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Abstract: The potential involvement of polysulfide radical anions Sn
•− is a recurring theme in

discussions of the basic and applied chemistry of elemental sulfur. However, while the spectroscopic
features for n = 2 and 3 are well-established, information on the structures and optical characteristics
of the larger congeners (n = 4–8) is sparse. To aid identification of these ephemeral species we have
performed PCM-corrected DFT calculations to establish the preferred geometries for Sn

•− (n = 4–8)
in the polar media in which they are typically generated. TD-DFT calculations were then used to
determine the number, nature and energies of the electronic excitations possible for these species.
Numerical reliability of the approach was tested by comparison of the predicted and experimental
excitation energies found for S2

•− and S3
•−. The low-energy (near-IR) transitions found for the two

acyclic isomers of S4
•− (C2h and C2v symmetry) and for S5

•− (Cs symmetry) can be understood by
extension of the simple HMO π-only chain model that serves for S2

•− and S3
•−. By contrast, the

excitations predicted for the quasi-cyclic structures Sn
•− (n = 6–8) are better described in terms of

σ→ σ* processes within a localized 2c-3e manifold.

Keywords: polysulfide chemistry; radical anions; structures; spectroscopic properties; time-dependent
density functional theory

1. Introduction

Polysulfide radical anions Sn
•− (n = 2–8) play a pivotal role as intermediates in the

sulfur↔ sulfide redox cycle [1–4]. The influence of these short-lived species is frequently
invoked in contemporary investigations of sulfur chemistry, including alkali-metal-sulfur
batteries [5–7], organic syntheses [8], biological chemistry [9,10], geochemical processes
involving metal transport [11–13] and quantum-dot sensitized solar cells [14,15]. In so-
lution, polysulfide radical anions are readily oxidized by atmospheric oxygen, but the
smaller members can be trapped in an aluminosilicate matrix and are known to be the
chromophores in yellow (S2

•−), blue (S3
•−) and green (simultaneous presence of S2

•− and
S3
•−) ultramarines [16] and related sodalite-group minerals [17]. The diatomic S2

•− and
the triatomic S3

•− (C2v) radical anions are readily detected in solution or in the solid state
by their characteristic UV-visible, Raman or EPR spectra [18]. Indeed, one or more of these
techniques is commonly invoked to provide evidence for the role of S3

•− as an in-situ
generated reagent in organic synthesis [8].

In contrast to the well-established spectroscopic signatures of S2
•− and S3

•−, evidence
for the larger members of the family (n = 4–8) is fragmentary and often conflicting. Of
these species, S4

•− has a long but somewhat checkered history. In 1970, as part of his
pioneering study on solutions of alkali-metal polysulfides in electron-pair donor solvents,
e.g., DMF, HMPA, Seel attributed a visible absorption at ca. 515 nm to S4

•− [19], but later
the band was reassigned to a dimer [20], an example of which has recently been structurally
characterized in a dinuclear Bi(III)Bi(III) complex [21]. In 1983 Clark et al. investigated the
nature of the sulfur chromophore in ultramarine pink by Raman spectroscopy [22], but they
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were unable to distinguish between S4 and S4
•− (or even S3Cl). The association of a 490 nm

band with S4
•− has nonetheless persisted [9,23], and Chiba and co-workers have recently

invoked formation of the radical anion during the photolysis of the closed-shell dianion
S4

2− [24–27]. The use of other techniques to identify S4
•− in solution, notably Raman and

IR spectroscopy [28–30], has been pursued, but band assignments based on calculated
vibrational frequencies have been questioned [3]. Likewise, an EPR signal observed in
solutions of lithium polysulfide solutions in DMF was proposed to belong to S4

•− [31], but
the isotropic g-value (2.031) lies close to that of the dominant radical anion S3

•− (2.029) [32].
In principle, high field EPR spectroscopy could be used to distinguish between these (and
other) polysulfide radical anions, and on this basis Chukanov et al. recently suggested the
presence of S4

•− in various sodalite minerals [33].
The larger anions Sn

•− (n = 5–8) are also acknowledged as potentially important inter-
mediates in the S8 ↔ S2− redox processes, as in the electrochemical reduction of cyclo-S8,
redox transformations in alkali metal-sulfur batteries [27] and the formation of polysulfides
from photoexcited quantum dots [14,15]. Exploration of the stepwise electrochemical reduc-
tion of cyclo-S8 in non-aqueous solvents has been extensively pursued, with formation of
S8

2− generally accepted by the battery community to occur first (Scheme 1) [3]. Initially, in
1970, Merritt and Sawyer claimed the preliminary formation of the one-electron reduction
product S8

•− [34], then revised this interpretation to a two-electron transfer [35], in agree-
ment with the work of Bonnaterre and Cauquis [36] and also supported by results obtained
by Hardacre and coworkers using ionic liquids as the solvent medium [37]. However,
in 2008, the results of a detailed cyclic voltammetric study of the reduction of S8 in vari-
ous solvents were consistent with the formation of S8

2− via two consecutive one-electron
steps [38]. The potential for the involvement of S4

•− in the S8 reduction process has been
argued [39–42], but in the absence of a clear spectroscopic signature for the anion, the
issue has not been resolved. Although symmetrical dissociation of S8

2− to give two S4
•−

radical anions is calculated to be exergonic [43], and an absorption band at ca. 700 nm was
assigned to S4

•− [44,45] in spectrochemical studies of the reduction of sulfur in DMSO and
DMF, others insist that it has never been detected [46].
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Surprisingly, although the preparation and structural characterization of several salts
of the S8

2− were reported more than 30 years ago [47,48], there is limited information on
the behavior of ion-separated salts of S8

2− in non-aqueous solvents. Formation of S8
2−

from S8 has traditionally been interpreted to be followed by disproportionation to S6
2− and

1
4 S8 [39,43,49], the former dissociating to afford S3

•− [48]. However, a disproportionation
process simply represents a mass balance, and belies the reality that the formation of an
eight-membered S8 ring must involve the intermediacy of long chain polysulfide dianions
Sn

2− with n > 8 and, possibly, polysulfide radical anions such as Sn
•− (n = 4, 6) [3]. Alter-

native fates for S8
2− in dilute solution can be envisaged (Scheme 1) in terms of equilibria

involving its symmetric and asymmetric dissociation to afford, in principle, the entire
series of polysulfide radical anions Sn

•− (n = 2–6). Longer chain closed-shell dianions such
as S10

2− and S12
2−, salts of which have recently been characterized [50,51], can then be

viewed as arising from the reverse process, that is, symmetric coupling of the radical anions
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S5
•− and S6

•−, respectively, while association of S3
•− and S4

•− yields S7
2−. Unfortunately,

information on the electrochemical reduction of the cyclic allotropes S6 and S7 is lacking.
That being said, in 2002 Dehnicke and coworkers isolated and structurally characterized
crystals of the (orange/red) radical ion salt [Ph4P][S6], the only such characterization of
an ion-separated salt of a polysulfide radical anion [52]. The importance of this result is
discussed below.

As demonstrated in this brief survey, there are many unsettled questions regarding
the basic chemistry of elemental sulfur, in particular relating to the stability, structure and
properties of radical ion products that may be generated during the sequential reduction
of cyclo-S8 or the oxidation of the sulfide ion S2− [1]. These questions have given rise to
ongoing controversies, many relating to the colors of these ephemeral species—what do
they look like, and do they exist if they cannot be seen?

While the colors of S2
•− and S3

•− are well characterized, the optical properties of
the larger putative polysulfide radical anions have been explored only to a very limited
extent. Fabian et al. used density functional theory (DFT) methods to probe the excited
states of S4

•−, and predicted a strong absorption in the near-IR region, with a weaker
band near 350 nm for cis S4

•−(C2v) isomer, which is slightly more stable than the trans
(C2h) isomer [53]. More recently, and using DFT and CASSCF methods, Rejmak confirmed
that the cis S4

•− radical anion could be identified by a strong absorption in the near-IR
region [54] and proposed that the red chromophore in ultramarine red is neutral S4 rather
than the corresponding radical anion. Surprisingly, the excited state properties of the
remaining radical ions in the series, that is Sn

•− (n = 5–8), have never been explored
theoretically, perhaps because even their ground state geometries have remained somewhat
of a puzzle.

The principal objective of the present article is to redress this issue, to fill in the blanks
not only in regard to the spectroscopic signatures of these radical anions, that is, their
excited state properties, but also to establish their ground state structures, particularly in
solution in polar solvents, the media in which they are most likely to be generated.

2. Results
2.1. Structural Trends

In the following sections we describe the structural features and relative energies
provided by spin unrestricted PBE0/D3/def2-QZVP calculations for the family of radical
anions Sn

•− (n = 4–8). The results build upon the earlier systematic studies of Hunsicker
et al. [55], Steudel [40] and Wong [56], but include several alternative shapes not previously
considered. The possible effects of solvation are heavily stressed, as our overall aim has
been to identify structures most likely to be present in solution in the polar solvents
typically used for the spectroscopic observation of these species. To this end we performed
not only standard “gas phase” geometry optimizations but also optimizations employing
the polarized continuum model (PCM) to simulate solvation effects, with DMF (ε = 37.2)
serving as a representative example. As observed by Steudel, the inclusion of solvation
using the PCM approach leads to only minor geometrical adjustments, and for this reason
only the “gas phase” structural parameters are presented in the main text (see Figure
S1 for PCM-adjusted numbers). Solvation effects, however, have important energetic
consequences, favoring structures with large molecular dipoles, and can play a pivotal
role in adjusting the balance between structural alternatives which are otherwise closely
matched energetically.

2.1.1. S2
•− and S3

•−

Like molecular oxygen, the diatomic molecule S2 possesses a triplet ground state [57].
Addition of an electron to one of the two half-filled πg* orbitals, to afford the 2Πg radical
anion S2

•−, leads to an elongation of the S–S bond, calculated here = 1.996 Å. Attachment
of a third sulfur introduces the possibility of structural options for S3

•−, namely linear
(D∞h), equilateral and isosceles triangular (D3h and C2v, respectively); the last is established
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as the energetically preferred. Structural parameters calculated here for the 2B1 state, an
S–S bond distance of 1.984 Å and inter-bond angle of 115.7◦, are consistent with previous
estimates [58,59].

2.1.2. S4
•−

Based on both experimental and theoretical evidence [48,49,60] the geometry of a
discrete neutral S4 molecule displays C2v symmetry, consisting of a planar broken-ring
structure with one “long” S–S bond, calculated here = 3.222 Å. The most appealing option
for the corresponding S4

•−anion is also a planar C2v structure (Figure 1a), akin to the
neutral form but with the “long” S–S bond further stretched (calculated here = 3.505 Å).
However, a C2h isomer (Figure 1b), generated from the C2v by a 180◦ rotation about the
central S–S linkage, is also possible.
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Figure 1. (U)PBE0/D3/def2-QZVP optimized geometries (distances in Å) for S4
•−, with Mulliken

charges (in italics) and dipole moments µ (in Debye). Relative gas phase and PCM (=DMF) corrected
total energies Erel are in kJ mol−1.

Frequency calculations confirm that both the C2v (cis) and C2h (trans) forms are true
energetic minima, the latter being slightly more stable in the gas phase. But the energetic
competition between the two ceases upon inclusion of PCM (=DMF) solvation, with the
centrosymmetric (µ = 0) C2h isomer rising relative to the C2v form by nearly 10 kJ mol−1.
The presence of both isomers in solvents with a low dielectric constant may nonetheless
be possible. Other structures, based on closed rings, have been explored by previous
workers and found to be energetically much more high-lying. Re-examination here of these
variants, none of which represents a true energetic minimum, indicates the centrosymmetric
(µ = 0) D2h modification (Figure 1c), formed by a Jahn–Teller distortion of a putative D4h
geometry [61], is the most stable of the closed-ring group, although it still lies well above
the C2v form and, with the inclusion of PCM, its relative energy rises even higher.

2.1.3. S5
•−

While the structure of neutral S5 is unknown, an open envelope-like or chair shape with
Cs symmetry has been predicted in previous studies [62,63], with the S–S bond bisected by
the mirror plane slightly elongated. We concur with this result, and calculate the unique S–S
distance = 2.157 Å. The apparent weakening may be attributed, in valence bond parlance, to
lone-pair repulsion arising from the eclipsed alignment of the two neighboring S–S bonds.
One-electron reduction to the radical anion S5

•− leads to a variety of structural alternatives,
the most obvious involving complete separation (to 4.095 Å) of the already weakened
mirror-bisected linkage, to afford the distorted Cs chair illustrated in Figure 2a. Vibrational
analysis confirms that the optimized structure represents a true energetic minimum and, as
indicated by the associated Mulliken charge densities, negative charge is heavily localized
on the two sulfurs associated with the “broken” bond. As expected, charge polarization,
and its impact on the molecular dipole, increases with the inclusion of PCM (Table S1).
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Open-chain structures for S5
•− are also possible; several variants have been explored

by previous workers, but in our hands these all gravitate on optimization towards the
twisted chain (C2 symmetry) minimum shown in Figure 2b. It is almost co-energetic with
the Cs chair, perhaps not surprisingly as the two structures are interconvertible by a 180◦

rotation of one of the terminal bonds. However, by virtue of the lower dipole moment of
the open-chain form, a substantial gap opens with the inclusion of PCM. In addition, we
have considered two “forced” planar modifications, one being the cis-cis C2v geometry
shown in Figure 2c. While it does not represent a stable minimum, and its relative energy
is substantially higher than the related Cs chair, its electronic structure provides a useful
conceptual link (vide infra) to the shorter chain anions (n = 2–4). For the corresponding cis-
trans isomer, which is isostructural with the closed shell SSNSS− anion [63,64], the energy
gap is considerably less, both in the gas phase (26.1 kJ mol−1) and in DMF (32.6 kJ mol−1),
but is still not a true minimum.

2.1.4. S6
•−

Here we have the unique advantage of experimental structural information on both
the neutral molecule and its radical anion. The cyclic, chair-shaped structure of S6, with
D3d symmetry and all neighboring bonds staggered, has been characterized crystallograph-
ically [65]; the observed S–S distance = 2.057(18) Å compares well with the value calculated
here = 2.054 Å (Figure 3). In the corresponding radical anion S6

•−, identified in the crystal
structure of the tetraphenylphosphonium salt [Ph4P][S6], the cyclic chair shape is retained
(Figure 3a), despite some disorder, but with two elongated S–S bonds = 2.634(4) Å [47].
In their report, however, the authors cautioned that the apparently high molecular sym-
metry (C2h) observed for the anion might be dictated by the high lattice symmetry (space
group C2/c), and provided BP86/TZ2P results indicating that a distorted chair structure
(Figure 3b) with C2 symmetry was actually more stable.

From a theoretical perspective, one-electron reduction of the high-symmetry geometry
of neutral S6 gives rise to an orbitally degenerate ground state for the resulting radical
anion S6

•−. Thus, when using D3h symmetry constraints as a starting point for a geom-
etry optimization, the symmetric chair immediately breaks symmetry and undergoes a
first-order Jahn–Teller distortion [61] to C2h symmetry, affording two elongated S–S bonds,
calculated here = 2.357 Å (Figure 3a), somewhat shorter than that observed experimen-
tally. However, as observed earlier, while this centrosymmetric C2h structure represents
a stationary point it is not an energy minimum. Upon release of symmetry constraints, it
undergoes a second-order distortion to the C2 modification (Figure 3b), in which one of
the two elongated S–S bonds in the C2h geometry stretches further to 2.823 Å, a result in
accord with the earlier DFT work [47]. By our calculations the energy difference between
the C2h and C2 structures is large (22.5 kJ mol−1), even in the gas phase, and increases to
27.5 kJ mol−1 with the inclusion of PCM (µ = 0 in the C2h form).



Molecules 2023, 28, 5654 6 of 21

Molecules 2023, 28, x FOR PEER REVIEW 6 of 22 
 

 

However, as observed earlier, while this centrosymmetric C2h structure represents a sta-
tionary point it is not an energy minimum. Upon release of symmetry constraints, it un-
dergoes a second-order distortion to the C2 modification (Figure 3b), in which one of the 
two elongated S–S bonds in the C2h geometry stretches further to 2.823 Å, a result in accord 
with the earlier DFT work [47]. By our calculations the energy difference between the C2h 
and C2 structures is large (22.5 kJ mol−1), even in the gas phase, and increases to 27.5 kJ 
mol−1 with the inclusion of PCM (µ = 0 in the C2h form). 

 
Figure 3. (U)PBE0/D3/def2-QZVP optimized geometries (distances in Å) for S6•−, with Mulliken 
charges (in italics) and dipole moments (µ) in Debye. Relative gas phase and PCM (=DMF) corrected 
total energies Erel are in kJ mol−1. 

In addition to the nominally closed-ring variants for S6•− several open chain options 
have been considered. Of these, we find the lowest energy C2 structure (Figure 3c), which 
can be converted into the quasi-cyclic form by a ca. 180° rotation about the central S–S 
bond, constitutes a true minimum. Predictably, in the gas phase the total energies of the 
two rotamers are almost identical, but in accord with the low dipole moment of the open 
chain form the balance changes sharply in favor of the ring structure when the PCM is 
included. 

2.1.5. S7•− 
Neutral S7 possesses a chair-like structure with Cs symmetry [66,67], with the unique 

mirror-bisected bond lengthened to 2.18 Å (calculated here = 2.171 Å) by the effects of 
lone-pair repulsion occasioned by the eclipsed alignment of the neighboring bonds, as 
seen in c-S5. In the structure of the global energetic minimum for S7•− the cyclic chair motif 
found in the neutral molecule is retained, but the already weakened mirror-bisected link-
age is lengthened to 2.946 Å in the radical anion (Figure 4a), with the associated Mulliken 
charge densities heavily localized on the two sulfurs linked by the weakened bond. 

 

Figure 3. (U)PBE0/D3/def2-QZVP optimized geometries (distances in Å) for S6
•−, with Mulliken

charges (in italics) and dipole moments (µ) in Debye. Relative gas phase and PCM (=DMF) corrected
total energies Erel are in kJ mol−1.

In addition to the nominally closed-ring variants for S6
•− several open chain options

have been considered. Of these, we find the lowest energy C2 structure (Figure 3c), which
can be converted into the quasi-cyclic form by a ca. 180◦ rotation about the central S–S bond,
constitutes a true minimum. Predictably, in the gas phase the total energies of the two
rotamers are almost identical, but in accord with the low dipole moment of the open chain
form the balance changes sharply in favor of the ring structure when the PCM is included.

2.1.5. S7
•−

Neutral S7 possesses a chair-like structure with Cs symmetry [66,67], with the unique
mirror-bisected bond lengthened to 2.18 Å (calculated here = 2.171 Å) by the effects of
lone-pair repulsion occasioned by the eclipsed alignment of the neighboring bonds, as seen
in c-S5. In the structure of the global energetic minimum for S7

•− the cyclic chair motif
found in the neutral molecule is retained, but the already weakened mirror-bisected linkage
is lengthened to 2.946 Å in the radical anion (Figure 4a), with the associated Mulliken
charge densities heavily localized on the two sulfurs linked by the weakened bond.
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Not surprisingly, a boat-shaped conformation (Figure 4b), in which the unique S–S
bond is a little longer (3.183 Å) than in the chair, is also possible. This feature may be of
relevance to optical properties, as its relative energy lies only slightly above that of the chair
in both the gas phase and solution, so that the two conformers may coexist in equilibrium
in solution. Outside of this pair of quasi-cyclic structures there is an open chain variant
with C2 symmetry (Figure 4c). It represents a local energy minimum, but is significantly
less stable than the chair/boat structures in the gas phase, the gap increasing when PCM
is invoked.
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2.1.6. S8
•−

The eight-membered ring found in orthorhombic α-sulfur displays a classic crown
conformation with D4d symmetry, with all neighboring bonds (measured at 2.055(2) Å,
calculated here = 2.044 Å) mutually staggered [68]. The structural changes accompanying
formation of S8

•− follow a similar pattern to that seen for S6
•−. Addition of an electron to

the cyclo-S8 in D4d symmetry affords a degenerate ground state for the resulting radical
anion, thereby setting up a first order Jahn–Teller distortion [61], which in this case affords
the “squeezed” C2v crown geometry shown in Figure 5a.
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charges (in italics) and dipole moments (µ) in Debye. Relative gas phase and PCM (=DMF) corrected
total energies Erel are in kJ mol−1.

While this high-symmetry structure is not an energy minimum, the possibility of trap-
ping it in a crystal lattice, as in the case of the C2h form of S6

•−, is worthy of consideration.
That being said, upon release of all symmetry constraints the C2v structure evolves into
a C2 variant (Figure 5b) which, like the C2 structure of S6

•−, displays one elongated S–S
bond, calculated here = 2.771 Å. Outside of distorted crown geometries, there are few
energetically viable alternatives. Of these, the open-chain C2-symmetry motif (Figure 5c)
represents the only true minimum, but its energy lies well above that of the C2 crown.
Given its relatively low polarity, inclusion of PCM further widens the energy gap.

In summary, the smaller members (n = 3, 4) of the polysulfide radical anion family
adopt open chain structures, in part because they have no choice, as there is too much
ring strain in the cyclic alternatives. That being said, when alternatives exist, as in the C2v
(cis) and C2h (trans) options for S4

•−, solvent effects may well dictate the outcome, with
the non-centric cis isomer being preferred in polar solvents and the centric trans isomer
possibly being viable in non-polar solvents. For medium-sized rings, i.e., n = 5, 6, closed or
broken-ring structures compete with open-chain variants, and again the choice may depend
upon the polarity of the solvent employed, with polar environments or lattice constraints
(for n = 6)) favoring the cyclic or quasi-cyclic modifications. In the following sections we
focus on the structures most likely preferred in the latter environments. Finally, when
n = 7 and 8, the stability of the cyclic structures clearly outranks the open-chain alternatives,
regardless of solvent effects. Dynamic equilibria between cyclic and acyclic forms are
unlikely, a conclusion which may have consequences for the mechanism of formation of
S8

2− [39].

2.2. Electronic Spectra

Using the polar-medium preferred geometries afforded by the unrestricted DFT calcu-
lations described above, single point TD-DFT calculations were performed on the radical
anions Sn

•− (n = 2–8), to explore the number, nature and energies of the possible electronic
excitations. A compilation of the relevant states, dominant orbital transitions, frequencies
ν, wavelengths λ and oscillator strengths f is provided in Table 1.
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Table 1. TD-DFT electronic excitations for Sn
•− (n = 2–8).

n in Sn•− State Excitation a State ν, eV λ, nm f

2 (D∞h) 2Σg 15β→ 17β 2Σu 3.177 390.3 0.0891

3 (C2v) 2B1 24β→ 25β 2B2 2.059 602.1 0.0920

4 (C2v)
2A2 32β→ 33β 2B2 1.242 998.3 0.0722
2A2 29β→ 33β 2A1 3.533 351.0 0.0286

4 (C2h)
2Bg 32β→ 33β 2Bu 0.954 1299.5 0.0930
2Bg 29β→ 33β 2Ag 3.578 346.6 0.0000 b

5 (C2v)

2B1 40β→ 41β 2B2 0.716 1732.3 0.0734
2B1 38β→ 41β 2A1 2.583 479.9 0.0332
2B1 39β→ 42β 2A1 3.519 352.4 0.1258

5 (Cs)

2A′′ 40β→ 41β 2A′′ 0.685 1809.6 0.0589
2A′′ 38β→ 41β 2A′′ 1.940 638.2 0.0540
2A′′ 37β→ 41β 2A′′ 2.653 467.4 0.0158

6 (C2h) Bg 49α→ 50α Au 1.231 1007.3 0.0445
Bg 48β→ 49β Bg 1.978 627.5 0.0000 b

6 (C2)
2B 48β→ 49β 2B 1.495 829.6 0.0611
2B 46β→ 49β 2B 2.283 543.1 0.0308

7 (Cs chair) 2A′′ 56β→ 57β 2A′′ 1.749 708.7 0.1637

7 (Cs boat) 2A′′ 56β→ 57β 2A′′ 1.435 863.9 0.1729

8 (C2
crown)

2B 64β→ 65β 2B 2.104 589.3 0.1551

a Dominant spin-orbital transitions from unrestricted TD-UωB97X-D/PCM/def2-QZVP calculations, with
PCM = DMF. b Electric dipole forbidden.

As when dealing with geometrical trends, presentation and discussion of the results
is developed according to the value of n, beginning with the three short-chain anions
(n = 2–4), where the electronic excitations are all clearly π→ π*. From there on (n = 5–8)
the non-planar, distorted or broken-ring geometries militate against the use of conventional
σ/π symmetry descriptors which usually aid with band assignments, but for n = 5 the
calculated spectrum can still be rationalized by extension of the simple π-only model.
Finally, the single elongated S–S linkages found in the quasi-cyclic structures (n = 6–8), which
are broadly consistent with localized two-center three-electron (2c-3e) bonds, reminiscent of
those found in transient organic disulfide radical anions (RS-SR)•− [69,70], give rise to low
energy excitations that are best described as σ→ σ* processes within the 2c-3e manifold.

2.2.1. Sn
•− (n = 2–4)

The origin of the electronic excitations in the short-chain radical anions Sn
•− (n = 2–4)

can be readily understood with reference to the manifold of π-orbitals predicted by the
classical Hückel molecular orbital (HMO) linear chain model [71,72], using linear arrays of
overlapping sulfur 3p-orbitals as a basis set. For such systems the eigenvalues ej are given
by the analytical expression ej = α + 2β cos (jπ/N + 1), where α and β are the respective
Coulomb and resonance parameters, and N is the number of orbitals (atomic centers) in the
chain. Schematic plots of the resulting π-energy levels and MOs are illustrated in Figure 6.
Within this framework, a single π → π* excitation ν1 is expected for the diatomic anion
S2
•−, with a slightly lower energy nπ→ π* transition ν1 anticipated for the triatomic chain

S3
•−. Extrapolation to planar open chain S4

•− systems suggests two excitations ν1 and ν2
are possible. Of these, ν1 is predicted to occur at still lower energy, and its magnitude can
be estimated by calibration against the known value of ν1 for S3

•− (λmax = 615–620 nm in
DMF or HMPA) [73]. Based on this simple model the first transition ν1 in both isomers of
S4
•−is predicted to shift well beyond the visible region. For the cis (C2v) isomer a second
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excitation ν2 is anticipated towards the UV region, while for the trans (C2h) form ν2 should
not be observed at all, as it is symmetry-forbidden (g→ g).
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The TD-DFT calculations refine the qualitative predictions of the HMO model, con-
firming the nature of the expected transitions (Figure 7) and affording numerical estimates
for the π→ π* excitation energies involved for both the cis (C2v) and trans (C2h) isomers.
Calculated spectra for Sn

•− (n = 2–4) are shown in Figure 8.
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The close correspondence between experimental λmax values for n = 2 (~400 nm) [18]
and n = 3 (615–620 nm in DMF or HMPA) [73] and those predicted by TD-DFT (Table 1)
provide strong support for the choice of functional, and hence confidence in the calculated
values for n = 4. The results for n = 4 are also in good qualitative agreement with those
reported earlier [48,49], and thus help clarify some of the controversies surrounding the
spectrophotometric identification of putative S4

•− species. For both the cis and trans
isomers, the first transition (ν1, 32β→ 33β) lies at or beyond the edge of the visible region
(998 nm and 1300 nm, respectively), and for the cis isomer the second (ν2, 29β→ 33β) is
predicted to have λmax = 351 nm, placing it relatively close to S2

•− and also many closed-
shell dianionic species, e.g., S3

2− [42], as well as other radical anions, e.g., S5
•− (vide infra),

from which it would be hard to distinguish. For the trans isomer, the second transition
(ν2, 29β → 33β) is symmetry-forbidden and has zero oscillator strength (f = 0). It will
therefore display no signature at all in the visible region, regardless of its concentration
in solution. In this light, assertions that S4

•− has “never been observed” [39,43] by time-
resolved spectroelectrochemistry perhaps deserve a second thought; absence of evidence is
not evidence of absence.

2.2.2. S5
•−

TD-DFT analysis of the optical properties of S5
•−, using the coordinates of the chair-

shaped Cs structure identified above as the most stable in polar media, affords an electronic
spectrum (Figure 9) consisting of a series of bands spread across the entire visible and
near-IR regions. However, in contrast to the three short-chain anions already discussed, the
chair geometry of S5

•− is not planar (although the molecule is bisected by a mirror plane),
as a result of which rigorous characterization of individual orbitals and excitations between
them according to their reflection symmetry in that plane, the classical σ/π classification,
is no longer possible.

Molecules 2023, 28, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 9. Calculated electronic spectrum of S5•− in DMF, in C2v and Cs symmetry, with HWHM = 
0.18 eV; band assignments in Table 1. 

To resolve this difficulty, we examined the orbital make-up and electronic excitations 
found for the hypothetical planar variation with C2v symmetry. While it is considerably 
less stable than the Cs form, by virtue of increased lone-pair repulsions, its higher sym-
metry allows for a clearer evaluation of its spectral signature, particularly in relation to 
the HMO open-chain model developed above. Indeed, it is immediately apparent by in-
spection of the frontier orbitals illustrated in Figure 10 that excitations 40β → 41β and 38β 
→ 41β listed in Table 1 correspond to the two lowest energy π → π excitations ν1 and ν2 
predicted by the HMO linear chain model with N = 5 (Figure 6). As expected, ν1 lies deep 
into the near-IR (λmax = 1732 nm), extending the shift to lower energy seen in cis and trans 
S4•− (λmax = 998 and 1299 nm, respectively), with ν2 likewise red-shifted to λmax = 478 nm 
(from 351 nm in cis S4•−). The third, very intense excitation, from 39β → 42β, with λmax = 
352 nm, is not related to the chain model, nor even to a π → π transition, but is rather a 
lone-pair σ → σ process arising from the artificially enforced planarity of the structure. 

 
Figure 10. Correlation of spin-restricted TD-DFT frontier orbitals and electronic excitations for S5•− 
in C2v and Cs symmetry. 

With this information in hand, the origin of the optical signature of the Cs form 
emerges. The three lowest-lying states can each be described in terms a single dominant 
excitation from one of the doubly occupied molecular orbitals to the singly occupied mo-
lecular orbital (SOMO), that is, the lowest unoccupied molecular orbital (LUMO) for the 

Figure 9. Calculated electronic spectrum of S5
•− in DMF, in C2v and Cs symmetry, with

HWHM = 0.18 eV; band assignments in Table 1.

To resolve this difficulty, we examined the orbital make-up and electronic excitations
found for the hypothetical planar variation with C2v symmetry. While it is considerably less
stable than the Cs form, by virtue of increased lone-pair repulsions, its higher symmetry
allows for a clearer evaluation of its spectral signature, particularly in relation to the HMO
open-chain model developed above. Indeed, it is immediately apparent by inspection of
the frontier orbitals illustrated in Figure 10 that excitations 40β→ 41β and 38β→ 41β listed
in Table 1 correspond to the two lowest energy π → π excitations ν1 and ν2 predicted
by the HMO linear chain model with N = 5 (Figure 6). As expected, ν1 lies deep into
the near-IR (λmax = 1732 nm), extending the shift to lower energy seen in cis and trans
S4
•− (λmax = 998 and 1299 nm, respectively), with ν2 likewise red-shifted to λmax = 478 nm

(from 351 nm in cis S4
•−). The third, very intense excitation, from 39β → 42β, with
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λmax = 352 nm, is not related to the chain model, nor even to a π → π transition, but
is rather a lone-pair σ → σ process arising from the artificially enforced planarity of
the structure.
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in C2v and Cs symmetry.

With this information in hand, the origin of the optical signature of the Cs form
emerges. The three lowest-lying states can each be described in terms a single dominant
excitation from one of the doubly occupied molecular orbitals to the singly occupied
molecular orbital (SOMO), that is, the lowest unoccupied molecular orbital (LUMO) for the
unrestricted β-spins listed in Table 1. Moreover, correlation of the orbitals for the C2v and
Cs geometries confirms that the HMO chain model still applies, albeit more loosely because
of the loss of planarity and consequent σ/π mixing. Thus, while the ordering of orbitals
40 and 41 is reversed, the first excitation, 40β→ 41β (λmax = 1810 nm) can be considered
a quasi- π → π transition related to ν1 in the HMO model. The next two, 38β → 41β
(λmax = 638 nm) and 37β→ 41β (λmax = 467 nm), also involve heavily hybridized orbitals,
but both are quasi- π→ π processes that can be traced back to ν2. The higher energy (>3 eV)
absorptions comprise a series of less well-defined states arising from multiple excitations
(see Table S2).

2.2.3. S6
•−

Addressing the optical properties of the S6
•− anion presents a quandary. The crystal-

lographic evidence indicates a symmetric chair structure with C2h symmetry, while DFT
optimizations point towards a distorted C2 version. There are merits to both positions.
In solution, and in the absence of environmental constraints, the lower-symmetry C2 ge-
ometry is probably preferred, but the high space group symmetry of the [Ph4P][S6] salt
appears to hold the chair in the higher-symmetry C2h form. In that light we have per-
formed TD-DFT calculations on both options, using geometries taken from the respective
structural optimizations.

As a first step, however, we focus on a qualitative model for describing the two
elongated bonds in the symmetric structure. Building on the ideas developed earlier
by Dehnicke and coworkers [47], Figure 11a illustrates the two strongly coupled σ and
σ* orbitals arising from combinations of two S3 fragments. A second-order Jahn–Teller
distortion from C2h to C2 will give rise to mixing of the bg SOMO and bu LUMO, and a
widening of the energy gap between them. Figure 11b refines this model, by showing the
relevant spin-restricted Kohn–Sham orbitals and eigenvalues for the C2 structure, that is,
two heavily hybridized, but basically S–S σ-bonding, occupied orbitals (46 and 48), and a
more localized σ*-orbital (49).
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•− from C2h to C2 symmetry.

(b) Spin-restricted TD-DFT frontier orbitals and electronic excitations for S6
•− in C2 symmetry.

Given this conceptual framework, the optical signatures predicted for the two ge-
ometries are readily explained. As shown in Figure 12, the C2h structure displays a single
well-resolved band with λmax = 1007 nm, which corresponds not to electron promotion
from the HOMO to the SOMO, which is symmetry-forbidden (g→ g) in C2h, but rather
to the SOMO-to-LUMO excitation shown in Figure 11a (49α→ 50α, Table 1). In addition,
there are a series of less well-defined states that give rise to a broad absorption that extends
into the UV region.
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For the distorted C2 symmetry structure, the excited state manifold is quite different.
Two bands are predicted in the visible and near-IR region (λmax = 543 nm and 830), which
arise primarily from the (now allowed) excitations, 46β→ 49β and 48β→ 49β (Table 1),
from occupied orbitals to the SOMO, both of which are essentially σ→ σ* processes. As in
the case of the C2h geometry, there is a broad band extending into the UV region associated
with a series of higher energy but less well-defined states.

In summary, the optical properties of both variations of the S6
•− radical anion are

associated with transitions associated with the lengthened S–S σ-bonds. In both its excited
and ground states, the S6

•− radical anion behaves like a cyclic molecule.
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2.2.4. S7
•− and S8

•−

The two largest radical anions (n = 7 and 8) are the easiest to analyze, as the structural
perturbations occasioned by addition of an electron to the parent homocycles are small.
Based on the structural parameters provided by the DFT optimizations of the chair and
boat conformers of S7

•−, both of Cs symmetry, and of the C2 distorted crown geometry of
S8
•−, all three rings experience a lengthening of one of the S–S bonds, an effect which can

best be described in terms of the formation of a largely localized 2c-3e σ-bond.
The TD-DFT calculations reinforce this picture, providing a description for the first

excited state which involves promotion of an electron between the associated σ- and σ*-
orbitals of the 2c-3e manifold, that is, the β-spin HOMO and LUMO of the two conformers
of S7

•− (56β→ 57β) and those of S8
•− (64β→ 65β) shown in Figure 13. These transitions

give rise to single bands with large oscillator strength in the low-energy visible or near-IR
region (Figure 14). As expected, there is a notable difference between the band maxima of
the chair (λmax = 709 nm) and boat (λmax = 864 nm) conformations of S7

•− which can be
traced back to the longer S···S separation found in the latter (Figure 4).
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•−,
with HWHM = 0.18 eV; band assignments in Table 1 and Table S2.

The higher transition energy predicted for S8
•− (λmax = 589 nm) can be attributed to

a similar effect, the shorter S···S separation stemming from the mutual staggering of the
neighboring bonds and consequent relief from the effects of lone-pair repulsion. Secondary,
less intense absorptions, with λmax = 474 nm (S8

•−), 358 nm (S7
•−, chair) and 435 nm (S7

•−,
boat), are also predicted. These are associated with poorly defined, higher-lying states
(Table S2), but their presence may aid in identification. That being said, the strong low
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energy σ→ σ* excitation, which dominates the spectrum of all three species, represents the
most distinguishing optical feature.

3. Discussion

As indicated in the introduction, there are considerable differences of opinion as to
when and where the radical anions Sn

•− (n = 4–8) might be found. While their participation
in the multistep redox equilibria associated with the operation of sulfide/polysulfide
photoconductor cells, alkali-metal/sulfur batteries, as well as in many biological and
organic transformations, is frequently implied, their identification in these complex systems
has, not surprisingly, proved elusive. Equally, extensive and detailed spectroscopic and
spectroelectrochemical studies, utilizing a wide range of techniques (optical, IR, Raman,
EPR spectra), have been unable to provide decisive answers.

The purpose of the present work has been two-fold. Firstly, the most stable structures
of the putative radical anions Sn

•− (n = 4–8) in polar solvents have been identified using
high-level DFT methods. Secondly, TD-DFT calculations, performed on the most stable
structural candidates, have been used to map out the number, nature and energies of the
photochemically accessible excited states for these species. Critical to the validity of this
latter step was the ability to assess the numerical reliability of the methods used (choice of
LC-functional for TD-DFT work) by comparison of the predicted excitation energies with
experimental values for the well-known radical anions S2

•− and S3
•−. Even so, we neither

expect nor claim that the present TD-DFT calculated transition energies will provide a
perfect match with experiment for the larger members of the series, especially for the low-
energy (near-IR and beyond) excitations. Taken together, however, the results on the entire
series of anions Sn

•− (n = 2–8) provide a frame of reference for distinguishing between
different members of the family. Equally important, from an interpretational viewpoint,
has been the use of the classical one-electron HMO chain model [74,75] to anticipate both
the number and approximate energies of π→ π transitions, again using S2

•− and S3
•− as

reference points. The TD-DFT results suggest that the calculated spectra for S4
•−, and

even S5
•−, can be effectively rationalized by this approach. By contrast, the low energy

excitations predicted for the essentially cyclic structures of Sn
•− (n = 6–8) are best described

in terms of σ→ σ* processes within a relatively localized 2c-3e manifold.
The availability of this information opens the door to the design of experimental strate-

gies for the generation, observation and perhaps even isolation of the radical anions Sn
•−

(n = 4–8). We begin by considering the seminal 1991 report by Rauchfuss and coworkers
on the structure and spectroscopic properties of the open-chain octasulfide dianion S8

2−

in the absence of counterion pairing effects [48]. As noted earlier, these authors attributed
the strong band with λmax = 618 nm that emerged upon dilution of a solution of [Mn(N-
MeIm)6][S8] (N-MeIm = N-methylimidazole) in N-MeIm to the presence of the radical
anion S3

•−. At the time they rationalized the generation of S3
•− in terms of a dispropor-

tionation of S8
2− to 1

4 S8 and S6
2−, and subsequent dissociation of the latter, following

the conventional interpretation of the electrochemistry community [35,49]. Other radical
anions, notably Sn

•− (n = 4, 5), were not included in the analysis, in part because their opti-
cal signatures were unknown. Given the present TD-DFT results, however, the potential
involvement of these seemingly missing radical anions can be examined. In particular, we
consider the possibility that both might be formed, along with S3

•−, by either symmetric or
asymmetric dissociation of the S8

2− dianion, as indicated in Scheme 1. In addition to the
overall thermodynamics of such processes [43], mechanistic considerations may also be
important—how easy is it to rupture the distinct S–S bonds along the chain? In response
to this question, we suggest that dissociation may proceed via four-center intermediates,
as illustrated in Scheme 2. Indeed, in the case of symmetric dissociation, an example of a
four-center π-dimer has been characterized crystallographically [21].
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Scheme 2. Symmetric and asymmetric dissociation of S8
2− to the radical anions Sn

•− (n = 3, 4, 5).

As an example of the spectroscopic ramifications of this interpretation, we compare in
Figure 15 the experimental spectrum for the highly diluted solution of S8

2−, as reported
by Rauchfuss, with an equally weighted composite of the TD-DFT calculated spectra for
S3
•− and S5

•−, the two products of an asymmetric dissociation. In the mid-range visible
region, the correspondence is remarkable, not only in terms of the overlap and coalescence
of the two bands calculated for n = 3, 5, but also the presence of the weaker band near
480 nm which, on the present basis, may be assigned to n = 5 (calculated λmax = 467 nm).
Below 400 nm the match is less than ideal, but could be improved by inclusion into the
composite of cis S4

•− (calculated λmax = 351 nm), the unique symmetric dissociation product.
Alternatively, these higher energy absorptions may arise from undissociated S6

2−. That
being said, the absence of bands attributable to S2

•− or S6
•− suggests dissociation of S8

2−

into these species does not occur to any great extent.
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duced from [48]; copyright American Chemical Society. (b) Calculated composite spectrum, with
HWHM = 0.18 eV, for equally weighted mixture of S3

•− and S5
•− in DMF.

By itself, this single spectral deconvolution exercise does not constitute proof for mul-
tiple dissociation pathways, but critical support for the concept could be readily achieved
by inspection of the near-IR region of dilute solutions of S8

2−, where one or both of the
low-energy (ν1) bands of S4

•− and S5
•− should be present. Moreover, similar spectroscopic

analysis at high dilution of solutions of salts of the known hepta- and hexasulfide dianions



Molecules 2023, 28, 5654 16 of 21

S7
2− and S6

2− should reveal predicable patterns of radical anions, the former affording
S3
•− and S4

•− (but possibly not S5
•−) and the latter specifically S3

•−; indeed, for S6
2− this

result has already been confirmed [48]. In the same way, observation of the cyclic radical
anions Sn

•− (n = 6–8) may be possible, by examination of highly diluted solutions of long
chain dianions such S10

2− [49] and S12
2− [50].

In addition to routes to the radical anions which rely solely on dissociative equilibria
between radical anions and closed-shell dianions, direct chemical synthesis may be possible,
as in the case of the radical anion salt [Ph4P][S6], which was prepared by the rather unusual
reaction of H2S and Me3SiN3 in the presence of [Ph4P][N3] [52]. If this procedure could
be adapted to incorporate the use of other bulky cations, e.g., PPN+, different crystal
morphologies might be generated. That being the case, would the structure of the resulting
anion be constrained to C2h symmetry, as in [Ph4P][S6], or display the more stable distorted
C2 shape? Even in the solid state, the expected optical signatures (Figure 12) are predicted
to be quite different. Alternatively, not only S6

•− but also S7
•− and S8

•− could be accessible
by electrochemical reduction of the appropriate neutral allotrope [76–78]. The latter two
anions have very distinct optical profiles, although we add the caveat that the footprint of
S8
•− may easily be confused with that of S3

•−.
Chemical reduction methods, for example using organometallic reducing agents such

as cobaltocene, which is known to afford salts of closed [79] and open shell anions [80] with
sulfur-based electron acceptors, may also provide access to salts of S8

•−. In this connection
Woollins et al. obtained the salt [Cp2Co][S3N3] from the reaction of S4N4 with cobaltocene
in THF [81]. This transformation probably involves the initial generation of the radical
anion S4N4

•−, known from electrochemical studies to be formed by one-electron reduction
of S4N4, which then undergoes ring contraction to produce S3N3

− [77].
Just as chemical oxidation of cyclo-S8 has afforded the radical cation S8

•+ [78], treat-
ment of salts of the dianions S7

2− [82] and S8
2− [47,48] with mild oxidants, e.g., iodine or

N-bromosuccinimide, might well yield the corresponding radical anions S7
•− and S8

•−. An
alternative to chemical oxidation is the use of photolysis to generate polysulfide radical an-
ions from the corresponding dianions. This approach is based on the recent work of Chiba
and co-workers on the production of polysulfide radical anions Sn

•− (n = 3, 4) [25–27] via
photolysis of the polysulfide dianion S4

2−, as well as on insights provided by investigations
into the photoelectrochemical oxidation of S2− by metal-sulfide quantum dots [14,15].

Last, but not least, we acknowledge the role that serendipity has played in the ad-
vancement of the chemistry of polysulfide radical anions. For example, the procedures used
to achieve the isolation and characterization of S6

•− [52] and of the π-dimer of S4
•− [21]

would have been difficult to predict a priori, but their somewhat fortuitous discovery
strengthens the conviction that continued exploration will yield new insights. Towards that
end the present results may prove useful.

4. Computational Methods

Unrestricted density functional theory (DFT) calculations were performed with the
Gaussian 16 suite of programs [74], using the default ultrafine integration grids. Geom-
etry optimizations employed the hybrid-adapted Perdew–Burke–Ernzerhof functional
(PBE0) [75,83] and Ahlrichs’ quadruple-ξ valence def2-QZVP basis set [84], without addi-
tional diffuse functions [85] but with Grimme’s empirical correction (D3) [81,86] included to
account for possible dispersion effects [87]. For most anions several geometries, both cyclic
and acyclic, were considered, and wherever a stationary point was located a full vibrational
analysis was performed to determine whether or not it corresponded to a true energy
minimum. Preferred geometries were further optimized with the inclusion of the polarized
continuum model (PCM) [88] to account for the effects of solvation, dimethylformamide
(DMF) being set as a representative polar solvent. Listings of total energies, vibrational
frequencies and cartesian coordinates, with and without PCM, are provided in the SI.

The optical properties of the polysulfide radical anions were explored using single
point unrestricted time-dependent (TD) DFT calculations, with the same def2-QZVP basis
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set and PCM included. The use of several long range corrected (LC) functionals, which
are known to provide reasonable estimates of low energy (charge transfer, Rydberg-like)
excitations in molecular species [89,90], including radicals [91] and sulfur-containing rad-
ical anions [92], was explored. The best results, reported here, employed the empirical
dispersion-corrected density functional ωB97XD [93], which is well recognized for its
overall performance [94]. All tabulated excitation energies refer to spin-unrestricted cal-
culations, but for ease of visualization some of the orbital energy diagrams are based
on spin-restricted wavefunctions. All spectral plots, prepared using Gaussview 6 [95],
employed Gaussian band shapes with the half-width at half maximum (HWHM) value
set at 0.18 eV. The associated extinction coefficients were derived using routines available
within Gaussview. Kohn–Sham wavefunctions were also plotted using Gaussview.

5. Conclusions

The DFT and TD-DFT calculations reported here represent the first comprehensive
attempt both to predict and to rationalize the optical properties of the entire family of
polysulfide radical anions Sn

•− (n = 2–8). Our results confirm earlier predictions [52,53]
that the first π → π transition for both the cis (C2v) and slightly less stable trans (C2h)
isomers of S4

•− should occur in the near-IR region. However, a second π→ π transition at
around 350 nm is expected for the cis isomer of S4

•−. Based on Seel’s early results [19,20],
a band near 490 nm has often been attributed to this species, but these conclusions are
questionable [3]. At least in dilute solution this band may originate from S5

•−, the most
stable form of which possesses an acyclic structure with Cs symmetry, and is predicted to
display three optical absorption bands, two in the visible and one in the near-IR region.

The S6
•− radical anion is an interesting and unique example of a polysulfide radical

anion that has been structurally characterized in the solid state. In the ion-separated
salt [Ph4P][S6] the anion displays a cyclic structure (C2h symmetry) with two long S–
S bonds [51], while DFT geometry optimization points to a distorted cyclic structure
(C2 symmetry) with one long S–S bond as a more stable arrangement. The predicted
electronic spectra for these two forms are very different, with λmax = 1007 nm vs. 830 and
543 nm, respectively.

To date the heptasulfide radical anion S7
•− has received scant attention, but the present

DFT results point to a cyclic structure with two energetically similar conformers, chair
and boat (Cs symmetry), both displaying one long S−S bond best described in terms of
a localized 2c-3e σ-interaction. Electronic excitation within this manifold gives rise to a
strong visible/near-IR absorption with calculated values of λmax = 709 nm and 864 nm for
chair and boat, respectively. The octasulfide radical anion S8

•−, which carries particular
significance as the initial product of the electrochemical reduction of cyclo-S8 [3], is also
predicted to possess a distorted cyclic structure (C2 symmetry) exhibiting, like S7

•−, a
single elongated 2c-3e S−S bond. The associated σ → σ* excitation generates a strong
visible absorption band with a calculated λmax = 589 nm.

Supplementary Materials: The following supporting information (21 pages total) can be down-
loaded at: https://www.mdpi.com/article/10.3390/molecules28155654/s1, Figure S1: Optimized
geometrical parameters; Table S1: Total electronic energies; Table S2: Excitation energies, oscilla-
tor strengths and orbital contributions; Tables S3–S11: Gaussian archive entries; Tables S12–S17:
Frequency calculations.
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