77.28 ± 3.84 73.06 83.54
duf03 94.02 ± 00.44 93.47 95.14 93.54 ± 00.73 92.22 94.58 82.78 ± 1.67 79.93 84.65 78.00 ± 3.24 74.03 83.40
duf04 94.02 ± 00.45 93.40 95.14 93.43 ± 00.79 92.29 94.51 83.54 ± 1.68 80.42 85.28 81.76 ± 1.37 79.79 84.65
duf05 93.52 ± 00.58 92.22 93.89 92.23 ± 01.26 90.49 93.96 83.25 ± 1.92 79.24 84.72 82.80 ± 1.46 81.04 84.58
duf06 93.90 ± 00.04 93.89 94.03 93.50 ± 00.73 92.29 94.51 83.43 ± 1.44 80.42 85.21 81.22 ± 1.36 79.79 83.47
duf07 93.91 ± 00.27 93.33 94.51 94.80 ± 00.44 93.89 95.21 82.68 ± 1.80 79.93 85.14 81.35 ± 1.64 79.24 84.65
duf08 93.63 ± 00.59 92.22 93.89 93.15 ± 01.19 91.67 95.07 83.14 ± 1.35 80.49 85.21 81.70 ± 1.17 80.35 83.96
duf09 93.74 ± 00.34 92.85 93.89 94.01 ± 00.55 93.47 95.14 83.06 ± 1.95 79.86 85.21 81.76 ± 1.22 80.42 84.58
duf10 93.79 ± 00.31 92.85 93.89 93.29 ± 00.70 92.29 94.51 83.42 ± 1.57 80.49 85.21 81.44 ± 1.83 79.24 85.76

duw 93.11 ± 00.81 89.44 95.76 91.42 ± 01.04 86.39 94.51 83.05 ± 1.19 79.86 86.46 81.11 ± 1.03 74.38 84.17

duw02 93.51 ± 01.52 89.44 95.76 88.83 ± 02.21 86.39 93.89 83.32 ± 1.34 80.90 85.14 78.48 ± 1.90 74.38 80.63
duw03 92.94 ± 01.11 90.63 93.89 90.25 ± 01.30 88.13 92.78 83.91 ± 1.71 79.93 86.46 80.16 ± 1.75 77.50 82.85
duw04 93.39 ± 00.90 91.04 94.03 91.20 ± 01.14 89.93 93.89 82.18 ± 1.57 80.35 84.51 82.17 ± 1.18 81.18 84.10
duw05 92.82 ± 00.99 90.49 93.89 91.69 ± 01.54 89.38 93.89 83.15 ± 1.81 79.86 85.28 81.25 ± 1.60 78.75 83.47
duw06 93.24 ± 00.58 91.60 93.96 92.27 ± 00.83 91.04 93.33 83.37 ± 0.88 81.04 84.03 81.37 ± 0.84 80.00 82.36
duw07 93.10 ± 00.74 91.67 94.03 92.49 ± 00.63 91.67 93.89 83.30 ± 1.26 80.49 84.65 82.27 ± 1.04 81.04 84.17
duw08 93.08 ± 00.46 92.22 93.33 92.17 ± 00.92 91.04 93.89 81.79 ± 1.86 79.86 84.58 80.56 ± 1.75 77.64 83.47
duw09 92.97 ± 00.85 91.04 93.89 91.54 ± 01.48 89.93 94.51 83.11 ± 1.26 81.53 84.58 81.81 ± 0.86 80.56 83.47
duw10 92.93 ± 00.90 91.11 93.33 92.32 ± 00.96 91.11 93.89 83.30 ± 1.18 81.60 84.58 81.94 ± 1.04 80.00 83.47



Entropy 2024, 26, 404 28 of 32

Table 4. Statistics of performance [%]: average classification accuracy, standard deviation, and
minimum and maximum classification accuracy of the J48 classifiers, for the procedure of the gradual
discretisation controlled by the rankings, starting with 1 out of N discretised attributes, and ending
with N − 1 discretised variables.

F-Writers M-Writers

Ascending Descending Ascending Descending

Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max

Domain Relief ranking

dsF 91.45 ± 1.57 89.79 94.65 74.36 ± 19.08 50.00 90.28 77.53 ± 2.36 72.01 79.51 78.59 ± 1.64 76.32 80.76

dsK 91.16 ± 1.17 89.79 92.78 92.41 ± 01.93 87.50 93.40 76.76 ± 2.69 71.88 80.14 78.59 ± 1.64 76.32 80.76

duf 89.95 ± 0.92 82.64 93.33 87.54 ± 00.73 82.85 92.22 76.37 ± 0.71 70.83 80.90 74.77 ± 0.81 66.67 82.08

duf02 90.55 ± 1.77 85.69 92.78 88.43 ± 02.42 84.79 91.81 73.64 ± 1.84 72.01 77.85 71.87 ± 3.92 66.74 77.92
duf03 90.24 ± 1.48 86.81 93.33 85.73 ± 00.58 85.28 87.43 76.52 ± 1.31 74.44 78.89 77.54 ± 2.48 72.15 81.46
duf04 90.38 ± 0.82 89.24 91.53 89.36 ± 02.56 86.46 92.22 77.07 ± 1.29 75.63 79.58 72.97 ± 4.56 66.67 79.51
duf05 89.35 ± 2.36 83.47 92.78 84.68 ± 01.01 83.75 87.01 78.43 ± 1.54 75.63 80.14 71.27 ± 0.82 69.86 72.64
duf06 88.77 ± 2.75 82.64 90.42 90.75 ± 01.15 88.19 91.88 75.13 ± 1.99 70.83 77.92 75.00 ± 1.57 72.22 77.43
duf07 90.34 ± 0.76 89.79 92.15 84.36 ± 02.42 82.85 90.49 75.64 ± 0.74 74.58 76.88 78.05 ± 2.14 73.26 80.42
duf08 90.32 ± 0.60 89.79 91.53 88.42 ± 00.67 87.64 90.00 77.54 ± 2.57 73.89 80.90 76.84 ± 1.90 72.64 78.47
duf09 90.13 ± 0.41 89.79 90.97 88.09 ± 00.57 86.53 88.33 77.51 ± 1.01 75.63 78.75 74.43 ± 2.79 69.65 79.79
duf10 89.48 ± 0.91 86.88 90.35 88.04 ± 01.27 87.15 91.81 75.81 ± 1.13 72.92 77.36 74.94 ± 4.14 69.38 82.08

duw 89.83 ± 1.22 83.68 92.85 87.63 ± 00.83 80.35 94.51 76.73 ± 1.13 68.13 81.32 74.42 ± 0.98 63.19 79.86

duw02 90.73 ± 1.19 88.61 92.22 84.22 ± 03.09 80.35 89.38 76.67 ± 1.57 73.68 78.96 69.15 ± 3.70 63.19 74.51
duw03 89.79 ± 2.30 83.68 92.78 87.51 ± 01.89 83.68 89.93 76.87 ± 2.02 72.43 80.14 73.81 ± 2.81 68.82 77.29
duw04 90.61 ± 1.20 88.54 92.22 86.81 ± 01.81 83.26 90.97 77.90 ± 2.09 74.10 81.32 76.50 ± 2.45 71.11 79.86
duw05 89.83 ± 2.27 85.49 92.22 85.07 ± 02.45 80.42 89.93 76.84 ± 2.00 74.79 80.69 74.96 ± 1.37 72.78 77.43
duw06 89.03 ± 1.19 86.25 89.79 86.12 ± 01.34 85.00 89.93 74.68 ± 1.75 72.50 76.88 74.05 ± 1.71 71.60 76.39
duw07 89.98 ± 1.55 85.90 92.15 89.46 ± 00.49 88.06 89.65 76.87 ± 1.65 74.58 79.10 74.44 ± 1.67 70.00 76.04
duw08 89.44 ± 1.86 84.51 90.42 90.81 ± 01.73 86.94 92.22 76.69 ± 3.66 68.13 79.51 75.43 ± 1.64 72.50 79.44
duw09 89.20 ± 1.56 85.00 90.42 91.16 ± 01.45 90.35 94.51 77.15 ± 1.56 75.35 79.58 74.48 ± 2.18 71.18 77.43
duw10 89.82 ± 1.79 85.14 92.85 87.56 ± 01.44 87.01 91.74 76.86 ± 1.63 74.93 78.96 76.98 ± 1.26 74.03 78.61

OneR ranking

dsF 89.46 ± 6.83 69.17 92.78 63.62 ± 18.74 50.00 90.28 77.77 ± 1.71 74.38 79.51 78.52 ± 2.04 74.10 80.76

dsK 90.65 ± 3.01 82.29 92.78 91.98 ± 03.22 82.78 93.40 77.04 ± 1.52 74.24 79.51 78.52 ± 2.04 74.10 80.76

duf 89.91 ± 1.27 82.64 93.33 87.66 ± 01.01 82.85 92.22 76.57 ± 0.91 71.88 82.08 74.32 ± 0.60 66.67 81.46

duf02 90.99 ± 0.85 89.79 92.78 89.00 ± 02.61 84.79 91.81 74.72 ± 2.14 71.88 78.40 71.71 ± 4.34 66.74 79.10
duf03 90.13 ± 1.77 85.63 93.33 85.81 ± 00.58 85.28 87.43 77.47 ± 2.25 74.79 82.08 77.23 ± 1.73 74.51 81.46
duf04 90.16 ± 1.68 85.63 91.53 89.36 ± 02.33 86.46 91.81 78.33 ± 1.90 76.60 81.94 71.95 ± 3.34 66.67 77.71
duf05 89.89 ± 1.55 86.94 92.78 85.01 ± 02.18 83.75 90.97 78.02 ± 1.09 76.67 80.14 72.22 ± 2.02 70.00 76.18
duf06 89.07 ± 2.61 82.64 90.42 89.73 ± 01.85 86.25 91.88 75.62 ± 1.54 73.54 77.92 74.20 ± 1.45 72.22 76.53
duf07 89.88 ± 2.40 82.92 92.15 84.63 ± 02.82 82.85 92.22 75.60 ± 0.88 74.58 76.88 77.30 ± 2.67 73.26 80.42
duf08 89.97 ± 1.12 87.08 91.53 88.83 ± 01.26 88.19 92.15 76.46 ± 1.55 73.89 78.54 76.58 ± 2.11 72.64 79.10
duf09 89.85 ± 1.06 86.88 90.97 88.34 ± 00.87 86.53 90.42 77.66 ± 0.94 76.11 78.47 73.54 ± 2.57 69.65 77.50
duf10 89.20 ± 1.34 86.25 90.35 88.22 ± 01.50 87.15 91.81 75.28 ± 1.21 72.92 77.36 74.14 ± 3.75 69.38 79.31

duw 90.09 ± 0.88 82.22 92.85 87.63 ± 01.31 80.35 94.51 77.18 ± 1.35 68.13 81.32 74.37 ± 0.65 63.89 79.79

duw02 90.59 ± 1.72 87.01 92.22 84.68 ± 03.50 80.35 90.35 76.63 ± 3.25 70.69 79.72 68.74 ± 2.48 63.89 72.22
duw03 90.73 ± 1.13 89.24 92.78 86.73 ± 02.35 83.06 89.17 78.39 ± 1.63 76.25 80.83 74.57 ± 2.52 68.82 77.36
duw04 90.20 ± 2.26 84.58 92.22 87.45 ± 01.68 85.14 90.97 77.58 ± 2.41 73.26 81.32 76.20 ± 2.66 71.11 79.79
duw05 90.64 ± 2.04 85.49 92.22 84.57 ± 03.80 80.42 92.22 78.11 ± 1.96 74.24 80.69 74.72 ± 1.56 72.78 77.99
duw06 89.24 ± 0.78 87.92 90.35 85.84 ± 01.66 84.51 90.35 75.20 ± 1.79 72.01 77.85 74.59 ± 0.82 73.40 76.25
duw07 90.39 ± 0.89 88.54 92.15 89.67 ± 00.30 89.10 90.42 76.13 ± 2.19 73.61 79.10 73.56 ± 2.33 70.28 76.04
duw08 88.80 ± 2.75 82.22 90.42 91.07 ± 01.24 88.06 92.22 77.67 ± 3.27 68.13 79.51 75.66 ± 1.93 72.85 79.44
duw09 89.75 ± 0.82 88.06 90.42 91.05 ± 01.55 89.79 94.51 77.36 ± 1.88 74.79 79.58 75.39 ± 1.97 73.06 78.26
duw10 90.47 ± 1.08 89.79 92.85 87.59 ± 01.46 87.01 91.74 77.56 ± 1.39 74.93 79.51 75.94 ± 1.64 73.06 78.61
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Table 5. Statistics of performance [%]: average classification accuracy, standard deviation, and
minimum and maximum classification accuracy of the k-NN classifiers, for the procedure of the
gradual discretisation controlled by the rankings, starting with 1 out of N discretised attributes, and
ending with N − 1 discretised variables.

F-Writers M-Writers

Ascending Descending Ascending Descending

Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max Avg. ± St.dev. Min Max

Domain Relief ranking

dsF 72.85 ± 11.39 57.78 91.04 64.47 ± 09.61 55.56 85.83 77.32 ± 4.10 70.69 85.76 75.26 ± 2.86 70.14 78.61

dsK 74.06 ± 10.11 66.67 91.04 71.43 ± 09.23 57.22 85.83 77.83 ± 4.04 69.58 85.21 75.41 ± 3.04 70.14 79.17

duf 83.80 ± 02.53 73.89 88.75 88.79 ± 01.11 81.94 93.47 72.24 ± 1.74 61.81 78.68 74.12 ± 0.94 64.72 80.00

duf02 81.48 ± 05.85 73.89 88.68 86.36 ± 02.20 81.94 89.72 67.80 ± 5.48 61.94 76.04 71.70 ± 1.69 69.31 74.58
duf03 81.24 ± 02.80 76.32 86.88 89.49 ± 01.76 86.88 93.47 67.69 ± 4.17 61.81 73.61 73.24 ± 3.14 68.96 80.00
duf04 83.74 ± 02.73 79.17 87.36 90.08 ± 01.20 88.68 92.78 73.28 ± 2.64 69.79 78.68 74.65 ± 1.80 70.90 76.46
duf05 84.68 ± 02.96 79.72 88.61 87.84 ± 02.35 84.65 92.01 72.30 ± 2.85 69.24 77.71 71.45 ± 3.84 64.72 77.08
duf06 85.14 ± 01.25 82.57 86.88 90.43 ± 00.84 88.75 91.60 74.13 ± 2.46 70.49 77.22 74.76 ± 2.31 70.35 77.64
duf07 82.95 ± 03.16 78.68 86.88 87.90 ± 01.57 85.83 90.97 73.48 ± 2.37 70.14 77.78 76.75 ± 1.63 74.58 79.51
duf08 85.28 ± 02.92 80.35 88.75 88.76 ± 01.38 87.36 91.39 73.28 ± 1.92 70.14 75.49 73.52 ± 1.73 70.97 76.32
duf09 84.96 ± 02.28 80.90 87.43 89.04 ± 01.47 86.81 90.90 74.73 ± 1.35 73.68 78.40 75.74 ± 1.48 73.68 78.19
duf10 84.75 ± 02.38 80.90 87.50 89.20 ± 01.56 86.39 91.53 73.45 ± 1.65 71.04 75.83 75.29 ± 2.09 71.74 79.31

duw 86.09 ± 01.75 73.82 90.97 86.47 ± 01.20 80.35 90.83 72.80 ± 1.06 65.90 80.07 75.25 ± 1.81 63.06 82.50

duw02 85.94 ± 03.10 79.79 89.93 83.06 ± 01.45 80.35 85.07 73.40 ± 4.38 66.67 80.07 70.16 ± 4.49 63.06 77.08
duw03 82.17 ± 03.79 73.82 86.94 86.86 ± 02.93 82.64 90.83 71.00 ± 1.72 68.19 74.72 74.07 ± 2.57 70.49 78.47
duw04 86.45 ± 02.19 82.78 89.10 85.46 ± 02.49 82.71 89.79 73.62 ± 2.69 68.47 76.53 76.00 ± 2.19 71.67 78.33
duw05 86.40 ± 02.36 82.36 89.17 85.93 ± 02.38 83.40 89.79 68.87 ± 1.75 65.90 71.46 74.21 ± 2.86 70.28 78.47
duw06 86.07 ± 01.70 82.36 88.06 86.75 ± 02.18 83.96 89.58 74.03 ± 1.67 70.63 76.04 77.47 ± 1.27 75.35 80.69
duw07 87.18 ± 01.99 85.07 90.97 87.51 ± 00.75 86.39 88.61 74.74 ± 2.43 70.56 77.71 74.29 ± 2.00 71.32 77.50
duw08 86.22 ± 01.87 82.22 88.54 87.02 ± 01.18 84.51 88.54 73.35 ± 2.05 69.58 76.74 78.02 ± 2.33 75.00 82.50
duw09 87.76 ± 01.30 85.14 89.79 89.06 ± 01.05 86.81 90.42 73.51 ± 1.50 71.53 76.46 74.63 ± 2.38 70.83 79.58
duw10 86.62 ± 02.11 83.47 89.17 86.55 ± 00.98 84.58 88.47 72.67 ± 1.30 70.76 74.38 78.36 ± 1.95 74.79 81.53

OneR ranking

dsF 68.31 ± 07.42 57.78 88.13 66.05 ± 10.03 58.33 90.28 76.89 ± 3.17 74.03 85.76 75.76 ± 3.74 67.01 81.25

dsK 69.48 ± 06.28 66.11 88.13 73.74 ± 07.95 60.56 90.28 77.92 ± 3.68 73.47 85.21 75.86 ± 3.80 67.01 81.25

duf 83.98 ± 02.64 73.89 89.24 89.22 ± 00.83 83.26 93.47 72.57 ± 1.70 61.04 79.38 73.65 ± 0.90 64.72 78.82

duf02 80.65 ± 05.21 73.89 87.36 86.48 ± 02.08 83.26 90.28 68.53 ± 6.00 61.04 78.96 72.75 ± 3.46 66.18 77.50
duf03 82.22 ± 03.29 76.32 86.88 89.07 ± 02.15 86.39 93.47 68.63 ± 2.72 63.47 72.15 70.54 ± 2.52 65.56 75.07
duf04 84.60 ± 03.20 79.17 88.19 90.10 ± 01.26 87.99 92.01 73.51 ± 2.21 70.28 77.64 75.73 ± 1.24 72.78 77.01
duf05 84.63 ± 03.38 79.72 89.24 88.55 ± 01.72 85.14 92.01 71.45 ± 1.48 69.24 74.44 71.43 ± 3.50 64.72 75.90
duf06 85.93 ± 01.61 82.57 88.61 90.43 ± 00.87 88.54 91.60 74.37 ± 2.23 71.39 77.22 73.91 ± 2.00 70.97 77.15
duf07 82.75 ± 02.87 78.68 86.88 88.63 ± 01.45 86.18 90.97 74.27 ± 2.57 71.32 79.38 75.96 ± 2.22 71.18 78.82
duf08 85.25 ± 02.85 80.35 87.99 89.70 ± 01.17 87.36 91.39 73.74 ± 2.04 70.14 75.97 73.14 ± 1.65 70.69 75.76
duf09 85.32 ± 02.43 80.90 87.99 89.79 ± 01.37 87.22 91.46 75.13 ± 1.70 73.13 77.78 74.76 ± 2.30 70.56 77.71
duf10 84.50 ± 02.29 80.90 88.54 90.24 ± 00.98 88.61 91.60 73.50 ± 1.91 71.04 77.15 74.65 ± 2.07 71.74 78.19

duw 85.73 ± 01.68 73.82 90.97 86.98 ± 01.00 80.35 90.21 72.53 ± 1.56 64.65 77.29 74.61 ± 1.92 66.74 80.35

duw02 85.12 ± 03.53 77.43 88.68 84.17 ± 01.91 80.35 87.92 72.60 ± 4.13 64.65 77.01 72.76 ± 3.76 67.71 77.22
duw03 81.81 ± 03.64 73.82 86.25 87.08 ± 02.31 82.64 90.21 72.52 ± 1.60 70.21 75.14 72.96 ± 2.51 67.78 76.88
duw04 86.07 ± 02.35 81.11 88.61 86.12 ± 02.19 82.85 89.79 73.04 ± 1.65 70.35 75.56 73.98 ± 2.52 69.17 77.78
duw05 85.42 ± 02.04 82.36 89.17 86.71 ± 02.23 84.10 89.79 69.29 ± 2.09 65.90 74.17 72.58 ± 3.12 66.74 77.92
duw06 86.19 ± 01.57 82.36 87.43 87.65 ± 01.50 85.28 89.58 74.10 ± 1.99 70.63 77.29 75.80 ± 2.56 69.51 77.64
duw07 87.34 ± 02.12 85.00 90.97 88.18 ± 00.79 87.01 89.93 73.36 ± 1.81 70.56 75.83 74.19 ± 2.17 71.04 78.33
duw08 86.22 ± 02.04 82.22 88.68 87.60 ± 00.82 86.25 88.54 72.92 ± 2.87 69.58 77.22 77.05 ± 1.74 74.38 79.72
duw09 87.62 ± 01.61 85.14 89.79 88.58 ± 00.91 86.88 89.72 72.78 ± 1.73 71.11 75.90 74.53 ± 3.14 68.61 79.58
duw10 85.74 ± 01.64 83.47 88.06 86.70 ± 01.15 84.58 88.47 72.16 ± 1.40 70.00 74.38 77.62 ± 1.98 73.54 80.35

When the results from all three tables were compared against each other, it turned
out that for the female writer dataset, ascending orders for rankings were beneficial for
classification by the Naive Bayes and J48, while for the k-NN, the opposite was true. For
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the male writer dataset, the trends were not so constant and depended on a classifier and a
discretisation approach applied to the data. However, they were the same for both rankings
employed in the research. For F-writers, it was also observed that the Relief ranking more
often led to higher values of the obtained statistics than the OneR ranking, while for M-
writers, more variations were detected and greater dependence on the parameters of the
discretisation process observed.

For the process of gradual discretisation controlled by the importance of attributes
indicated by a ranking, the detailed analysis of classifier performance indicates that stan-
dard transformation approaches cannot necessarily guarantee a form of features that is the
most beneficial to predictions. When only some subsets of variables are discretised, instead
of all of them at once, it can lead to improved accuracy. Many such cases were observed
in the investigations, for all types of inducers employed and all variants of discrete data.
These findings show the merits of the proposed methodology, although they also indicate
that finding the most advantageous scenario, that is, a particular discretisation method
and a subset of variables to transform, is not a trivial task. To limit computational costs,
the processing does not have to include all steps, from discretisation of a single attribute
to translation of all of them. It can be stopped sooner, once some increase in performance
is detected. However, such an approach brings the risk of detecting only a local (and not
global) maximum.

6. Conclusions

Discretisation as a stage of data preparation plays an important role in knowledge
discovery processes, with a noticeable impact on their efficiency. In standard proceedings,
some arbitrarily selected discretisation approach, which enables finding categorical rep-
resentations for the continuous domains of the input features, is applied to all attributes
present in the input data, regardless of their characteristics, and all transformations are
performed at once. In the paper, the research methodology was presented which was
dedicated to a gradual data discretisation procedure, driven by a ranking of attributes. The
aim was to examine how the form of the features, dependent on their importance, affects
their characteristics and impacts the performance of the chosen classifiers.

Rankings belong to feature selection mechanisms. They provide information on the
importance of individual features, which allows reducing the dimensionality of the data. In
the research, the constructed orderings of variables were exploited to direct the sequential
transformations of attributes. The features were selected one-by-one, taking into account
two possible directions of processing, i.e., descending and ascending. The former started
with the most relevant attributes and then gradually less and less important variables were
discretised, and the latter began at the bottom of a ranking with the least relevant features
before moving on to the more important ones. For transformations, representatives of the
two most popular approaches were used: supervised and unsupervised.

The research methodology was extensively verified on two collections of the datasets
from the stylometry domain, i.e., on 901 variants per one collection in total. These inves-
tigations included four discretisation algorithms with various parameters, two ranking
methods with both directions of ordering of features, and three state-of-the-art classifiers.
The analysis of the results obtained allowed the identification of many cases where the
proposed data transformation procedure resulted in an improved predictive accuracy for
the classifiers, when only some subset of attributes was discretised. This proves the merits
of the methodology and highlights the value of investigating it more deeply.

In future research, other discretisation algorithms and classifiers will be examined,
with the goal of determining guidelines for selecting the most advantageous combinations
of attribute transformation methods. Also, other mechanisms for ranking construction will
be investigated and compared.
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7. Stańczyk, U. Pruning Decision Rules by Reduct-Based Weighting and Ranking of Features. Entropy 2022, 24, 1602. [CrossRef]

[PubMed]
8. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Data Level Preprocessing Methods. In Learning from

Imbalanced Data Sets; Springer International Publishing: Cham, Switzerland, 2018; pp. 79–121.
9. Kotsiantis, S.; Kanellopoulos, D. Discretization Techniques: A recent survey. Int. Trans. Comput. Sci. Eng. 2006, 1, 47–58.
10. Kliegr, T.; Izquierdo, E. QCBA: Improving rule classifiers learned from quantitative data by recovering information lost by

discretisation. Appl. Intell. 2023, 53, 20797–20827. [CrossRef]
11. Yang, Y.; Webb, G.I.; Wu, X. Discretization Methods. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L.,

Eds.; Springer: Boston, MA, USA, 2005; pp. 113–130.
12. Dougherty, J.; Kohavi, R.; Sahami, M. Supervised and Unsupervised Discretization of Continuous Features. In Proceedings of the

Machine Learning: Proceedings of the 12th International Conference; Morgan Kaufmann: San Francisco, CA, USA, 1995; pp. 194–202.
13. Dash, R.; Paramguru, R.L.; Dash, R. Comparative analysis of supervised and unsupervised discretization techniques. Int. J. Adv.

Sci. Technol. 2011, 2, 29–37.
14. Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271. [CrossRef]
15. Koppel, M.; Schler, J.; Argamon, S. Computational Methods in Authorship Attribution. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 9–26.

[CrossRef]
16. Zhao, Y.; Zobel, J. Searching with Style: Authorship Attribution in Classic Literature. In Proceedings of the Thirtieth Australasian

Conference on Computer Science—Volume 62, ACSC ’07, Darlinghurst, Australia, 30 January 2007; pp. 59–68.
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