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Abstract: Sulfur-protected enantiopure P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained
in high yields via the reaction of the hydroxy group of P-chiral 1-phosphanorbornane alcohol 4 with
tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl). The corresponding
optically pure silyl ethers 5a,b are purified via crystallization and fully structurally characterized.
Desulfurization with excess Raney nickel gives access to bulky monodentate enantiopure phos-
phorus(III) 1-phosphanorbornane silyl ethers 6a,b which are subsequently applied as ligands in
iridium-catalyzed asymmetric hydrogenation of a prochiral ketone and enamide. Better activity and
selectivity were observed in the latter case.

Keywords: asymmetric hydrogenation; enantiopure; P-chiral phosphines; silylation

1. Introduction

Chiral phosphines play a pivotal role in asymmetric homogeneous catalysis [1–8].
P-stereogenic phosphines, a special class of chiral phosphines, have been well established in
catalysis ever since the pioneering work on asymmetric hydrogenation (AH) employing a
P-chiral ligand was introduced by Horner et al. [9] and Knowles et al. [10]. The development
of the privileged P-chiral ligand (ethane-1,2-diyl)bis[(2-methoxyphenyl)(phenyl)phosphane]
(DIPAMP) by Knowles and coworkers [11] led to the first industrial asymmetric hydrogena-
tion in the production of the drug L-3,4-dihydroxyphenylalanine (L-DOPA) used in the treat-
ment of Parkinson’s disease [12] (Figure 1). A few years later, Noyori, another Nobel prize
winner, and his group developed the axially chiral phosphine 2,2′-bis(diphenylphosphino)-
1,1′-binaphthyl (BINAP) [13] and showed that complexes with ruthenium were effective in
asymmetric hydrogenations of a wide range of olefins and carbonyl compounds [14–17].
Nowadays, AH is considered one of the most important enantioselective syntheses that
gives access to many important optically active compounds. Among the widely used
metals in such reactions, the iridium-catalyzed hydrogenations have been extensively
studied [18–22]. The symmetric Crabtree catalyst [23], the chiral P,N bidentate PHOX lig-
and developed by Pfaltz et al. [24–26] and BIPI ligands by Busacca et al. [27] are key
examples of Ir-based catalysts in hydrogenation reactions. The majority of the developed
procedures employ bidentate hetero-donor P,X (X = N, O) ligands as they were believed to
considerably influence enantioselectivities due to better chirality transfer [28–31]. Thus, the
reluctance to employ monodentate ligands in AH is understandable, especially given the
proven history of success with chelate ligands. However, evidence of high enantiomeric
excess (ee) values in AH achieved using monodentate ligands has been reported [32–35].
Despite the success of the published compounds in enantioselective catalysis, industry and
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academia are still searching for better, more efficient and sustainable catalysts, resulting in
a number of new P-chiral compounds being reported regularly [36–38].
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Figure 1. Previously reported chiral phosphines (top row) and the P-chiral 1-phosphanorbornane
silyl ethers 6a,b (bottom row) reported in this work.

Phospholes are known to undergo hetero-Diels–Alder (HDA) reactions with vari-
ous dienophiles to afford P-heterocyclic compounds [39], and recently, we reported the
unprecedented phospha-aza-Diels–Alder reaction using an N-sulfonyl α-imino ester to
produce 1-phospha-2-azanorbornenes (PANs) [40]. We also showed that the reactive
P–N bond of PANs can be cleaved by both achiral and enantiopure nucleophiles to yield
racemic 2,3-dihydrophosphole and optically pure 1-alkoxy-2,3-dihydrophosphole deriva-
tives, respectively [40,41]. Moreover, the reduction of PAN with lithium aluminum hydride
(LAH) resulted in a seven-membered P-heterocycle [42]. Previously, we reported the
first stereoselective HDA reaction between (5R)-(L-menthyloxy)-2(5H)-furanone (MOxF)
and 2H-phospholes (Scheme 1) to produce P-chiral 1-phosphanorbornenes (2) [43] as
well as P-chiral 7-phosphanorbornenes [44] in high yields. Moreover, the reduction of
1-phosphanorbornenes yields access to 1-phosphanorbornene diol 3. The latter undergoes an
intramolecular Michael addition to afford 1-phosphanorbornane alcohol 4, which can be con-
verted into enantiopure 1-phosphanorbornane bromide for subsequent functionalization [45].
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Herein, we report the one-step synthesis of enantiomerically pure P-stereogenic
1-phosphanorbornane silyl ethers obtained via reaction of the hydroxy group in 4 with
chlorosilanes followed by desulfurization. The application of these ligands in iridium-
catalyzed AH of prochiral enamides, namely methyl-(Z)-α-acetamidocinnamate (MAC),
was studied. To our knowledge, such ligands have not yet been tested in AH nor any other
enantioselective homogeneous catalysis.

2. Results and Discussion
2.1. Synthesis and Characterization of 5a,b

The enantiopure 1-phosphanorbornane alcohol 4 (PNA) is readily prepared in very
good yields [45]. The P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained by
reaction of PNA 4 with chlorosilanes in dimethylformamide (DMF) in the presence of base
and catalyst (Scheme 2). The formation of silyl ethers is widely exploited for the protection
of alcohols, and numerous suitable silylation reagents have been reported [46–49]. We
selected tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl),
as the corresponding bulky siloxy groups provide high stability in acidic and basic media
compared to the less sterically demanding trimethylsilyl or triethylsilyl ethers [49,50].
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Scheme 2. Synthesis of sulfur-protected 1-phosphanorbornane silyl ethers 5a,b.

In this kind of established reaction, the choice of catalyst, solvent and base is important.
Initially, when CH2Cl2 was used as the solvent, the reaction of 4 with TPSCl was much
slower compared to DMF as the solvent. This supports the reported evidence of DMF
acting as a catalyst itself in silylation reactions of alcohols [51]. Consistent with the classical
procedure developed by Corey et al. [52], imidazole was employed as catalyst to afford 5b,
while for the reaction with TPSCl, 4-dimethylaminopyridine (DMAP) was used as it was
previously reported to be a successful catalyst.

Stirring at 20 ◦C overnight resulted in full consumption of PNA as confirmed by
31P{1H} NMR spectroscopy (CDCl3, singlet at 43.4 ppm for 5a and 43.6 ppm for 5b).
Thus, this one-step procedure gives access to 5a,b in very good yields under mild condi-
tions. Pure 5a,b were isolated by crystallization; single crystals suitable for X-ray crystallo-
graphy (Supplementary Materials, Section S3) were obtained by dissolving 5a,b in a hot
iPrOH/n-hexane mixture and cooling to −25 ◦C for 17 h. High chemical (98%) and optical
purity of the UV-active compound 5a were confirmed by HPLC using a chiral column
(Supplementary Materials, Figure S13), while the chemical purity of 5b was verified by
elemental analysis. High-resolution mass spectrometry (HRMS) showed the presence of the
expected ions, namely [5a + H]+ (m/z 491.1617), [5a + NH4]+ (m/z 508.1878), and [5a + Na]+

(m/z 513.1447) or [5b + H]+ (m/z 347.1631) and [5b + Na]+ (m/z 369.1451), respectively.
The molecular structures of 5a,b were also confirmed by 2D NMR spectroscopy.

The enantiopure compounds crystallize in the triclinic space group P1 with two
independent molecules in the unit cell (5a) or in the monoclinic space group P21 with Z = 2
(5b), respectively. The phosphorus atom has a distorted tetrahedral environment (Figure 2).
The Si–O bond lengths are in the range of 164.1(2) to 165.4(2) pm, which is in agreement
with the literature [53,54].
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Figure 2. Molecular structures of 5a and 5b. Hydrogen atoms were omitted for clarity. Only one
of the two independent molecules of 5a is shown. Displacement ellipsoids are drawn at the 50%
probability level.

2.2. Desulfurization of Compounds 5a,b

The P-chiral 1-phosphanorbornane silyl ethers 5a,b can be reduced (desulfurized)
to the corresponding phosphorus(III) derivatives with excess of freshly activated Raney
nickel at room temperature (Scheme 3). No further work up is required after the reaction
is finished. Moreover, this method is mild and tolerates many other functional groups
guaranteeing selective desulfurization of the phosphorus atom. In contrast, treating 5a,b
with the very strong base lithium aluminum hydride (LAH) at 50 ◦C requires further
quenching and has a risk of side reactions. Nevertheless, 31P{1H} NMR spectra (CDCl3) of
the reaction mixtures of 5a and both reducing agents revealed full conversion of the starting
material and formation of 6a (singlet at −45.9 ppm). In contrast, 5b can only be reduced
cleanly with excess Raney nickel (singlet at−46.3 ppm for 6b in the 31P{1H} NMR spectrum
(CDCl3)), while the reduction of 5b with LAH resulted in formation of side products, which
are presumably formed by deprotection of the silyl group. Although the TBDMS and TPS
groups are known to be stable in various media, examples of TBDMS ether cleavage by
LAH have been reported previously [55–57]. Therefore, the reduction of both compounds
was carried out with Raney nickel.
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The structures of 6a,b were fully confirmed by 2D NMR spectroscopy. However, due
to the high oxophilicity of the phosphorus atom, mainly the corresponding oxides were
observed by HRMS ([6a + O + H]+ (m/z 475.1795), [6a + O + Na]+ (m/z 497.1644), [6b + Na]+

(m/z 337.1722), [6b + O + Na]+ (m/z 353.1668), and [6b + O + K]+ (m/z 369.1420)).

3. Catalysis

Bidentate (mixed donor) chiral ligands developed by Pfaltz et al. [58] and
Andersson et al. [59] are mostly used in Ir-catalyzed asymmetric hydrogenation of olefins.
On the other hand, the use of chiral monodentate phosphines in Ir-catalyzed enantioselective
hydrogenation is uncommon. Encouraged by the previous result on an Ir/phosphoramidite
catalyst in AH [34], we evaluated the activity of the bulky monodentate P-chiral 1-phospha-
norbornane silyl ethers 6a,b in the asymmetric hydrogenation of carbonyl compounds and



Molecules 2023, 28, 6210 5 of 11

olefins. No or minor conversion was observed in the asymmetric hydrogenation of ace-
tophenone (S-1) using [Ir(COD)Cl]2/6a (1 mol%, M:L = 1:3) as catalyst in dichloromethane
(Scheme 4). However, up to 20% conversion was obtained with potassium tert-butoxide as
base (20 mol%), albeit with formation of racemic 1-phenylethan-1-ol (P-1) (Table 1).
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Table 1. Asymmetric hydrogenation of acetophenone (S-1) employing Ir/6a as catalyst.

Entry M/L Conversion ee

1 1:3 - -

2 a 1:2 - -

3 a 1:3 6% racemate

4 b 1:3 20% racemate
a K2CO3 (20 mol%); b KOtBu (20 mol%).

Then, the catalytic activities of 6a,b in the asymmetric hydrogenation of the func-
tionalized olefin methyl (Z)-2-acetamido-3-phenylacrylate as benchmark substrate was
studied. The catalytic experiments were performed by premixing the ligand (6a or 6b) and
the iridium complex (Scheme 5). The hydrogenation of S-2 proceeds with 98% conversion
using [Ir(COD)Cl]2/6a (5 mol%, M:L = 1:1) as the catalyst, but with poor enantioselectivity
(Table 2, Entry 1). A similar activity was observed when the catalyst loading was decreased
to 0.5 mol% (Table 2, Entry 2) in dichloromethane. Changing the solvent to MeOH and
THF did not improve the ee, but resulted in lower conversion (Table 2, Entry 3 and 4).
The catalytic activity was not affected by altering the silyl substituent from SiPh3 (6a) to
SiMe2

tBu (6b) (Table 2, Entry 5). Apparently, the bulky silyl group is not in close proximity
to the catalytically active iridium center.
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Scheme 5. Asymmetric hydrogenation of methyl (Z)-2-acetamido-3-phenylacrylate (* indicates a
chiral center).

Table 2. Asymmetric hydrogenation of methyl (Z)-2-acetamido-3-phenylacrylate (S-2) using Ir/6a or
6b as catalyst.

Entry Solvent Conversion ee

1 a CH2Cl2 98% 8%

2 b CH2Cl2 >99% 9%

3 b MeOH 90% 8%

4 b THF 50% -

5 c CH2Cl2 95% 8%
Reaction conditions: [Ir(COD)Cl]2/6a (1:2), substrate/catalyst (S/C) = 100, [substrate] = 0.5 mmol, H2 (50 bar),
solvent = dichloromethane, 30 ◦C, 15 h. a 5 mol% catalyst (M:6a = 1:2); b 6a (1 mol%); c 6b (1 mol%).
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4. Conclusions

A highly efficient and facile synthesis of enantiomerically pure sulfur-protected P-
stereogenic 1-phosphanorbornane silyl ethers 5a,b via reaction of the alcohol function of 4
with chlorosilanes is described. Moreover, this method can be applied to prepare a variety
of compounds with desired electronic and steric effects via the appropriate choice of the
corresponding chlorosilane. The phosphorus(III) derivatives 6a,b are readily accessible
via desulfurization of 5a,b with excess Raney nickel. The phosphines 6a,b were tested
as ligands in the Ir-catalyzed asymmetric hydrogenation of acetophenone and methyl
(Z)-2-acetamido-3-phenylacrylate resulting in moderate to high conversions but poor ee.
Further studies on different ligand variations based on the chiral phosphanorbornane motif
and their application in enantioselective catalysis are underway.

5. Materials
5.1. General Information

All air-sensitive reactions were carried out under dry high purity nitrogen using
standard Schlenk techniques. THF was degassed and distilled from potassium. DMF was
degassed and dried under activated 4 Å molecular sieves. TBDMSCl and TPSCl were
purchased from Carbolution (St. Ingbert, Germany) or Sigma Aldrich (St. Louis, MO, USA),
respectively. The NMR spectra were recorded with a Bruker Avance DRX 400 spectrometer
(1H NMR 400.13 MHz, 13C NMR 100.63 MHz, 31P NMR 161.98 MHz) or a Bruker Fourier
300 spectrometer (1H NMR 300.23 MHz, 13C NMR 75.50 MHz). 13C{1H} NMR spectra
were recorded as APT spectra. The assignment of the chemical shifts and configurations
was performed using correlation spectroscopy (COSY) and heteronuclear single quantum
coherence (HSQC) techniques. Tetramethylsilane (TMS) was used as the internal standard
in the 1H NMR spectra and all other nuclei spectra were referenced to TMS using the Ξ-
scale [60]. The numbering scheme of 5a,b and 6a,b is given in the Supplementary Materials.
High-resolution mass spectra (HRMS; electrospray ionization (ESI)) were measured using
a Bruker Daltonics APEX II FT-ICR spectrometer (Billerica, MA, USA). IR spectra were
obtained with an FTIR spectrometer (Nicolet iS5 FTIR by Thermo Scientific, Waltham, MA,
USA) in the range of 400–4000 cm−1 in KBr. Column chromatography was performed
using silica 60 (0.015–0.040 mm) purchased from Merck (Rahway, NJ, USA). UV light
(389 nm) and iodine (saturated atmosphere) were used as staining reagents. The synthesis
of the starting material PNA 4 and Raney nickel activation were carried out according to
the literature [45].

5.2. Synthesis
5.2.1. Synthesis of 5a

TPSCl (0.38 g, 1.28 mmol) was added to a solution of 4 (0.2 g, 0.86 mmol) and NEt3
(0.18 mL, 1.28 mmol) in 12 mL DMF at room temperature. Further 20 mg of DMAP
(0.017 mmol) was added and the reaction mixture was stirred for 17 h at 20 ◦C. The mixture
was washed with sat. aq. NH4Cl solution and the separated organic layer was further
washed with 5 mL water 3 times. The combined organic phases were dried over MgSO4.
The solvent was removed under reduced pressure to give a white powder. The compound
was dissolved in hot iPrOH/n-hexane and then cooled at −25 ◦C for 17 h. The formed
white solid was isolated, washed with 3 mL cold n-hexane 3 times and dried in vacuo to
afford 308 mg of 5a as a white powder. Yield: 308 mg (73%). Single crystals of 5a suitable
for X-ray crystallographic studies were obtained by dissolving 5a in a hot iPrOH/n-hexane
mixture and cooling to −25 ◦C for 17 h (Supplementary Materials, Figure S14).
1H NMR (400 MHz, CDCl3): δ 7.61 (m, 5H), 7.50–7.25 (m, 10H), 4.33 (m, 1H, H-5 or H-6a),
4.16–4.01 (m, 2H), 3.94 (dd, J = 9.9, 5.7 Hz, 1H, H-5 or H-6a), 2.67–2.45 (m, 2H), 2.25 (m,
1H, H-6 or H-7 or H-2), 2.00 (m, 1H), 1.92–1.78 (m, 2H), 1.24 (s, 3H, H-3a or H-4a), 1.20
(s, 3H, H-3a or H-4a) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ 135.4 (s, C-aryl), 135.2 (s,
C-aryl), 133.4 (s, C-aryl quart.), 130.3 (s, C-aryl), 129.8 (s, C-aryl), 128.0 (s, C-aryl), 127.7 (s,
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C-aryl), 86.3 (s, C-quart.), 66.3 (s), 59.0 (d, JC,P = 6.1 Hz), 51.3 (d, 2JC,P = 19.5 Hz, C-quart.),
47.3 (d, 2JC,P = 2 Hz, C-5), 44.8 (d, 1JC,P = 46.7 Hz, C-6), 41.4 (d, 1JC,P = 44.8 Hz, C-2 or
C-7), 40.3 (d, 1JC,P = 51.8 Hz, C-2 or C-7), 23.9 (d, 3JC,P = 7.2 Hz, C-3a or C-4a), 18.3 (d,
3JC,P = 15.9 Hz, C-3a or C-4a) ppm; 31P{1H} NMR (162 MHz, CDCl3): δ 43.4 (s) ppm; HRMS
(ESI, MeCN), m/z: found: 491.1617, calculated for [M + H]+: 491.1624; found: 508.1878, calc.
for [M + NH4]+: 508.1890; found: 513.1447, calc. for [M + Na]+: 513.1444; found: 998.3474,
calc. for [2M + NH4]+: 998.3441; found: 1003.3032, calc. for [2M + Na]+: 1003.2996; IR (KBr,
∼
v/cm−1): 3067 (w), 2975 (w), 2881 (w), 1588 (w), 1485 (w), 1427 (m), 1381 (w), 1369 (w),
1306 (w), 1250 (w), 1189 (w), 1114 (s), 1077 (s), 1053 (m), 1042 (m), 1012 (m), 996 (m), 958 (m),
928 (w), 881 (m), 862 (w), 841 (w), 800 (m), 775 (m), 738 (m), 709 (s), 697 (s), 675 (m), 619 (m),
609 (w), 582 (w), 506 (s), 481 (s), 448 (m), 435 (m).

5.2.2. Synthesis of 5b

TBDMSCl (0.146 g, 0.97 mmol) was added to a solution of 4 (0.15 g, 0.65 mmol) and
NEt3 (0.135 mL, 0.97 mmol) in 10 mL DMF at room temperature. Further 13 mg of imidazole
(0.19 mmol) were added and the reaction mixture was stirred for 17 h at 20 ◦C. The mixture
was washed with sat. aq. NH4Cl solution and the separated organic layer was further
washed with 5 mL water 3 times. The combined organic phases were dried over MgSO4.
The solvent was removed under reduced pressure to give a white powder. The compound
was dissolved in hot iPrOH/n-hexane and then cooled at −25 ◦C for 17 h. The resulting
white solid was washed with 3 mL cold n-hexane 3 times and dried in vacuo to afford
154 mg of 5b as a white powder. Yield: 154 mg (69%). Elemental analysis: C16H31O2PSSi
(346.54) calc. C 55.5%, H 9.0%; found C 55.7%, H 9.1%. Single crystals of 5b suitable for
X-ray crystallographic studies were obtained by dissolving 5b in a hot iPrOH/n-hexane
mixture and cooling to −25 ◦C for 17 h (Supplementary Materials, Figure S15).
1H NMR (400 MHz, CDCl3): δ 4.20–4.07 (m, 2H, H-5a/6a), 3.94 (m, 2H, H-5a/6a), 2.62–2.41
(m, 2H, H-5 or H-6), 2.31 (m, 1H, H-5 or H-6), 2.02 (m, 1H, H-2 or H-7), 1.96–1.83 (m, 2H,
H-7 or H-2), 1.26 (s, 3H, H-3a or H-4a), 1.20 (s, 3H, H-3a or H-4a), 0.88 (s, 9H, H-9a), 0.09 (s,
6H, H-8) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ 86.3 (s, C-quart.), 66.2 (s, C-5a), 58.1 (d,
2JC,P = 5.6 Hz, C-6a), 51.3 (d, 2JC,P = 19.4 Hz, C-quart.), 47.3 (d, 2JC,P = 2.3 Hz, C-5), 44.8 (d,
1JC,P = 47.0 Hz, C-6), 41.6 (d, 1JC,P = 44.8 Hz, C-2 or C-7), 40.3 (d, 1JC,P = 51.8 Hz, C-2 or C-7),
25.8 (s, C-9a), 23.9 (d, 3JC,P = 7.3 Hz, C-3a or C-4a), 18.3 (d, 3JC,P = 16.0 Hz, C-3a or C-4a),
18.1 (s, C-9), −5.5 (d, J = 6.1 Hz, C-8) ppm; 31P{1H} NMR (162 MHz, CDCl3) δ 43.6 (s) ppm;
HRMS (ESI, MeCN), m/z: found: 347.1631, calc. for [M + H]+: 347.1624; found: 369.1451,
calc. for [M + Na]+: 369.1444; IR (KBr,

∼
v/cm−1): 2948 (m), 2925 (m), 2877 (m), 2853 (m),

1497 (w), 1468 (w), 1426 (w), 1383 (w), 1360 (w), 1311 (w), 1258 (m), 1245 (m), 1198 (w),
1162 (w), 1122 (m), 1077 (s), 1041 (m), 1029 (m), 1011 (m), 959 (m), 930 (w), 881 (s), 867 (s),
829 (m), 815 (m), 783 (s), 768 (s), 749 (m), 721 (s), 675 (s), 658 (s), 586 (w), 563 (w), 511 (m),
481 (w), 447 (m).

5.2.3. Synthesis of 6a

Compound 5a (200 mg, 0.41 mmol) was added to a suspension of freshly activated
Raney nickel in THF (ca. 2 g, excess) and stirred for 17 h at room temperature. The clear
solution was filtered and the black solid was washed four times with 5 mL THF each. The
solution was concentrated to give 142 mg of 6a as a white solid (76%). Yield: 142 mg (76%).
1H NMR (400 MHz, THF-d8): δ 7.54–7.44 (m, 3H), 7.39–7.33 (m, 3H), 7.33–7.19 (m, 6H),
7.13 (m, 3H), 3.86 (m, 2H, H-2 or H-7), 3.61–3.51 (m, 2H, H-5a or H-6a), 2.38 (m, 1H, H-6
or H-5), 2.13 (m, 1H, H-5 or H-6), 1.44–1.16 (m, 4H, H-2 or H-7, H-5a or H-6a), 0.99 (s, 3H,
H-3a or H-4a), 0.97 (s, 3H, H-3a or H-4a) ppm; 13C{1H} NMR (101 MHz, THF-d8): δ 135.1
(s, C-aryl), 134.9 (s, C-aryl), 134.2 (s, C-aryl quart.), 129.6 (s, C-aryl), 129.5 (s, C-aryl), 127.5
(s, C-aryl), 127.4 (s, C-aryl), 86.9 (s, C-quart.), 63.7 (s), 62 (d, 1JC,P = 14.9 Hz, C-2 or C-7),
47.5 (d, 2JC,P = 3.3 Hz, C-5), 45.1 (d, 1JC,P = 13.5 Hz, C-6), 38 (d, 1JC,P = 16.0 Hz, C-2 or C-7),
36.7 (d, J = 6.6 Hz, C-6a or C-5a), 23.7 (s, C-3a or C-4a), 17.5 (s, C-3a or C-4a) ppm; 31P{1H}
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NMR (162 MHz, C6D6): δ −45.6 (s) ppm; HRMS (ESI, MeCN), m/z: found: 475.1795, calc.
for [M + O + H]+: 475.1863; found: 497.1644, calc for [M + O + Na]+: 497.1672.

5.2.4. Synthesis of 6b

Compound 5b (53 mg, 0.153 mmol) was added to a suspension of freshly activated
Raney nickel in THF (ca. 0.44 g, excess) and stirred for 17 h at room temperature. The clear
solution was filtered and the black solid was washed four times with 2 mL THF each. The
solution was concentrated to give 31 mg of 6b as a colorless oil (63%). Yield: 31 mg (63%).
1H NMR (400 MHz, C6D6): δ 3.89–3.82 (m, 2H), 3.77–3.67 (m, 2H), 2.34 (m, 1H), 1.95–1.90
(m, 1H), 1.75 (dt, J = 15.4, 3.1 Hz, 1H, H-2 or H-7), 1.43–1.33 (m, 1H), 1.21–1.15 (m, 1H),
1.1 (s, 3H, H-3a or H-4a), 0.91 (s, 9H, H-8a), 0.89 (s, 3H, H-3a or H-4a), 0.29 (s, 6H, H-7)
ppm; 13C{1H} NMR (101 MHz, C6D6): δ 64.1(s, C-5a), 61.3 (d, J = 15.0 Hz, C-6a), 47.6 (d,
2JC,P = 3.6 Hz, C-5), 45.2 (d, 1JC,P = 12.9 Hz, C-6), 38.52 (d, 1JC,P = 15.7 Hz, C-2 or C-7), 37.03
(d, 1JC,P = 6.4 Hz, C-2 or C-7), 25.7 (s, C-9a), 24.5 (s, C-3a or C-4a), 18.1 (s, C-3a or C-4a),
−5.7 (d, J = 11.6 Hz, C-8) ppm; 31P NMR (162 MHz, C6D6): δ −45.6 (s) ppm; HRMS (ESI,
MeCN), m/z: found: 337.1722, calc. for [M + Na]+: 337.1723; found: 353.1668, calc. for
[M + O + Na]+: 353.1672; found: 369.1420, calc. for [M + O + K]+: 369.1412.

5.3. Catalysis
General Procedure for Hydrogenations

Ketone hydrogenation: The hydrogenation experiments were performed in stainless
steel autoclaves charged with an insert suitable for up to 8 reaction vessels (4 mL) with
teflon mini stirring bars. In a typical experiment, a reaction vessel was charged with
[Ir(COD)Cl]2 (1 mol%), ligand (1–3 mol%, as desired) and base (20 mol%) and stirred
for 10–15 min in the dichloromethane (2 mL). Then, acetophenone (S-1, 0.5 mmol) was
added to the reaction vials maintaining the inert atmosphere and the vessels were placed
in a high pressure autoclave. The autoclave was purged two times with nitrogen and
three times with hydrogen. Finally, it was pressurized at 50 bar H2 at 25 ◦C for 12 h.
Afterwards, the autoclave was depressurized and the contents of the reaction vessels
were diluted with EtOAc and filtered through a short pad of silica. The conversion was
determined by GC, GC-MS and NMR measurement and the enantiomeric excess was
measured by chiral GC analysis.

Olefin hydrogenation: The hydrogenation experiments were performed in stainless
steel autoclaves charged with an insert suitable for up to 8 reaction vessels (4 mL) with
teflon mini stirring bars. In a typical experiment, a reaction vessel was charged with
[Ir(COD)Cl]2 (0.5 mol%), ligand (1 mol%) in the appropriate solvent (2 mL). Then, methyl
(Z)-2-acetamido-3-phenylacrylate (S-2, 0.5 mmol) was added to the reaction vials main-
taining the inert atmosphere and the vessels were placed in a high pressure autoclave.
The autoclave was purged two times with nitrogen and three times with hydrogen gas.
Finally, it was pressurized at 50 bar H2 at 30 ◦C for 15 h. Afterwards, the autoclave was
depressurized and the contents of the reaction vessels were diluted with EtOAc and filtered
through a short pad of silica. The conversion was determined by GC, GC-MS and NMR
measurements and the enantiomeric excess was measured by chiral GC analysis.

5.4. X-ray Crystallography Data

The data were collected on a Gemini diffractometer (Rigaku Oxford Diffraction) using
Mo-Kα radiation andω-scan rotation. Data reduction was performed with CrysAlisPro [61]
including the program SCALE3 ABSPACK for empirical absorption correction. All struc-
tures were solved by dual space methods with SHELXT [62] and the refinement was
performed with SHELXL [63]. For 5b, hydrogen atoms were calculated on idealized posi-
tions using the riding model, whereas for 5a, a difference-density Fourier map was used to
locate hydrogen atoms. Structure figures were generated with DIAMOND-4 [64].

CCDC deposition numbers 2287331 for 5a and 2287332 for 5b contain the supple-
mentary crystallographic data for this paper. These data can be obtained free of charge
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via https://www.ccdc.cam.ac.uk/structures/, accessed on 25 May 2023 (or from the
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44)1223-336-033 or deposit@ccdc.cam.uk).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28176210/s1, NMR spectra of 5a,b and 6a,b,
details for the crystallographic characterization, HPLC data of 5a as well as chromatograms from
catalytic tests are available in the Supplementary Materials.
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