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Abstract: The research on new compounds against plant pathogens is still socially and economically
important. It results from the increasing resistance of pests to plant protection products and the
need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and
industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide–hydrazones with aromatic
fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea,
Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified
as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The
highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with
3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible
to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two
variants of phytotoxicity tests for representative crop seeds and selected hydrazide–hydrazones. Most
tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive
impact on seed germination infected with fungi was observed. With the potential for application, the
cytotoxicity of the hydrazide–hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was
lower than that of the azoxystrobin fungicide tested.

Keywords: antifungal activity; benzaldehydes; benzohydrazides; cytotoxicity; oxidoreductase;
phytotoxicity; salicylic aldehydes

1. Introduction

In recent years, the number of active substances used as plant protection products
has decreased as the ones with the highest toxicity and harmfulness have been withdrawn
from the environment [1]. Furthermore, the fungicide resistance of phytopathogens is an
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increasingly severe problem worldwide [2]. Improper application of available prepara-
tions, which often work according to similar mechanisms of action, makes the pathogens
immune to them. Therefore, plant protection strategies have evolved and changed in more
complex activities, including nonchemical and chemical control methods [3]. Both ap-
proaches, when applied simultaneously, may decrease pathogen growth rates and the use
of fungicides, minimizing selection for resistant strains. Nevertheless, chemical treatment
is still a valuable and required tool for plant infection control and also reduces selection
for pathogen strains with increased virulence against resistant cultivars [3,4]. Biologically
active compounds for fungal disease control of plants could be divided into several classes
as multisite mode-of-action fungicides, single site-of-action fungicides, plant activators,
natural products and natural product-derived fungicides, biopesticides, chemical fumi-
gants, and biofumigants [4]. Most have fungicidal or fungistatic effects, while others do
not influence pathogens as they induce plant resistance to their attack.

In mild climates, many pathogens of plants can cause significant economic losses
during crops’ cultivation and storage. One of the most difficult to limit is polyphagous
fungi, such as Botrytis cinerea Pers. and Sclerotinia sclerotiorum (Lib.) de Bary, due to there
being many host plants and the ability to create resting bodies (sclerotia) in plant debris in
the soil that can last for many years. Botrytis cinerea, which causes gray mold disease, is a
significant plant threat in the growing season. It is a cosmopolitan fungus noted throughout
the world. It infects more than 240 different plant species [5]. The most significant losses
result in temperate and tropical climate regions. It is a facultative parasite that can live a
saprotrophic lifestyle in the form of mycelium and sclerotia on plant debris in the soil. Still,
very often, it becomes a parasitic lifestyle under favorable conditions for its development.
During the growing season, large amounts of conidial spores spread the disease on the
plantation. The pathogen contributes to significant economic losses in horticultural crops
(mainly strawberries and berry bushes), vegetable crops (e.g., cucumber), and ornamental
plants [6,7]. The fungus produces toxins, which are derivatives of botrydial and botcinins,
which are undesirable in strawberry fruit [8]. The result of infestation may be gangrene
of seedlings, gangrene of flowers, and gray rot of shoots and fruit. Sclerotinia sclerotiorum
causes white mold disease. The fungus is a polyphag that infects about 400 species of
plants [9] and occurs on all continents. In mild climates, it has an adverse effect on the
cultivation of rapeseed, sunflower, and vegetables. It causes yield losses of up to 60%
in oilseed rape, as infected plants often result in massive seed drop. White mold causes
considerable losses in the storage of root vegetables, especially carrots. The pathogen does
not produce conidial spores, only ascospores. They form in fruiting bodies (apothecia).
Under unfavorable conditions, the fungus produces sclerotia, in the form of which it
overwinters in plant debris or stored roots. In the spring, sclerotia grows cupped apothecia
on long legs, promoted by moist soil and higher temperatures [10,11].

Cerrena unicolor (Bull.) Murrill is a different type from the above-characterized mold
fungi, as it is a decaying arboreal fungus belonging to the Basidiomycetes and the family
Polyporaceae, classified as a wound parasite and saprotroph [12]. It is found in deciduous
and mixed woodland and in parks and gardens. It attacks and colonizes living and
weakened broadleaf trees, most commonly chestnut trees (Aesculus sp.), maples (Acer sp.),
beech trees (Fagus sp.), and oaks (Quercus sp.). The fungus is widespread throughout the
year in Europe, Africa, and South America but is rare. It is also commonly known as the
mossy maze polypore but presents high similarity to the genus Trametes fungi [13]. It is
among the fungi that cause white wood rot, characterized by the decomposition of all the
components of plant biomass: cellulose, hemicellulose, and lignin. The fungi described
above have the common trait of producing laccases–copper-dependent oxidoreductases.
The enzymes from B. cinerea [14,15], S. sclerotiorum [16], and C. unicolor [17] have been
isolated and described in the literature.

Laccases are catalytic proteins with particular substrate specificity toward a broad
group of electron-rich arenes, mostly phenols, that are oxidized through a one-electron
mechanism directly with molecular oxygen or in the presence of mediators. The laccase
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active center comprises four copper atoms (type Cu1, type Cu2, and two type Cu3s), in
which Cu1 interacts with an electron-rich substrate, and the trinuclear-Cu cluster binds
oxygen molecules. In nature, laccase conducts the polymerization and depolymerization
reactions, which are related to the natural role of lignification and delignification processes
in plants and fungi, respectively [14]. Laccases may be produced in different isoforms by
fungi, usually in the presence of polyphenols and copper ions [18–21].

This research focuses on compounds containing fragments of naturally occurring
molecules that may act as antifungal agents or plant resistance activators. In this context,
phenolic compounds are an interesting group of low-molecular-weight species, including
simple phenols, aldehydes, polyphenolic acids, flavonoids, coumarins, stilbenes, and tan-
nins that are widely distributed in the plant kingdom [22]. Phenolic acids have essential
physiological functions, such as defense against herbivores and pathogens, antioxidation,
protection of cell structures from harmful solar radiation or free radicals, and other substruc-
tural functions [23]. Of the various phenolic compounds found in plants, hydroxybenzoic
acids are among the simplest phenolic acids that act in response to environmental stresses.
For instance, in cucumber leaves infected with Pseudomonas syringae van Hall, the synthesis
and accumulation of both salicylic and 4-hydroxybenzoic acid were observed in the stems
and petioles in response to a mobile signal from the inoculated leaf as part of systemic
acquired resistance [24]. Furthermore, it was tested when applied exogenously to wheat
cultivars to test crop tolerance to short-term drought and freezing, resulting in increased
stress tolerance [25]. In other studies, 4-hydroxybenzoic acid was found to be synthesized
de novo and covalently linked to cell wall polysaccharides in the carrot protoplast system
upon activating the phenylpropanoid pathway induced through fungal elicitor from plant
pathogen Pythium aphanidermatum (Edson) Fitzp. [26,27]. Plant material contains, among
others, thymol, salicylic acid, and salicylic aldehyde, which were tested separately and
showed total fungal inhibition growth of Fusarium, Penicillium, and Aspergillus species at
a high concentration of 1 g/L [28]. Interestingly, thymol was effective against non-plant
and plant pathogens such as Cryptococcus neoformans Vuill. and Rhizopus sp., respectively,
and its isomer carvacrol against Candida albicans (CP Robin) Berkhout [29]. Among various
phenolic compounds, 4-hydroxybenzoic acid is one of the simpler polyphenolic laccase
mediators [30], and it is still within our area of interest.

To date, many studies have been carried out on aryl OH-substituted hydrazide–
hydrazones (see Figure 1), covering several biological aspects, such as antimicrobial [31–35],
antiviral [33,36–39], anticancer [40–43], antiradical [31,44], enzyme inhibitors [40,44–49],
cytotoxicity [36,50], and photophysical activity [51,52]. Recently, Mali et al. [33] and
Popiołek [32] published exhaustive, comprehensive reviews on the biological activity,
including antimicrobial activity, of hydrazides and their derivatives. Several articles de-
scribed the examples of aryl-OH-substituted hydrazide–hydrazones in the context of the
antibacterial, antifungal, and antiviral activities. For instance, the derivatives of 2-chloro-
6-fluorobenzaldehyde with salicylic acid and 4-hydroxybenzoic acid hydrazides Ia and
Ib, respectively, were active against the Gram-positive bacterium Bacillus subtilis [31].
In other studies, the 4-hydroxybenzaldehyde derivative of 2-[(1-methyl-1H-tetrazol-5-
yl)thio)acetohydrazide (II) showed weak anticandidal activities (MIC 0.5–1.0 mg/mL) com-
pared to ketoconazole (MIC 1–31 µg/mL) and promising anticancer activity against NIH3T3
cell line with IC50 = 0.632 mM [34]. On the other hand, the imine derivative of salicylic alde-
hyde and anthranilhydrazide (III) had very good antibacterial and antifungal effects with
the most susceptible Staphylococcus aureus and Candida albicans strains [35]. A derivative of
vanillin aldehyde and pyrrolidin-2-one (IV) had activity against the mold Geotrichum can-
didum comparable to hymexazol [53]. Interestingly, the 5-chloro-2-hydroxybenzaldehyde
derivative of sclareolide Va drimane sesquiterpenoid from Salvia sclarea L. had thiadiazol
copper (used as positive control) antibacterial activity on Xanthomonas oryzae pv. oryzae at
the concentration of 50 µg/mL, but the 5-bromo-2-hydroxybenzaldehyde derivative Vb
inactivated the TMV virus in vivo at 0.5 mg/mL concentration similar to ribavirin [37].
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The 4-hydroxybenzaldehyde derivative of dehydrobufotenine analog VIa showed
ribavirin activity at 500 µg/mL concentration and more promising ningnanmycin activity at
100 µg/mL toward plant tobacco mosaic virus (TMV) and 2-bromo-3-hydroxybenzaldehyde
derivative VIb shown chlorothalonil fungicidal activities at concentration 50 µg/mL toward
phytopathogenic Alternaria solani, Fusarium graminearum, Sclerotinia sclerotiorum, Rhizoctonia
solani, and Botrytis cinerea [54]. An alkaloid from Echinops sphaerocephalus L.–echinopsine
and their hydrazide–hydrazone derivative were examined as fungicidal compounds. The
4-hydroxybenzaldehyde derivative VII at a concentration of 50 µg/mL showed very
good activity against phytopathogenic fungi: Sclerotinia sclerotiorum and Magnaporthe
grisea [55]. The indole derivative diketopiperazine acylhydrazone and 3,5-di-tert-butyl-
4-hydroxybenzaldehyde (VIII) showed high inhibitory activity on tobacco mosaic virus
(TMV), comparable to the pesticide ningnanmycin, and moderate activity on diamondback
moth (Plutella xylostella) and mosquito (Culex pipiens pallens) larvae [56].

Hydrazide–hydrazones, derivatives of 4-trifluoromethylhydrazide, showed inhibition of
two important enzymes involved in the breakdown of choline neurotransmitters, important in the
treatment of neurological diseases, including Alzheimer’s disease. As a result, the salicylaldehyde
derivative IX was found to be a highly selective acetylcholinesterase (AChE) inhibitor in relation to
butyrylacetylcholinesterase (BuChE) with a BuChE/AChE selectivity of 18.6. This was a promising
result for the non-selective drug galantamine (BuChE/AChE = 1.8) [45]. Furthermore, studies have
shown that this derivative is non-toxic in tests on liver cancer cell HepG2 (human hepatoblastoma
cell line). In the article dealing with the same issue, derivatives of isoniazid with salicylic aldehydes
or 4-hydroxybenzaldehydes were inactive against AChE, but the gentisaldehyde derivative X
had activity comparable to isoniazid with an IC50 of 4.8 µM on MPO (myeloperoxidase), and the
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free radical scavenging efficiency was at the level of quercetin control [44]. The research [38] was
conducted on a series of diflunisal (2′,4′-difluoro-4-hydroxybiphenyl-3-carboxylic acid) hydrazide–
hydrazones to determine antiviral activity against hepatitis C virus (HCV) and cytotoxicity toward
liver cancer cell lines (Huh7, HepG2, HepB3, Mahlavu). From the results of these authors, the
imine derivative of diflunisal hydrazide with 2-pyridylaldehyde (XI) was identified as the most
active against HCV with an EC50 of 3.9 µM and sequential on all launched lines, with the lowest
EC50 of 4.74 µM for the Mahlavu line. In the work [49] on α-glucosidase inhibitors used in the
treatment of type-2 diabetes, a series of chromones aldehydes derivatives with various substituted
hydrazides were obtained. In general, hydroxylated derivatives of hydrazide–hydrazones and
chromene aldehydes XIIa-c showed much higher activity compared to the typically used α-
glucosidase inhibitor, acarbose drug.

The above examples demonstrate a broad spectrum of hydrazone activity in different
biological areas. Interest in this class of compounds is still growing in plant fungicide
development [53–56].

The hydrazide–hydrazones were tested as a part of our ongoing scientific program
to discover low-molecular-weight compounds that are antimicrobial agents [57], the in-
hibitors of essential enzymes that are overproduced by microorganisms during disease
development in plants [47,48] and humans [58–60], as well as those that act directly toward
cell lines [61,62]. In our previous work, we discovered potent laccase inhibitors as a target,
as this enzyme is secreted by phytopathogenic fungi, contributing to various plant diseases.
Therefore, these potent laccase inhibitors can prevent or weaken pathogen attacks through
chemical protection. Continuing our previous research on laccase inhibitors [47,48], we
have addressed the effect of changing the structure of the acyl and phenylidene units in
hydrazide–hydrazones, inspired by plant secondary metabolites such as 4-hydroxybenzoic
acid and salicylic aldehydes, on the direct mycelium growth inhibition of selected phy-
topathogenic fungi.

2. Results and Discussion
2.1. Syntheses and Characterization

In general, hydrazide–hydrazones, which are the subjects of our studies, comprise
aromatic aldehydes and benzoic acid fragments linked by hydrazine (Ar–CH=N–NH–
(C=O)–Ar′). These are usually crystalline compounds synthesized in a condensation
reaction of an equimolar amount of hydrazide, formed from benzoic acid esters and
hydrazine hydrate with aldehyde molecules. The reactions are carried out in the classic
conditions or with a mechano-chemical procedure. The first procedure is conducted in
an organic solvent with hydrazine hydrate in the first step and an acetic acid additive
in the second step to form a crystalline pure product directly isolated from the reaction
mixture [47]. The second procedure covers the step of grinding substrates, esters with
hydrazine hydrate, and later forming hydrazide and aldehyde with a few drops of acetic
acid, followed by a recrystallization step from organic solvent [39]. Both classical and
mechanical approaches generally provide pure products from good to quantitative yields.
However, the first approach does not require the additional purification step and offers
safer conditions for working with hydrazine hydrate and acetic acid.

The target hydrazide–hydrazones 1–35 were synthesized by condensation of carboxylic
acid hydrazides 36–40 [63] with aldehydes 41–68 or diacetylacetal 69 [64,65] by conventional
heating in methanol with the literature procedure in [47], generally in the presence of a
catalytic amount of acetic acid additive (Schemes 1 and 2).
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Scheme 1. Hydrazide–hydrazones 1–11, 13–31, and 33–35; hydrazides 38–40; and methyl ester of
benzoic acids 74 and 75 preparations, and the numbering of hydrazides, aldehydes, methyl ester
of benzoic acid, and benzoic acids used. Reagent and conditions: (i) CH3OH, AcOH (cat.), reflux,
2–8 h [47,48]; (ii) CH3OH, SOCl2 or H2SO4 (cat.), reflux [47,48]; (iii) H2N-NH2 × H2O, CH3OH,
reflux [47,48].

In the synthesis of the nifuroxazide drug (12), the 4-hydroxybenzoic acid hydrazide
(36) reacted with 5-nitro-2-furaldehyde diacetate (69) in the absence of the catalyst in
agreement with the nature of the diacetate substrate 69 (Scheme 2).

The aldehydes 53–55, 57, 58, 61, 62, and 65–67 were previously obtained in our
laboratory [48]. The 2,4,5-trihydroxybenzaldehyde (60) was obtained by formylation of
1,2,4-trihydroxybenzene (70) with triethyl orthoformate mediated by AlCl3 in toluene [66].
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(i) CH3OH, reflux, 20 h; (ii) CH3OH, AcOH (cat.), reflux, 20 h [47,48].

The 2-hydroxy-3-hydroxymethyl-5-methoxybenzaldehyde (63) was obtained in a
two-step literature procedure starting from 4-methoxyphenol (71) [67]. In the first step,
phenol 71 underwent hydroxymethylation with an excess of paraformaldehyde in an
alkaline methanol–water solution [68]. Finally, the obtained crude 2,6-dihydroxymethyl-4-
methoxyphenol (72) [68] was directly oxidized with active manganese dioxide (MnO2) in
chloroform in mild reaction conditions with a satisfactory 75% yield [67].

In the case of hydrazide–hydrazone 32, the 2,4-diformylphloroglucinol (68) and
two equivalents of 4-hydroxybenzoic acid hydrazide (36) were used in the standard
catalytic reaction condition with prolonged reaction time to 20 h (Scheme 2). The 2,4-
diformylphloroglucinol (68) was obtained by direct diformylation of phloroglucinol–1,3,5-
trihydroxybenzene (73) in 1,4-dioxane with Vilsmeier reagent [69].

The 4-methoxybenzoic acid hydrazide (38), benzoic acid hydrazide (39), and nicotinic
acid hydrazide (40) were prepared from appropriate benzoic acid methyl esters 74–76
and hydrazine monohydrate as previously reported [47,48]. The key esters 74 and 75
were obtained from the corresponding 4-methoxybenzoic acid (77) and benzoic acid (78),
respectively [47,70], as presented in Scheme 1.

Thirty-four hydrazide–hydrazones 1–34 have E geometry on the azomethine group
(CH=N). An exception is a salicylidenehydrazone 35 derived from acetic acid hydrazide,
which was isolated as an E isomer predominantly with a ratio of 79:21. The twenty-
eight products 1–3, 5–11, 14–21, 24, 25, 27–31, and 33–35 were characterized in our pre-
vious articles [47,48]; the remaining seven aroylhydrazone derived from benzoic and
4-hydroxybenzoic acid hydrazides 4, 12, 13, 22, 23, 26, and 32 were characterized in this
work [71].

The results of spectroscopic analyses of new hydrazide–hydrazones and their precur-
sors have typical characteristics for these groups of compounds [47,48,72]. Interestingly, on
the HRMS analysis of both known and new hydrazide 25 and 26 derivatives of 5-methyl-
and 5-methoxy-3-hydroxymethyl-salicylaldehydes (62 and 63), respectively, additional
mono-dehydration ions were observed. On the contrary, only mono-dehydration ions were
detected in the case of the salicylic aldehyde 62 and 63 substrates.

2.2. Biological Studies

All prepared hydrazide–hydrazones were used in a test for determination of their
antifungal activity against Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor at
basal 50 µg/mL concentration. Detailed antifungal tests were conducted for the most active
compounds 18, 19, 27, 28, and 30 to determine the IC50 value in the 0–50 µg/mL range. We
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also investigated the phytotoxicity of seven representative compounds of choice 13, 17, 18,
19, 25, 27, and 30 using three oilseed dicot plant representatives as flax (Linum usitatissimum
L.), sunflower (Helianthus annuus L.), and rapeseed (Brassica napus L. var. napus). We chose
the representatives of dicots as they are the most frequently attacked by the B. cinerea and S.
sclerotiorum, preferentially growing on aerial plant tissues rich in pectin [73]. For flax and
sunflower, we also performed further experiments on the properties of tested compounds
to induce the resistance for B. cinerea and S. sclerotiorum attack, respectively. Finally, the
representative compounds of choice were evaluated on their cytotoxicity on the human
and mouse cell lines.

2.2.1. Antifungal Activities

Results of the screening activities of the hydrazide–hydrazones 1–35 at a concentration
of 50 µg/mL are presented in Tables 1–3. The magnitude of mycelial growth inhibition (%)
caused by the selected compound was related to a control sample with a fungus growing
on a medium free of the tested compound. A value of 100% refers to complete inhibition of
mycelial growth, and 0% refers to no effect on growth. The discussed thirty-five hydrazide–
hydrazones were divided into three groups depending on the structure of the aldehyde
fragment used. Twenty-nine compounds are derivatives of 4-hydroxybenzoic acid.

Table 1. In vitro fungicidal activities of target hydrazide–hydrazones 1–12 at a basal concentration
of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect not
observed.

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [µM] Ref. Ki

1

Molecules 2024, 29, x FOR PEER REVIEW 8 of 31 

napus). We chose the representatives of dicots as they are the most frequently attacked by 
the B. cinerea and S. sclerotiorum, preferentially growing on aerial plant tissues rich in pec-
tin [73]. For flax and sunflower, we also performed further experiments on the properties 
of tested compounds to induce the resistance for B. cinerea and S. sclerotiorum attack, re-
spectively. Finally, the representative compounds of choice were evaluated on their cyto-
toxicity on the human and mouse cell lines.  

2.2.1. Antifungal Activities 
Results of the screening activities of the hydrazide–hydrazones 1–35 at a concentra-

tion of 50 µg/mL are presented in Tables 1–3. The magnitude of mycelial growth inhibition 
(%) caused by the selected compound was related to a control sample with a fungus grow-
ing on a medium free of the tested compound. A value of 100% refers to complete inhibi-
tion of mycelial growth, and 0% refers to no effect on growth. The discussed thirty-five 
hydrazide–hydrazones were divided into three groups depending on the structure of the 
aldehyde fragment used. Twenty-nine compounds are derivatives of 4-hydroxybenzoic 
acid.  

The simplest compounds are in the first group (Table 1), which consists of twelve 
molecules (1–12) containing unsubstituted phenyl 1, phenyl linked with azomethine 
group through ethylene linker 2, monosubstituted phenyl 3–11, and the 5-nitro-2-furylal-
dehyde derivative 12 (Nifuroxazide). The substituents are 4-CH3, 4-isopropyl, 2-SO3Na, 
and differently localized OH and OCH3 groups. The more complex second group, shown 
in Table 2, contains ten disubstituted molecules (13–22), derivatives of vanillic aldehyde 
and salicylic aldehydes with OH, Br, C6H4, tBu, and OCH3 substituents. Thirteen deriva-
tives (23–35) with three or more substituents were assigned to the most complicated third 
group, which are formally salicylic aldehyde derivatives with OH, OCH3, CH2OH, CH3, 
isopropyl, and tBu, as given in Table 3.  

The determined direct antimicrobial activities were compared between groups 1 and 
3. Further comparison concerned antifungal activity and laccase inhibition constants pre-
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No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [μM] Ref. Ki

1 2.6 ± 0.2 n.o. 10.6 ± 1.1 1468 [48] 

2 n.o. n.o. 18.0 ± 3.2 1919 [48] 

3 3.3 ± 1.1 n.o. n.o. 251 [48] 

4 12.0 ± 2.6 n.o. 20.9 ± 2.8 – b –

5 n.o. n.o. 23.6 ± 4.2 ≥2400 [48]
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3. Further comparison concerned antifungal activity and laccase inhibition constants pre-
viously reported for compounds 1–3, 6–10, 17–19, 21, 27, 30–31, and 33 [47,48] and deter-
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Table 1. In vitro fungicidal activities of target hydrazide–hydrazones 1–12 at a basal concentration 
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observed. 
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2 n.o. n.o. 18.0 ± 3.2 1919 [48] 

3 3.3 ± 1.1 n.o. n.o. 251 [48] 
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5

Molecules 2024, 29, x FOR PEER REVIEW 8 of 31 
 

 

napus). We chose the representatives of dicots as they are the most frequently attacked by 
the B. cinerea and S. sclerotiorum, preferentially growing on aerial plant tissues rich in pec-
tin [73]. For flax and sunflower, we also performed further experiments on the properties 
of tested compounds to induce the resistance for B. cinerea and S. sclerotiorum attack, re-
spectively. Finally, the representative compounds of choice were evaluated on their cyto-
toxicity on the human and mouse cell lines.  

2.2.1. Antifungal Activities 
Results of the screening activities of the hydrazide–hydrazones 1–35 at a concentra-

tion of 50 µg/mL are presented in Tables 1–3. The magnitude of mycelial growth inhibition 
(%) caused by the selected compound was related to a control sample with a fungus grow-
ing on a medium free of the tested compound. A value of 100% refers to complete inhibi-
tion of mycelial growth, and 0% refers to no effect on growth. The discussed thirty-five 
hydrazide–hydrazones were divided into three groups depending on the structure of the 
aldehyde fragment used. Twenty-nine compounds are derivatives of 4-hydroxybenzoic 
acid.  

The simplest compounds are in the first group (Table 1), which consists of twelve 
molecules (1–12) containing unsubstituted phenyl 1, phenyl linked with azomethine 
group through ethylene linker 2, monosubstituted phenyl 3–11, and the 5-nitro-2-furylal-
dehyde derivative 12 (Nifuroxazide). The substituents are 4-CH3, 4-isopropyl, 2-SO3Na, 
and differently localized OH and OCH3 groups. The more complex second group, shown 
in Table 2, contains ten disubstituted molecules (13–22), derivatives of vanillic aldehyde 
and salicylic aldehydes with OH, Br, C6H4, tBu, and OCH3 substituents. Thirteen deriva-
tives (23–35) with three or more substituents were assigned to the most complicated third 
group, which are formally salicylic aldehyde derivatives with OH, OCH3, CH2OH, CH3, 
isopropyl, and tBu, as given in Table 3.  

The determined direct antimicrobial activities were compared between groups 1 and 
3. Further comparison concerned antifungal activity and laccase inhibition constants pre-
viously reported for compounds 1–3, 6–10, 17–19, 21, 27, 30–31, and 33 [47,48] and deter-
mined in this study for phloroglucinol derivative 32. For the preliminary studies, the con-
centration of 50 µg/mL was admitted to the test.  

Table 1. In vitro fungicidal activities of target hydrazide–hydrazones 1–12 at a basal concentration 
of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect not 
observed. 

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [μM] Ref. Ki 

1 
 

2.6 ± 0.2 n.o.  10.6 ± 1.1 1468 [48] 

2 
 

n.o. n.o. 18.0 ± 3.2 1919 [48] 

3 3.3 ± 1.1 n.o. n.o. 251 [48] 

4 
 

12.0 ± 2.6 n.o. 20.9 ± 2.8 – b – 

5 
 

n.o. n.o. 23.6 ± 4.2 ≥2400 [48] n.o. n.o. 23.6 ± 4.2 ≥2400 [48]

6

Molecules 2024, 29, x FOR PEER REVIEW 9 of 31 

6 4.7 ± 1.1 n.o. 14.7 ± 0.3 674 [48] 

7 3.7 ± 1.8 n.o. 12.6 ± 4.1 2396 [48] 

8 4.2 ± 1.5 n.o. 14.3 ± 1.7 638 [48] 

9 3.3 ± 1.2 n.o. 22.3 ± 2.6 1064 [48] 

10 3.9 ± 2.4 n.o. n.o. 416 [48] 

11 4.4 ± 0.9 n.o. 11.7 ± 3.5 ≥2400 [48] 

12 3.3 ± 1.2 n.o. 19.5 ± 2.8 – b [48] 

Fenhexamid 99.9 ± 0.4 100 ± 0.3 39.9 ± 0.7 – b –

a Results were calculated as the percent of microorganism growth inhibition in the presence of 50 
µg/mL of tested compounds in potato dextrose agar (PDA) medium compared to 0.5% (v/v) metha-
nol-treated control; the result is expressed as the mean of three determinations. b not determined. 

The hydrazide–hydrazones from the first group are inactive toward tested microor-
ganisms (Table 1). However, some residual activities against white-rot fungus C. unicolor 
were observed in the case of molecules 4, 5, and 9, which inhibited mycelium growth in 
the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger 
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near 
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the 
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide 
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea 
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase 
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

4.7 ± 1.1 n.o. 14.7 ± 0.3 674 [48]
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inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

3.7 ± 1.8 n.o. 12.6 ± 4.1 2396 [48]
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6 4.7 ± 1.1 n.o. 14.7 ± 0.3 674 [48] 

7 3.7 ± 1.8 n.o. 12.6 ± 4.1 2396 [48] 

8 4.2 ± 1.5 n.o. 14.3 ± 1.7 638 [48] 

9 3.3 ± 1.2 n.o. 22.3 ± 2.6 1064 [48] 

10 3.9 ± 2.4 n.o. n.o. 416 [48] 

11 4.4 ± 0.9 n.o. 11.7 ± 3.5 ≥2400 [48] 

12 3.3 ± 1.2 n.o. 19.5 ± 2.8 – b [48] 

Fenhexamid 99.9 ± 0.4 100 ± 0.3 39.9 ± 0.7 – b –

a Results were calculated as the percent of microorganism growth inhibition in the presence of 50 
µg/mL of tested compounds in potato dextrose agar (PDA) medium compared to 0.5% (v/v) metha-
nol-treated control; the result is expressed as the mean of three determinations. b not determined. 

The hydrazide–hydrazones from the first group are inactive toward tested microor-
ganisms (Table 1). However, some residual activities against white-rot fungus C. unicolor 
were observed in the case of molecules 4, 5, and 9, which inhibited mycelium growth in 
the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger 
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near 
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the 
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide 
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea 
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase 
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

4.2 ± 1.5 n.o. 14.3 ± 1.7 638 [48]
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Table 1. Cont.

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [µM] Ref. Ki
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6 4.7 ± 1.1 n.o. 14.7 ± 0.3 674 [48] 

7 3.7 ± 1.8 n.o. 12.6 ± 4.1 2396 [48] 

8 4.2 ± 1.5 n.o. 14.3 ± 1.7 638 [48] 

9 3.3 ± 1.2 n.o. 22.3 ± 2.6 1064 [48] 

10 3.9 ± 2.4 n.o. n.o. 416 [48] 

11 4.4 ± 0.9 n.o. 11.7 ± 3.5 ≥2400 [48] 

12 3.3 ± 1.2 n.o. 19.5 ± 2.8 – b [48] 

Fenhexamid 99.9 ± 0.4 100 ± 0.3 39.9 ± 0.7 – b –

a Results were calculated as the percent of microorganism growth inhibition in the presence of 50 
µg/mL of tested compounds in potato dextrose agar (PDA) medium compared to 0.5% (v/v) metha-
nol-treated control; the result is expressed as the mean of three determinations. b not determined. 

The hydrazide–hydrazones from the first group are inactive toward tested microor-
ganisms (Table 1). However, some residual activities against white-rot fungus C. unicolor 
were observed in the case of molecules 4, 5, and 9, which inhibited mycelium growth in 
the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger 
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near 
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the 
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide 
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea 
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase 
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

3.3 ± 1.2 n.o. 22.3 ± 2.6 1064 [48]
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7 3.7 ± 1.8 n.o. 12.6 ± 4.1 2396 [48] 

8 4.2 ± 1.5 n.o. 14.3 ± 1.7 638 [48] 

9 3.3 ± 1.2 n.o. 22.3 ± 2.6 1064 [48] 

10 3.9 ± 2.4 n.o. n.o. 416 [48] 

11 4.4 ± 0.9 n.o. 11.7 ± 3.5 ≥2400 [48] 

12 3.3 ± 1.2 n.o. 19.5 ± 2.8 – b [48] 

Fenhexamid 99.9 ± 0.4 100 ± 0.3 39.9 ± 0.7 – b –

a Results were calculated as the percent of microorganism growth inhibition in the presence of 50 
µg/mL of tested compounds in potato dextrose agar (PDA) medium compared to 0.5% (v/v) metha-
nol-treated control; the result is expressed as the mean of three determinations. b not determined. 

The hydrazide–hydrazones from the first group are inactive toward tested microor-
ganisms (Table 1). However, some residual activities against white-rot fungus C. unicolor 
were observed in the case of molecules 4, 5, and 9, which inhibited mycelium growth in 
the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger 
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near 
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the 
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide 
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea 
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase 
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

3.9 ± 2.4 n.o. n.o. 416 [48]
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7 3.7 ± 1.8 n.o. 12.6 ± 4.1 2396 [48] 

8 4.2 ± 1.5 n.o. 14.3 ± 1.7 638 [48] 

9 3.3 ± 1.2 n.o. 22.3 ± 2.6 1064 [48] 

10 3.9 ± 2.4 n.o. n.o. 416 [48] 

11 4.4 ± 0.9 n.o. 11.7 ± 3.5 ≥2400 [48] 

12 3.3 ± 1.2 n.o. 19.5 ± 2.8 – b [48] 

Fenhexamid 99.9 ± 0.4 100 ± 0.3 39.9 ± 0.7 – b –

a Results were calculated as the percent of microorganism growth inhibition in the presence of 50 
µg/mL of tested compounds in potato dextrose agar (PDA) medium compared to 0.5% (v/v) metha-
nol-treated control; the result is expressed as the mean of three determinations. b not determined. 

The hydrazide–hydrazones from the first group are inactive toward tested microor-
ganisms (Table 1). However, some residual activities against white-rot fungus C. unicolor 
were observed in the case of molecules 4, 5, and 9, which inhibited mycelium growth in 
the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger 
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near 
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the 
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide 
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea 
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase 
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

4.4 ± 0.9 n.o. 11.7 ± 3.5 ≥2400 [48]
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6 4.7 ± 1.1 n.o. 14.7 ± 0.3 674 [48] 

7 3.7 ± 1.8 n.o. 12.6 ± 4.1 2396 [48] 

8 4.2 ± 1.5 n.o. 14.3 ± 1.7 638 [48] 

9 3.3 ± 1.2 n.o. 22.3 ± 2.6 1064 [48] 

10 3.9 ± 2.4 n.o. n.o. 416 [48] 

11 4.4 ± 0.9 n.o. 11.7 ± 3.5 ≥2400 [48] 

12 3.3 ± 1.2 n.o. 19.5 ± 2.8 – b [48] 

Fenhexamid 99.9 ± 0.4 100 ± 0.3 39.9 ± 0.7 – b –

a Results were calculated as the percent of microorganism growth inhibition in the presence of 50 
µg/mL of tested compounds in potato dextrose agar (PDA) medium compared to 0.5% (v/v) metha-
nol-treated control; the result is expressed as the mean of three determinations. b not determined. 

The hydrazide–hydrazones from the first group are inactive toward tested microor-
ganisms (Table 1). However, some residual activities against white-rot fungus C. unicolor 
were observed in the case of molecules 4, 5, and 9, which inhibited mycelium growth in 
the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger 
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near 
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the 
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide 
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea 
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase 
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

3.3 ± 1.2 n.o. 19.5 ± 2.8 – b [48]
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the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger 
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near 
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the 
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide 
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea 
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase 
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes 
versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene frag-
ments in hydrazide–hydrazones in the first group are weak inhibitors and antifungal 
agents. 

In the second group of tested hydrazide–hydrazones, two molecules numbered 18 
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested 
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or 
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively 
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and 
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal 
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduction 
in the growth of tested microorganisms makes this compound a highly nonselective anti-
fungal agent. In contrast, in the same group, the compound numbered 22 presented high 
activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-

99.9 ± 0.4 100 ± 0.3 39.9 ± 0.7 – b –

a Results were calculated as the percent of microorganism growth inhibition in the presence of 50 µg/mL of tested
compounds in potato dextrose agar (PDA) medium compared to 0.5% (v/v) methanol-treated control; the result is
expressed as the mean of three determinations. b not determined.

Table 2. In vitro fungicidal activities of target hydrazide–hydrazones 13–22 at a basal concentration
of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect not
observed.

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [µM] Ref. Ki

13
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dihydroxybenzaldehyde and benzoic acid hydrazide and showed better selective activity 
when compared to 4-hydroxybenzoic acid derivative 21. Furthermore, in this group, the 
hydrazide–hydrazones 14 and 15 derivatives of a salicylic aldehyde with bulky bromine 
opposite to the hydroxy group and methoxy group near imine linker, respectively, present 
a selectivity against Basidiomycetes fungus as C. unicolor acting as moderate antifungal 
agents. Among the tested compounds in the more complex second group, a high correla-
tion between antifungal activity and the potency of inhibition of laccase activity is appar-
ent. The most potent inhibitors with hindered 3-tert-butyl and bulky 3-phenyl groups, 18 
and 19, respectively, are also strong antifungal agents, and those that did not inhibit the 
enzyme are also weak or moderate antifungal compounds. 

Table 2. In vitro fungicidal activities of target hydrazide–hydrazones 13–22 at a basal concentra-
tion of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect 
not observed.  

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [μM] Ref. Ki

13 n.o. n.o. n.o. – b [48] 

14 n.o. n.o. 56.8 ± 8.4 ≥1000 [48] 

15 n.o. n.o. 43.1 ± 3.0 ≥1000 [48] 

16 n.o. n.o. 32.1 ± 3.1 ≥1000 [48] 

17 n.o. 7.3 ± 2.1 11.9 ± 0.8 251 [48] 

18 82.1 ± 3.1 97.1 ± 1.1 85.9 ± 2.1 24.0  [48] 

19 73.5 ± 3.3 50.6 ± 5.5 71.4 ± 2.1 25.3 [48] 

20 3.3 ± 1.2 n.o. 35.4 ± 2.4 ≥1000  [48]

n.o. n.o. n.o. – b [48]
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dihydroxybenzaldehyde and benzoic acid hydrazide and showed better selective activity 
when compared to 4-hydroxybenzoic acid derivative 21. Furthermore, in this group, the 
hydrazide–hydrazones 14 and 15 derivatives of a salicylic aldehyde with bulky bromine 
opposite to the hydroxy group and methoxy group near imine linker, respectively, present 
a selectivity against Basidiomycetes fungus as C. unicolor acting as moderate antifungal 
agents. Among the tested compounds in the more complex second group, a high correla-
tion between antifungal activity and the potency of inhibition of laccase activity is appar-
ent. The most potent inhibitors with hindered 3-tert-butyl and bulky 3-phenyl groups, 18 
and 19, respectively, are also strong antifungal agents, and those that did not inhibit the 
enzyme are also weak or moderate antifungal compounds. 

Table 2. In vitro fungicidal activities of target hydrazide–hydrazones 13–22 at a basal concentra-
tion of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect 
not observed.  

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [μM] Ref. Ki

13 n.o. n.o. n.o. – b [48] 

14 n.o. n.o. 56.8 ± 8.4 ≥1000 [48] 

15 n.o. n.o. 43.1 ± 3.0 ≥1000 [48] 

16 n.o. n.o. 32.1 ± 3.1 ≥1000 [48] 

17 n.o. 7.3 ± 2.1 11.9 ± 0.8 251 [48] 

18 82.1 ± 3.1 97.1 ± 1.1 85.9 ± 2.1 24.0  [48] 

19 73.5 ± 3.3 50.6 ± 5.5 71.4 ± 2.1 25.3 [48] 

20 3.3 ± 1.2 n.o. 35.4 ± 2.4 ≥1000  [48]

n.o. n.o. 43.1 ± 3.0 ≥1000 [48]
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dihydroxybenzaldehyde and benzoic acid hydrazide and showed better selective activity 
when compared to 4-hydroxybenzoic acid derivative 21. Furthermore, in this group, the 
hydrazide–hydrazones 14 and 15 derivatives of a salicylic aldehyde with bulky bromine 
opposite to the hydroxy group and methoxy group near imine linker, respectively, present 
a selectivity against Basidiomycetes fungus as C. unicolor acting as moderate antifungal 
agents. Among the tested compounds in the more complex second group, a high correla-
tion between antifungal activity and the potency of inhibition of laccase activity is appar-
ent. The most potent inhibitors with hindered 3-tert-butyl and bulky 3-phenyl groups, 18 
and 19, respectively, are also strong antifungal agents, and those that did not inhibit the 
enzyme are also weak or moderate antifungal compounds. 

Table 2. In vitro fungicidal activities of target hydrazide–hydrazones 13–22 at a basal concentra-
tion of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect 
not observed.  

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [μM] Ref. Ki

13 n.o. n.o. n.o. – b [48] 

14 n.o. n.o. 56.8 ± 8.4 ≥1000 [48] 

15 n.o. n.o. 43.1 ± 3.0 ≥1000 [48] 

16 n.o. n.o. 32.1 ± 3.1 ≥1000 [48] 

17 n.o. 7.3 ± 2.1 11.9 ± 0.8 251 [48] 

18 82.1 ± 3.1 97.1 ± 1.1 85.9 ± 2.1 24.0  [48] 

19 73.5 ± 3.3 50.6 ± 5.5 71.4 ± 2.1 25.3 [48] 

20 3.3 ± 1.2 n.o. 35.4 ± 2.4 ≥1000  [48]

n.o. n.o. 32.1 ± 3.1 ≥1000 [48]
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dihydroxybenzaldehyde and benzoic acid hydrazide and showed better selective activity 
when compared to 4-hydroxybenzoic acid derivative 21. Furthermore, in this group, the 
hydrazide–hydrazones 14 and 15 derivatives of a salicylic aldehyde with bulky bromine 
opposite to the hydroxy group and methoxy group near imine linker, respectively, present 
a selectivity against Basidiomycetes fungus as C. unicolor acting as moderate antifungal 
agents. Among the tested compounds in the more complex second group, a high correla-
tion between antifungal activity and the potency of inhibition of laccase activity is appar-
ent. The most potent inhibitors with hindered 3-tert-butyl and bulky 3-phenyl groups, 18 
and 19, respectively, are also strong antifungal agents, and those that did not inhibit the 
enzyme are also weak or moderate antifungal compounds. 

Table 2. In vitro fungicidal activities of target hydrazide–hydrazones 13–22 at a basal concentra-
tion of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect 
not observed.  

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [μM] Ref. Ki

13 n.o. n.o. n.o. – b [48] 

14 n.o. n.o. 56.8 ± 8.4 ≥1000 [48] 

15 n.o. n.o. 43.1 ± 3.0 ≥1000 [48] 

16 n.o. n.o. 32.1 ± 3.1 ≥1000 [48] 

17 n.o. 7.3 ± 2.1 11.9 ± 0.8 251 [48] 

18 82.1 ± 3.1 97.1 ± 1.1 85.9 ± 2.1 24.0  [48] 

19 73.5 ± 3.3 50.6 ± 5.5 71.4 ± 2.1 25.3 [48] 

20 3.3 ± 1.2 n.o. 35.4 ± 2.4 ≥1000  [48]

n.o. 7.3 ± 2.1 11.9 ± 0.8 251 [48]
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Table 2. Cont.

No. Structure B. cinerea S. sclerotiorum C. unicolor Ki [µM] Ref. Ki
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dihydroxybenzaldehyde and benzoic acid hydrazide and showed better selective activity 
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at the salicylidene unit, showed moderate and reasonable activity toward C. unicolor. Re-
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group in compound 27 slightly decreased activity against S. sclerotiorum; nonetheless, it 
improved the selectivity among all tested fungi. Noteworthy, compound 28, a derivative 
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The simplest compounds are in the first group (Table 1), which consists of twelve
molecules (1–12) containing unsubstituted phenyl 1, phenyl linked with azomethine group
through ethylene linker 2, monosubstituted phenyl 3–11, and the 5-nitro-2-furylaldehyde
derivative 12 (Nifuroxazide). The substituents are 4-CH3, 4-isopropyl, 2-SO3Na, and
differently localized OH and OCH3 groups. The more complex second group, shown in
Table 2, contains ten disubstituted molecules (13–22), derivatives of vanillic aldehyde and
salicylic aldehydes with OH, Br, C6H4, tBu, and OCH3 substituents. Thirteen derivatives
(23–35) with three or more substituents were assigned to the most complicated third group,
which are formally salicylic aldehyde derivatives with OH, OCH3, CH2OH, CH3, isopropyl,
and tBu, as given in Table 3.

The determined direct antimicrobial activities were compared between groups 1 and
3. Further comparison concerned antifungal activity and laccase inhibition constants
previously reported for compounds 1–3, 6–10, 17–19, 21, 27, 30–31, and 33 [47,48] and
determined in this study for phloroglucinol derivative 32. For the preliminary studies, the
concentration of 50 µg/mL was admitted to the test.

The hydrazide–hydrazones from the first group are inactive toward tested microor-
ganisms (Table 1). However, some residual activities against white-rot fungus C. unicolor
were observed in the case of molecules 4, 5, and 9, which inhibited mycelium growth in
the range of 20.9–23.6% at the tested concentration. Generally, these molecules have larger
iPr or SO3Na and OCH3 substituents in benzylidene units localized at opposite or near
imine linkers, respectively. In our test, nifuroxazide (12) showed no activity toward the
molds, and to a small extent, it reduced the growth of C. unicolor by 19.5%. Nifuroxazide
is typically used to cure bacterial infections against bacteria that cause travelers’ diarrhea
and colitis [74]. The results of antimicrobial activity correlate with the results of laccase
inhibition tested in our previous study [48] on the enzyme from white-rot fungi Trametes
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versicolor. Generally, these simple, unsubstituted, monosubstituted phenylidene fragments
in hydrazide–hydrazones in the first group are weak inhibitors and antifungal agents.

In the second group of tested hydrazide–hydrazones, two molecules numbered 18
and 19 derived from 4-hydroxybenzoic acid showed the highest activity against tested
microorganisms (Table 2). These have salicylaldehyde units having hindered tert-butyl or
bulky phenyl substituents near the hydroxy group. Both compounds showed relatively
strong antifungal activity against B. cinerea (82.1 and 73.5%) and C. unicolor (85.9 and
71.4%). Furthermore, the tert-butyl-salicylic aldehyde derivative was the most fungicidal
and almost completely inhibited the growth of S. sclerotiorum. Such a significant reduc-
tion in the growth of tested microorganisms makes this compound a highly nonselective
antifungal agent. In contrast, in the same group, the compound numbered 22 presented
high activity toward solely C. unicolor. Interestingly, this compound is a derivative of 2,4-
dihydroxybenzaldehyde and benzoic acid hydrazide and showed better selective activity
when compared to 4-hydroxybenzoic acid derivative 21. Furthermore, in this group, the
hydrazide–hydrazones 14 and 15 derivatives of a salicylic aldehyde with bulky bromine
opposite to the hydroxy group and methoxy group near imine linker, respectively, present
a selectivity against Basidiomycetes fungus as C. unicolor acting as moderate antifungal
agents. Among the tested compounds in the more complex second group, a high correlation
between antifungal activity and the potency of inhibition of laccase activity is apparent.
The most potent inhibitors with hindered 3-tert-butyl and bulky 3-phenyl groups, 18 and
19, respectively, are also strong antifungal agents, and those that did not inhibit the enzyme
are also weak or moderate antifungal compounds.

In the third group, the most active and simultaneously non-selective is compound
30—a derivative of 3-tert-butylsalicylidene 18 with the presence of methyl, the smallest
alkyl group in the 5th position of aldehyde fragment. Similarly, it almost completely
inhibited the growth of S. sclerotiorum (96.8%), and it is the most promising antifungal agent
against C. unicolor. Similar compounds derived from 4-methoxybenzoic acid 31, benzoic
acid 33, and nicotinic acid 34 showed no antifungal activity against molds and residual
activity against white-rot fungi. Interestingly, the total replacement of the acyl unit in 33
and 34 on the acetyl unit in 35 slightly improved activity against C. unicolor. Compounds
24–26, having differently localized hydroxymethyl group and methyl or methoxy groups
at the salicylidene unit, showed moderate and reasonable activity toward C. unicolor.
Replacing methyl, the smallest alkyl group in compound 30, on the second bulky tert-butyl
group in compound 27 slightly decreased activity against S. sclerotiorum; nonetheless, it
improved the selectivity among all tested fungi. Noteworthy, compound 28, a derivative
of thymol formylated near the hydroxy group, has potent activity against S. sclerotiorum
(also moderately active toward B. cinerea) with a complete lack of inhibitory activity toward
laccase from Trametes versicolor [48].

We selected compounds for further testing based on the preliminary results of anti-
fungal activity at a concentration of 50 µg/mL, with more than 40% growth inhibition for
at least two microorganisms (see bolded values in Tables 2 and 3). The IC50 values were
determined by estimating parameter values of the log-logistic model along with goodness
of fit (R2 and RMSE), as shown in Table 4. The IC50’s values were calculated only when the
model predicted a decrease in growth rate by more than 50%. Of the hydrazide–hydrazones
tested, five hydroxybenzoic acid derivatives, 18, 19, 27, 28, and 30, were selected, and the
results of their antifungal activity were compared with those obtained for the reference fen-
hexamid (fungicide). The most active compounds are those in the second and third groups,
which include derivatives of 4-hydroxybenzoic acid and functionalized salicylic aldehydes,
as presented in Figure 2. The benzoyl unit from benzoic acid hydrazides and salicylidene
unit from salicylic aldehydes, used in the synthesis of the potent hydrazide–hydrazones
toward fungi, were indicated in the green and violet frame, respectively.
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Table 3. In vitro fungicidal activities of target hydrazide–hydrazones 23–35 at a basal concentration
of 50 µg/mL expressed as a fungal growth inhibition (%), mean (±SD) a; n.o.—inhibition effect not
observed.

No. Structure B. cinerea S. sclero-
tiorum C. unicolor Ki [µM] Ref. Ki
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Table 3. Cont.

No. Structure B. cinerea S. sclero-
tiorum C. unicolor Ki [µM] Ref. Ki
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is expressed as the mean of three determinations. b not determined; c SD = 5.75 (%) for a test of laccase from
Trametes versicolor inhibition on 2,4-diformylphloroglucinol derivative 32 Ki determination [75]. Bold values refer
to compounds selected for detailed IC50 testing—the criteria are at least 40% inhibition of mycelial growth and
such activity against at least two pathogens.

The salicylic aldehyde fragment, in active molecules, always contains a larger sub-
stituent, such as isopropyl, tert-butyl, and phenyl, at position 3 (near the hydroxy group).
Molecules 18, 19, 28, and 30 have IC50 values in the range of 13.9–62.5 µg/mL against B.
cinerea, which are two orders of magnitude lower when compared to the reference com-
pound. Compounds 18, 19, and 30 show similar 13.5–20.3 µg/mL activity against C. unicolor.
On the contrary, three of the five tested compounds, 18, 27, and 30 with bulky tert-butyl
show the most promising 0.5–1.8 µg/mL activity against S. sclerotiorum, which is at least
twice as high as fenhexamid fungicide. Of particular interest is hydrazide–hydrazone 18
with simple 3-tert-butylsalicylidene unit, which is active against all plant pathogens tested,
while more substituted compounds 27 and 28 show high activity against the white mold
fungus (Table 4).

The profiles of anti-B. cinerea, -S. sclerotiorum, and -C. unicolor activity for tested
hydrazide–hydrazones derivatives of 4-hydroxybenzoic acid and fenhexamid (control
fungicide) were illustrated in Supplementary Materials (see Figure S129a–c). Herein, we
provide some insight into the relationship between the hydrazide–hydrazones concentra-
tions applied and the inhibition potency of fungi growth in comparison to fenhexamid. Four
concentrations of hydrazide–hydrazones, such as 6.25, 12.5, 25.0, and 50.0 µg/mL, were
subjected to the estimation of the fungicidal profiles for 18, 19, 27, 28, 30, and fenhexamid.
After analyzing the data, it is apparent that, generally, the most susceptible microorganism
for tested compounds was S. sclerotiorum (Tables 4 and S3 and Figure S129b). Even the
lowest tested concentration (6.25 µg/mL) of the 18, 27, and 30 molecules brought relatively
high antifungal activity between 70.6 and 87.6%, compared to 95.6% of fenhexamid. A
two-fold increase in the concentration of the hydrazide–hydrazones 18 and 30 showed their
activity similar to fenhexamid, 96.3, 98.7, and 96.3%, respectively, approaching almost total
inhibition of S. sclerotiorum growth at 50 µg/mL. Although derivative 27 presented a high
82.9% of S. sclerotiorum inhibition at the lowest investigated concentration, it strengthened
the further effect to 93.1% only at 50 µg/mL. All discussed compounds (18, 27, and 30) are
derivatives of 3-tert-butyl-2-hydroxybenzaldehydes and 4-hydroxybenzoic acid hydrazide.
In that context, the presence of the tert-butyl group in the 3 position seems important for
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anti-S. sclerotiorum activity. Far less susceptible on tested hydrazide–hydrazones was C.
unicolor (Tables 4 and S3, Figure S129c). The smallest concentration inhibited the fungus
in the range of 9.2–21.5%. A two-fold increase in the dose enhanced the effect to 21.7–
42.2%. At 25 µg/mL, the molecules 18, 19, and 30 showed the highest activity, which
reached 76.5, 70.5, and 90.5% of C. unicolor inhibition at maximal concentration. But again,
the hydrazide–hydrazones with 3-tert-butyl-5-methyl-2-hydroxybenzaldehyde fragment
showed the highest antifungal activity. The highly active mold fungicide, fenhexamid, was
weakly active on the fungus, with 32.1% in mycelium inhibition at 50 µg/mL. The least
susceptible to tested compounds was B. cinerea (see Tables 4 and S3, Figure S129b). None of
the hydrazide–hydrazones reached the activity of fenhexamid, which presented constant
very high activity in the whole range of tested concentrations (98.5% inhibition at 6.25%
to 100% inhibition at 50 µg/mL). In contrast to previous fungi, the most active compound
against B. cinerea was a derivative of 3-phenyl-salicylic aldehyde and 4-hydroxybenzoic
acid hydrazide 19. In fact, for this compound, the antifungal activity profile covers the
systematic increase of inhibition from 30.1 to 70.1% of fungal development from 6.25 to
25.0 µg/mL, but at 50 µg/mL, only 74.1% was observed. A similar course of the profile
could be attributed to molecule 18 but with slightly weaker activity corresponding to 20.2,
56.4, and 64.7%. The remaining compounds showed rather low activity, less than 50% of B.
cinerea inhibition.

Table 4. Log-logistic model parameter values for in vitro fungicidal activities, its goodness of fit, and
IC50s for tested selected hydrazide–hydrazones, derivatives of 4-hydroxybenzoic acid against Botrytis
cinerea (Bc), Sclerotinia sclerotiorum (Ss), and Cerrena unicolor (Cu).

No.
Fungus
Species

Log-Logistic Model Parameters Statistical
Parameters b IC50

a Laccase
Inhibition, Ki

c

d b c e R2 RMSE µg/mL µM

18

Bc 1 1 14.0 × 10–1 14.28 0.94 5.65 20.0

24.0Ss 1 1 1.66 × 10–12 1.80 0.74 6.80 1.8

Cu 1 1 9.76 × 10–9 18.25 0.84 12.92 18.3

19

Bc 1 1 2.39 × 10–2 13.20 0.96 5.30 13.9

25.3Ss 1 1 2.74 × 10–8 69.86 0.82 12.62 69.9

Cu 1 1 3.11 × 10–10 20.26 0.96 4.54 20.3

27

Bc 1 1 7.74 × 10–1 0.70 0.13 2.72 n.d. d

17.9Ss 1 1 1.04 × 10–1 0.42 0.43 3.13 0.5

Cu 1 1 4.98 × 10–1 9.51 0.91 3.84 2194

28

Bc 1 1 4.59 × 10–10 52.68 0.84 9.80 52.7

≥1000Ss 1 1 2.34 × 10–10 9.82 0.92 6.97 9.8

Cu 1 1 5.82 × 10–1 5.85 0.99 0.69 n.d. d

30

Bc 1 1 1.50 × 10–9 62.48 0.89 6.24 62.5

26.4Ss 1 1 1.14 × 10–13 0.81 0.87 1.72 0.8

Cu 1 1 3.12 × 10–10 13.47 0.85 12.50 13.5

Control e

Bc 1 1 2.31 × 10–14 0.14 0.95 0.73 0.1

–Ss 1 5.108 f 3.00 × 10–2 4.19 1.00 3.35 4.2

Cu 1 1 5.95 × 10–1 14.22 0.96 2.47 n.d. d

a IC50 [µg/mL]—a compound concentration that inhibits the growth of fungi by 50% when compared to the
reference test without hydrazide–hydrazone. b R2—coefficient of determination; RMSE—root mean squared error.
c Inhibition kinetic constants of laccase from Trametes versicolor [48]; d n.d.—not defined, the dose does not reach
50% of microorganism growth inhibition. e Control–fenhexamid (fungicide). f Estimated value.
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Figure 2. The general structure of the potent hydrazide–hydrazones acting on fungi. A fragment of
the salicylidene unit (violet) and the benzoyl unit (green) are derived from benzoic acids, and the
hydrazine linker (–C=N–NH–C(O)–) originates from hydrazine. R1 = H, OH; R2 = H, iPr, tBu, Ph,
CH2OH; R3 = H, OH; R4 = H, CH3, tBu, OCH3, Br; R5 = H, CH3.

Comparing the discussed results of the antimicrobial activity on the laccase-producing
strains—B. cinerea, S. sclerotiorum, and C. unicolor—presented in this work to the results
of the enzymatic studies performed on laccase from Trametes versicolor published in our
previous work ([48], Tables 1–3), it is shown that potent laccase inhibitors 18, 19, 27, and 30
are also potent fungicides to the microorganisms producing these oxidoreductases. The
presented results also showed some exceptions that do not meet this rule. These concern
compounds 31, 33, and 28. Compounds 31 and 33 inhibit laccase but do not inhibit the
growth of the tested microorganisms. In contrast, the thymol derivative 28 does not inhibit
laccase (Ki > 1000 µM) but selectively inhibits the growth of S. sclerotiorum IC50 = 9.8 µg/mL.
Therefore, further research is needed to clarify these phenomena. These compounds will
be the subject of future experimental studies to determine the mechanism of action of this
class of compounds. Concerning the last hydrazide–hydrazone (28), it is worth focusing
on the thymol molecule. So far, unsubstituted thymol has been the subject of research
due to its advantageous properties used in the food industry and traditional medicine
and its activity against bacteria and fungi [76]. In studies of unsubstituted thymol on
Fusarium, Penicillium, and Aspergillus species, it inhibits mycelium growth at only high
concentration (1 mg/mL) [28]. In later detailed studies, the determined antifungal activity
(MIC—minimum inhibitory concentration, µg/mL) of thymol on plant pathogens were 300
µg/mL for B. cinerea and Fusarium oxysporum Schltdl., 400 µg/mL for Alternaria alternata
(Fr.) Keissl, and 450 µg/mL for Rhizopus oryzae [77]. Recent studies on the antifungal
activity of thymol have shown that it is a promising chemosensing agent for various fungi,
and combined treatment with commercial fungicide allowed for a lower dosage of chemical
treatment [78]. Thus, thymol derivatives represent an interesting and noteworthy research
area for discovering new fungicides.

The search for new compounds active against plant pathogens is still socially and economi-
cally necessary. This phenomenon results from increasing resistance to the use of plant protection
products and the need to maintain high yields of crops, the quality of ornamental plants, and
the protection of plants forming forest ecosystems, parks, etc. One group of compounds under
recent investigation as antifungal agents against plant pathogens producing laccase is hydrazide–
hydrazones with various molecular architectures and potency against fungal phytopathogens,
including quinoline, triazole, tetrahydro-β-carbolino-3-carbohydrazide, echinospine, indole dike-
topiperazine, or rosin-based hydrazide–hydrazones [79]. Although there is no leading motif in
the design of fungicides, research indicates that hydrazide linker is essential for biological activity.
The literature review indicates that most research has only screening characters performed at
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elevated compound concentrations, 25, 50, or 100 µg/mL, in which the basal concentration of
50 µg/mL is the most common. Quinoline acylhydrazones containing 4-ethylbenzaldehyde
fragment at 100 µg/mL showed weak antifungal activity of 72.49% and 39.57% growth inhibition
for S. sclerotiorum and B. cinerea, respectively [80]. The ((1-(2-chlorophenyl)-1H-1,2,3-triazol-4-
yl)methylene)benzohydrazide tested against S. sclerotiorum was inactive at 25 µg/mL [81]. The
derivatives of 2-bromobenzaldehyde and 1,2,4-triazole-acyl-hydrazone containing the quinazoline-
4-one showed more than 60% of B. cinerea inhibition growth [82]. For tetrahydro-β-carbolino-3-
carbohydrazide, two derivatives, N′-(4-tert-butyl-benzylidene)-(3S)-1-methyl-2,3,4,9-tetra-hydro-
1H-pyrido [3,4-b]indole-3-carbohydrazide and N′-(3,4-dichloro-benzylidene)-(3S)-1-methyl-2,3,4,9-
tetrahydro-1H-pyrido[3,4-b]indole-3-carbohydrazide, showed more than 80% of growth inhibition
of S. sclerotiorum and B. cinerea [83]. The N′-(4-{[(4-methylbenzoyl)oxy]imino}cyclohexa-2,5-dien-1-
ylidene)benzohydrazide tested on B. cinerea showed weak activity restricting mycelium growth
of 35% [84]. Some antifungal properties were found for molecules bearing naturally occurring
echinospine alkaloid, 1-methyl-4-oxo-1,4-dihydroquinoline-3-carbohydrazide which was com-
bined with substituted phenyl or heterocyclic aldehyde fragments. Two molecules, namely
(E)-N′-(3,4-dimethoxybenzylidene)-1-methyl-4-oxo-1,4-dihydroquinoline-3-carbohydrazide and
(E)-N′-((1H-indol-2-yl)methylene)-1-methyl-4-oxo-1,4-dihydroquinoline-3-carbohydrazide, caused
more than 80% of S. sclerotiorum growth inhibition [55]. In the screening study, the derivatives of
indole diketopiperazine with acyl hydrazones containing 4-substituted trifluoromethylbeznalde-
hyde and tert-butylbenzaldehyde fragment as well as 3-chloro and 2,3-dichlorobenzaldehyde
fragments exhibited more than 80% and 50% of antifungal activity against S. sclerotiorum and
B. cinerea, respectively [54]. The rosin hydrazide–hydrazones presented weak activity against
S. sclerotiorum and B. cinerea. The most active derivatives showed 25.32% and 32.20% of inhi-
bition growth. Still, the hydrazone derivatives of thiophene aldehydes presented significant
activity against another phytopathogenic laccase-producing fungus, Rhizoctonia solani, with EC50
0.981 µg/mL [85]. Comparing the results obtained in the above reports for hydrazide–hydrazones
applied against fungi causing white (S. sclerotiorum) and grey mold (B. cinerea), it can be concluded
that the hydrazide–hydrazones of naturally occurring 4-hydroxybenzoic acid link with methionine
linker with salicylic aldehydes compose scaffolds for designing antifungal compounds. There
is no leading motif in the design of fungicides, but research indicates that hydrazide linker is
essential for biological activity.

2.2.2. Dicotyledonous Plant Germination Tests

Among the tested hydrazide–hydrazones derived from 4-hydroxybenzoic acid, we
chose seven derivatives of 2- and 4-hydroxybenzaldehydes 13, 17, 18, 19, 25, 27, and
30. Four of them, 18, 19, 27, and 30, with a salicylidene framework, are simultaneously
the most potent laccase inhibitors and strong antifungal agents. They have the salicylic
aldehyde fragment modified with hindered tert-butyl or large phenyl substituents in
3-position. The hydrazide–hydrazone 25 has a hydroxymethyl substituent next to the
hydroxy group of salicylic aldehyde fragment. This molecule represented the potential
against C. unicolor without activity toward the laccase enzyme. The last two molecules,
13 and 17, are derivatives of gentisaldehyde and vanillin aldehyde, respectively. These
natural components of both molecules are ubiquitous in the plant kingdom. Therefore,
we use them to compare their influence on seed germination and induction of pathogen
resistance with the highly potent antimicrobial potential application of our compounds in
agriculture and horticulture. The grey and white molds that were studied usually attacked
dicotyledons [73]. Thus, we have selected three representatives of temperate climate plants
whose seeds produce valuable oils, both for food and industrial purposes. The crops of
choice are Linum usitatissimum (flax), Helianthus annuus (sunflower), and Brassica napus var.
napus (rapeseed) for the test of phytotoxicity (test 1). Moreover, the flax and sunflower
seeds were used to evaluate their resistance to B. cinerea and S. sclerotiorum, respectively
(test 2). The results of test 1 were presented in Figure 3 and discussed based on plant
germination index (GI, %, for methodology, see Section 3.2.4). Both tests were performed
by using 50 µg/mL hydrazide–hydrazones solutions.
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Figure 3. Test 1—Germination index (GI, %) determined for the uncoated seeds of dicot plants:
rapeseed (yellow), sunflower (green), and flax (blue). Phytotoxicity tests carried out for hydrazide–
hydrazone 13, 17, 18, 19, 25, 27, and 30 with 50 µg/mL concentration; control—the seeds grew
on water–ethanol solution 0.5% (v/v). The results are presented as a mean of three independent
repetitions; standard deviation is expressed as error bars.

According to the adopted methodology [86,87], a germination index (GI, %) ranging
from 90 to 110% means no effect of the tested substance on germination and root growth,
below 90% means an adverse effect, and above 110% means a favorable effect on germi-
nation and root growth. The phytotoxic effect showed six out of seven compounds for at
least one kind of seed. Among them, derivative 27 has a GI of 83% and 82% for rapeseed
and sunflower, respectively, which are the single compounds that negatively influence two
plants. In single cases, the germination index was reduced to 67%, the lowest GI value
calculated for rapeseed and sunflower for hydrazide–hydrazone 18 and 30, respectively,
having one tert-butyl group. The sensitivity of the dicotyledonous crop seeds tested to the
tested hydrazide–hydrazones can be presented as follows: sunflower > rape > flax, where
the listed seeds were inhibited by four or three compounds, and for flax seeds, no inhibition
effect was observed. No general trend describes the influence of hydrazide–hydrazones
tested, but some rules could be applied for at least two kinds of seeds. Surprisingly,
hydrazide–hydrazones 13 and 17 with a fragment of naturally occurring aldehydes, sy-
ringaldehyde, and salicylaldehyde, respectively, had little negative effect on sunflower and
rapeseed with GIs of 87 and 81% (Figure 3). The positive, stimulating effect was observed
for 18, 19, and 25 molecules. However, derivatives 18 and 19 showed different effects
on the seed tested, having no effect on germination and root growth for sunflower and
stimulating germination and growth for flax and rape, respectively. Hydrazide–hydrazone
19 is a derivative of 2-hydroxybiphenyl (ortho-phenylphenol). The ortho-phenylphenol
itself is usually used in harvesting fruits to prevent fungal growth. An unexpected result
was observed for hydrazide–hydrazone 25, with the aspect of C. unicolor grown inhibition,
which was non-toxic for all seeds tested and stimulated the growth of rapeseed and flax.

The second test (test 2) assessed the seeds’ germination and root growth ability in-
fected with the mycelium of the pathogen on soil with a filter in which the corresponding
test compound was present. For the test, we selected pairs of plants–pathogens such as
sunflower–S. sclerotiorum and flax–B. cinerea. The results were compared with a control
sample that contained soil with a water–ethanol solution (0.5%, v/v) and seeds infected
with a particular mold. The results of test 2 were also expressed in terms of the germination
index (%), as shown in Figure 4.
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infected samples treated with a particular hydrazide–hydrazone solution, as shown in 
Figure 5. In comparing the control sample uninfected with fungal pathogens to the in-
fected control samples, a significant reduction in the germination index of 62 and 25% was 
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Figure 4. Test 2—Germination index (GI, %) determined for the uncoated seeds of dicot plants:
sunflower (green) and flax (blue) infected with S. sclerotiorum and B. cinerea, respectively. Phytotox-
icity tests were performed for hydrazide–hydrazone 13, 17, 18, 19, 25, 27, and 30 with 50 µg/mL
concentration; control—the sunflower and flax seeds infected with mycelium of S. sclerotiorum and
B. cinerea grew on water–ethanol solution 0.5% (v/v). The results are presented as a mean of three
independent repetitions.

Almost all compounds showed positive effects on GI for sunflower and flax compared
to the infected seeds control. The GI for sunflower was between 97 and 151%; meanwhile,
for flax, the effect was more pronounced, which is reflected in GI values between 162
and 408%. Furthermore, to see the positive effect on GI for seeds infected with a fungal
pathogen, we compare this parameter for uninfected and infected control samples with
infected samples treated with a particular hydrazide–hydrazone solution, as shown in
Figure 5. In comparing the control sample uninfected with fungal pathogens to the infected
control samples, a significant reduction in the germination index of 62 and 25% was
apparent for sunflower and flax, respectively. In all cases tested, hydrazide–hydrazones
eliminated the negative effect of the pathogen. In the case of 3,5-di-tert-butylsalicylidene
derivative 27 and 5-methyl-3-tert-butylsalicylidene derivative 30 on sunflower and flax, no
negative effect of the pathogen was observed (compounds eliminated the negative effect of
the pathogen).

2.2.3. Cytotoxicity Studies

The cytotoxicity studies were conducted on normal human breast epithelial MCF-10A
and mouse fibroblasts Balb/3T3 cell lines using cis-platin and azoxystrobin as positive
controls. The calculated IC50 values are presented in Table 5, and the illustrations of
cytotoxicity profiles are provided in the Supplementary Materials (see Table S4 and Figure
S130). To our surprise, despite the presence of a hydrazine toxicophore in the molecules
13 and 17 consisting of unmodified naturally occurred gentisaldehyde (52) and vanillin
aldehyde (56) units, respectively, they did not show cytotoxicity on tested lines. In addition
to the salicylic aldehyde fragment, the CH2OH and CH3 substituents at positions 3 and
5, respectively, in compound 25, lead to a 3-fold reduction in cytotoxicity compared to
cis-platin. The naturally occurring gallic acid (3,4,5-hba), 4-hydroxybenzoic acid (4-hba),
and its hydrazide 36 were non-toxic. All highly fungicidal molecules tested, i.e., 18, 19,
27, and 30, have the same cytotoxicity as cis-platin but at least one order of magnitude
less cytotoxic on the mouse cell line than azoxystrobin, a commonly used fungicide in
plant protection. Azoxystrobin is semisynthetic, a well-known, widely used pesticide of
natural origin, characterized by a broad spectrum of action against plant fungal diseases,
and has already been used for almost three decades [88]. Therefore, we assume that all
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compounds with lower cytotoxicity could be classified for future studies concerning the
determination of the mechanism of action and further research on plants in the context of
future applications in agriculture.
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Figure 5. Germination index (GI, %) determined for the uncoated seeds of dicot plants: sunflower
(green) and flax (blue); uninfected control—GI determined for uninfected seeds, assumed as 100%;
infected control—GI determined for the sunflower and flax seeds infected with mycelium of S.
sclerotiorum and B. cinerea, respectively, grew on water–ethanol solution 0.5% (v/v); tests performed
for sunflower and flax seeds treated with 13, 17, 18, 19, 25, 27, and 30 with 50 µg/mL concentration
and infected with S. sclerotiorum and B. cinerea, respectively. The results are presented as a mean of
three independent repetitions.

Summarizing the biological studies, our results showed that a specific group of hydrazide–
hydrazones, derivatives of naturally occurring salicylic aldehyde and 4-hydroxybenzoic acid,
namely 18, 19, 27, 28, and 30, showed promising antifungal activity against phytopathogens.
The most susceptible to the tested compounds was S. sclerotiorum, for which hydrazones 18 and
30 were shown to exhibit activity close to fenhexamid at 12.5 µg/mL. In phytotoxicity tests,
derivative 18 showed no effect on the germination index (GI), while derivative 30 had a negative
effect on GI. On the other hand, in a phytotoxicity test on seeds infected with S. sclerotiorum
mycelium, a positive effect on GI was evident for all tested compounds, as well as the effect
of eliminating the pathogen’s negative effect on germination and root growth in the case of
derivative 30. Moreover, all of the aforementioned compounds showed at least an order of
magnitude lower cytotoxicity compared to the commonly used fungicide azoxystrobin. With
future plans in mind, we believe that compounds with the highest activity against S. sclerotiorum
are candidates for further research aimed at application in the agricultural sector, mainly in the
context of protecting oilseed crops from which edible and industrial oils are currently obtained.
It will be crucial to elucidate their mechanism of action and determine the effects of the tested
compounds in dose–response assays on plants, as well as further modification of the substituents
to improve antifungal activity and lower phyto- and cytotoxicity.
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Table 5. Average IC50 [µM] ± SD values for selected hydrazide–hydrazone tested on the MCF-10A
and BALB/3T3 cell lines.

No. Structure MCF-10A Line Balb/3T3 Line

13
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213.26 ± 34.06 132.48 ± 9.22

17

Molecules 2024, 29, x FOR PEER REVIEW 20 of 31 
 

 

Table 5. Average IC50 [µM] ± SD values for selected hydrazide–hydrazone tested on the MCF-10A 
and BALB/3T3 cell lines. 

No. Structure MCF-10A Line  Balb/3T3 Line 

13 

 

213.26 ± 34.06  132.48 ± 9.22  

17 

 

275.12 ± 41.46  216.51 ± 61.25  

18 
 

6.41 ± 2.05  11.39 ± 2.54  

19 
 

3.44 ± 0.83  3.97 ± 0.15  

25 

 

27.48 ± 1.83  27.24 ± 4.30  

27 

 

7.73 ± 1.08  11.65 ± 0.69  

30 

 

8.85 ± 5.47  23.11 ± 3.87  

4-hba a 
 

N/A b N/A b  

36  
(4-hbah) c  

N/A b N/A b  

3,4,5-hba d 

 

174.11 ± 14.33  163.17 ± 1.95  

Azoxystrobin  N/D e  0.10 ± 0.03  
Cis-platin  9.27 ± 1.63  9.80 ± 1.93  

a 4-hba–4-hydroxybenzoic acid; b N/A—not active at tested concentration up to 500 µM; c, 4-hbah–
4-hydroxybenzoic acid hydrazide, d 3,4,5-hba–gallic acid; e N/D—not determined IC50. 

Summarizing the biological studies, our results showed that a specific group of hy-
drazide–hydrazones, derivatives of naturally occurring salicylic aldehyde and 4-hy-
droxybenzoic acid, namely 18, 19, 27, 28, and 30, showed promising antifungal activity 
against phytopathogens. The most susceptible to the tested compounds was S. scleroti-
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3. Materials and Methods
3.1. Reagents and Materials

All commercially available chemicals were purchased as pure for synthesis or analyti-
cal grade reagents (Sigma-Aldrich, St. Louis, MO, USA; ARMAR, Muligasse, Switzerland;
Fluka Hamburg, Germany; Loba Feinchemie AG, Fischamend Austria; POCh Gliwice,
Poland) and solvents were primarily used without further purification. In particular,
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4-hydroxybenzoic acid hydrazide (36), acetic acid hydrazide (37), benzaldehyde (41), 3-
phenylpropionaldehyde (42), 4-methylbenzaldehyde (43), 4-iso-propylbenzaldehyde (44),
benzaldehyde-2-sodiumsulfonate (45), salicylic aldehyde (46), 3-hydroxy-benzaldehyde
(47), 4-hydroxybenzaldehyde (48), 2-methoxybenzaldehyde (49), 3-methoxy-benzaldehyde
(50), anisaldehyde (51), gentisaldehyde (52), vanillic aldehyde (56) (LobaFeinchemie), 3-tert-
butyl-salicylic aldehyde (57), 2,4-dihydroxy-benzaldehyde (59), 3,5-di-tert-butyl-salicylic
aldehyde (64), nicotinic acid methyl ester (76), 4-methoxybenzoic acid (77), and benzoic
acid (78), syringaldazine (SNG, 4-hydroxy-3,5-dimethoxybenzaldehyde azine), guaiacol
(2-Methoxyphenol), dimethyl sulfoxide for plant cell culture, laccase from Trametes versi-
color in lyophilized powder were bought from Sigma-Aldrich. Vanillic aldehyde (56) was
purchased from Loba Feinchemie. The 5-nitro-2-furfural diacetyl acetal (69) and phloroglu-
cinol (73) were purchased from Fluka. Inorganics, citric acid monohydrate, and sodium
phosphate dibasic dodecahydrate were purchased from POCh. The 99.8 atom % D solvents
for NMR spectroscopy, chloroform-d1 (CDCl3), and dimethyl sulfoxide-d6 (DMSO-d6) and
ethanol (95%) for biological tests were purchased from ARMAR (Muligasse, Switzerland)
and were used without further purification.

Methanol was distilled prior to the condensation reaction from Mg element shavings
in the presence of I2. Analytical TLC was performed on PET foils precoated with silica
gel (Merck silica gel, 60 F254) and was made visual under UV light (λmax = 254 nm) or by
staining with iodine vapor. Melting points were determined on an Electrothermal IA 91100
digital melting-point apparatus (Sigma-Aldrich, Saint Louis, MO, USA) using the standard
open capillary method. FT-IR spectra (4000–400 cm−1) were recorded on a 2000 FT-IR
(Perkin–Elmer, Manchester, UK) or VERTEX 70V spectrometer (Bruker, Ettlingen, Germany)
using a diamond ATR accessory. Absorption maxima are reported in wavenumbers (cm–1).
1H-NMR and 13C-NMR spectra were recorded on Jeol 400yh (Tokyo, Japan) (399.78 MHz
for 1H and 100.52 MHz for 13C) at 295 K. Chemical shifts (δ) are given in parts per million
(ppm) downfield relative to TMS, and coupling constants (J) are in Hz. Residual solvent
central signals were recorded as follows: DMSO-d6, δH = 2.500 ppm, δC = 39.43 ppm; CDCl3,
δH = 7.263 ppm, δC = 77.00 ppm. When measured, DEPT and ATP experiments signals are
referred to as (+) or (–). High-resolution mass spectra (HRMS) were recorded on a LCD
Premier XE instrument (Waters, Manchester United, UK), and only the [M + H]+ or [M +
Na]+ molecular species were reported.

The literature procedure was adapted for the preparation of hydrazide–hydrazones
1–3, 5–11, 14–25, 27–30 [48], 32 [71], 31, and 33–35 [47]; hydrazides 38–40 [47]; aldehydes
53–55, 58, 61, 62 [48,89], 60 [66], 63 [67], 65 [48,90], 66, 67 [48], and 68 [69]; and phenol
72 [68].

Purity and homogeneity of known compounds were confirmed by measuring their
m.p. for 1–3, 5–11, 14–21, 24, 25, 27–30 [48], 12 [91], 31, 33–35 [47], 32 [71], 38 [48], 39 [92,93],
40 [47,93], 60 [94], 63 [67], and 68 [69]; boiling points for 65 [48] and 68 [67]; FT-IR spectra
for 3 [48], 22 [95], 25 [48], 38, 39 [52], 40 [47], and 68 [69]; 1H-NMR spectra for 3 [48], 4 [96],
12 [97], 13 [98], 22 [99], 23 [41], 25, 28 [48], 38, 39 [52], 40 [47], 60 [66], 65 [48], and 68 [69];
13C-NMR spectra for 3 [48], 4 [96], 22 [95], 25, 28 [48], 38, 39 [52], 40 [47], 65 [48], and 68 [69];
and/or HRMS for 3 [48], 4 [96], 22 [95], 25, and 28 [48] and comparing them with literature
data. Two new aroylhydrazide–hydrazones, 26 and 32, were fully characterized. The
position of hydrogen and carbon atoms in the NMR data was determined by supporting the
standard dept-135 experiment and by 2D map analysis of Heteronuclear Multiple Quantum
Correlation (HMQC), Heteronuclear Single Quantum Coherence (HSQC), Heteronuclear
Multiple Bond Correlation (HMBC), and Nuclear Overhauser Enhancement Spectroscopy
(NOESY) experiments, if measured. The spectra images of FT-IR and NMR for the following
compounds are placed in the Supplementary Materials.

The cultures of Botrytis cinerea strain FBc05 and Sclerotinia sclerotiorum strain FSc10
were obtained from the collection of the Division of Plant Pathology and Mycology at the
Department of Plant Protection of Wroclaw University of Environmental and Life Sciences
(Poland). Cerrena unicolor (Bull.ex.Fr.) Murr, strain no. 139, originated from the culture
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collection of the Department of Biochemistry, University of Lublin (Poland). The stock
cultures were maintained on potato dextrose agar at +4 ◦C and periodically transferred to
a fresh medium.

3.2. Synthesis
3.2.1. General Procedure for the Synthesis of Hydrazide–Hydrazones 1–35 [47]

To a mixture of aldehyde 41–68 or diacetylacetal 69 (2.0 mmol) and carboxylic acid
hydrazide 36–40 (2.0–4.0 mmol) in dry CH3OH (2.0–100 mL), AcOH (0–200 µL) was added
at room temperature (RT) with 2.5–20 h. Then, the resulting solution was gently refluxed
during stirring. The reaction progress was monitored by TLC. Then, the reaction was
finished after slow cooling to room temperature (RT) and cooled to ca. +4 ◦C; the reaction
mixture was left in a refrigerator (−24 ◦C) overnight. The crystals formed were collected by
filtration with suction, and the filter cake was washed with a frozen mixture of methanol
and water (3:2, v/v) and dried to obtain pure products 1–35. These compounds were
fully characterized by melting point and NMR, IR, and HRMS spectra in our previous
articles [47,48] or in the present work (compounds no. 4, 12, 13, 22, 23, 26, 28, 32). The
known compound was identified by comparison of its melting points and FT-IR and/or
NMR spectra with literature data. The new products 26 and 32 were fully characterized.
For all products, HRMS analyses were measured (see the Supplementary Materials).
4-Hydroxy-N′-[(E)-(2-hydroxy-3-hydroxymethyl-5-methoxyphenyl)methylidene]benzohydrazide (26). The
general procedure starting from 2-hydroxy-3-hydroxymethyl-5-methoxy-benzaldehyde (63) (128 mg,
0.70 mmol) [67], 4-hydroxybenzohydrazide (36) (106 mg, 0.70 mmol), CH3OH (3.5 mL), and AcOH
(70µL) was employed with a 5 h reaction time and left to crystallize in an open vessel to obtain the
4-hydroxy-N′-[(E)-(2-hydroxy-3-hydroxymethyl-5-methoxyphenyl)methylidene]benzohydrazide (26).
A pale yellow powder; 215 mg, 0.68 mmol, 97% yield; m.p. 219–220 ◦C (from CH3OH); selected
FT-IR (ATR):νmax 3540 (O-H), 3223 (br, N-H, O-H), 3045 (CAr-H), 2987 (C-H), 2834 (C-H), 1626 (C=O),
1602 (N-H), 1582 (CH=N), 1556 (CAr-H), 1509, 1457 (CAr-H), 1305, 1254 (CAr-O), 1176, 1144 (CH2-O),
1060, 1035 (CH3-O), 955 (N-N), 890, 847, 763, 660, 621, 526 cm–1; 1H-NMR (400 MHz, DMSO-d6): δ
12.02 (s, 1H, NH), 11.53 (s, 1H, Ar-2-OH), 10.21 (s, 1H, 4-OH), 8.51 (s, 1H, CH=N), 7.83 (d, 3J = 8.6
Hz, 2H, H-2,6), 7.04 (d, 4J = 2.9 Hz, 1H, ArH-4), 6.89 (d, 4J = 2.9 Hz, 1H, ArH-6), 6.89 (d, 3J = 8.6 Hz,
2H, H-3,5), 5.15 (t, 3J = 5.5 Hz, 1H, CH2OH), 4.55 (d, 3J = 5.5 Hz, 2H, CH2), 3.74 (s, 3H, OCH3) ppm;
13C-NMR (101 MHz, DMSO-d6): δ 162.41 (C=O), 160.97 (C-4), 151.83 (ArC-5), 148.66 (CH=N), 148.48
(ArC-2), 131.06 (ArC-3), 129.77 (C-2,6), 122.98 (C-1), 117.32 (ArC-1), 115.48 (ArC-4), 115.13 (C-3,5),
112.09 (ArC-6), 57.60 (CH2), 55.46 (OCH3) ppm; HRMS (TOF, MS, ESI): m/z for C16H16N2O5–H2O
+ H+ calculated: 299.1026; found: 299.1037; m/z for C16H16N2O5 + H+ calculated: 317.1132; found:
317.1141; for C16H16N2O5–H2O + Na+ calculated: 321.0846; found: 321.0847; m/z for C16H16N2O5 +
Na+ calculated: 339.0951; found: 339.0951.
N′,N′′-[(2,4,6-trihydroxy-1,3-phenylene)di-(E)-methanylylidene]bis(4-hydroxybenzohydrazide)
(32) [71]. The hydrazide–hydrazone 32 was prepared using a modified literature proce-
dure [71]. The general procedure starting from 1,3-diformylo-2,4,6-trihydroxybenzene (68)
(0.18 g, 1.0 mmol) [69], 4-hydroxybenzohydrazide (36) (304 mg, 2.0 mmol), CH3OH (10 mL),
and AcOH (0.10 mL) was employed with a 20 h reaction time, with formation carmine
red mixture to obtain the N′,N′′-[(2,4,6-trihydroxy-1,3-phenylene)di-(E)-methanylylidene]bis(4-
hydroxybenzohydrazide) (32). A brown red powder; 428 mg, 0.95 mmol, 95% yield; m.p.
223–226 ◦C (from CH3OH) with decomposition (m.p. 223–226 ◦C with decomposition [71]);
selected FT-IR (ATR): νmax 3173 (br, OH, NH), 3074 (CAr-H), 3024 (CAr-H), 1604 (br, C=O, C=N),
1502, 1443, 1325, 1238 (br, C-O), 1171, 1056, 843, 756, 611, 515, 473 cm−1; 1H-NMR (400 MHz,
DMSO-d6): δ 13.33 (s, 1H, ArC-2-OH), 11.87 (s, 4H, ArC-4,6-OH, 2 × CONH), 10.17 (s, 2H,
C-4,4′-OH), 8.84 (s, 2H, CH=N), 7.82 (d, 3J = 8.7 Hz, 4H, H-2,2′,6,6′), 6.88 (d, 3J = 8.7 Hz, 4H,
H-3,3′,5,5′), 5.99 (s, 1H, ArH-5) ppm; 13C-NMR (101 MHz, DMSO-d6): δ 162.03 (2 × C=O),
161.25 (2 × C–ArC-4,6), 160.86 (2 × C–C-4,4′), 159.89 (C–ArC-2), 145.01 (2 × CH=N), 129.63
(4 × CH–C-2,2′,6,6′), 123.12 (2 × C–C-1,1′), 115.16 (4 × CH–C-3,3′,5,5′), 99.21 (2 × C–ArC-1,3),
94.46 (CH) ppm; HRMS (TOF, MS, ESI) m/z for C22H18N4O7 + H+ calculated: 451.1248; found:
451.1261.
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3.2.2. In Vitro Antifungal Activity

Prior to the fungicidal activity assay of hydrazide–hydrazones 1–35, we considered
ethanol and DMSO as potential dissolution media for tested compounds. Most of the
hydrazide–hydrazones have poor solubility in water. Furthermore, a very important aspect
of biological testing is the careful selection of organic solvents. These are typically used,
e.g., methanol, ethanol, acetone, and DMSO, and may be highly toxic for microorganisms
in even very low concentrations, such as 1% (v/v) [100]. Ethanol and DMSO with a final
concentration between 0.1 and 1.0% (v/v) in a PDA medium were used and applied to
evaluate the inhibition growth of B. cinerea, S. sclerotiorum, and C. unicolor (see Supplemen-
tary Materials). The following procedure was applied to the microorganism testing. The
assays of fungi inhibition growth were performed at a basal concentration of 50 µg/mL
for all compounds, and detailed experiments were extended for testing between 0 and
50 µg/mL (0, 6.25, 12.5, 25.0, and 50.0 µg/mL) for selected compounds. The tests were
carried out on Petri dishes (diameter 60 mm) with PDA medium containing appropriate
compound, co-solvent control, and hydrazide–hydrazone dissolved in co-solvent assay.
A piece of mycelium with a 5 mm edge taken from the outer edge of the growing fungi
on the PDA plate with co-solvent was transferred to a central part of the PDA plate with
the examined compound. The plates thus inoculated were incubated at 22 ◦C in the dark
for a time when the control plate containing only the co-solvent was covered entirely with
the tested microorganism. For B. cinerea and S. sclerotiorum, the test took 3 days, and for C.
unicolor, it took 7 days. Each assay was performed at least in triplicate. The dose–response
relationship between the concentration of tested chemicals and the growth of three chosen
fungi species was described by log-logistic Equation (1) [101,102]:

A =

(
c +

d − c
1 + exp(b(ln (x)− ln(e)))

)
× 100% (1)

where A is the area of the culture medium overgrown by a given species of fungus expressed
as a percentage of area overgrown by control [%], x is the mean (three determinations)
tested substance concentration in the medium [µg/mL] or [%] in case of ethanol and DMSO,
e is the inflection point [µg/mL] or [%], b is the threshold parameter [–], and c and d are the
lower and upper bound of A, respectively [%]. Model parameters c and e were estimated
using the nonlinear least-squares method. Parameters d and b (with two exceptions) were
fixed and assumed to be equal. Based on estimated parameters, the values of IC50 were
determined. When the dose did not reach 50% of microorganism growth inhibition, the
IC50 value was not defined (n.d.). Estimated parameter values of the log-logistic model,
along with calculated IC50 and goodness of fit, are given in Table 4. The IC50 values were
calculated only in cases when the model predicted a decrease in growth rate by more
than 50%. The low value of R2, e.g., 0.13 for 27 and S. sclerotiorum, indicated a small
difference between the regression line and the simple average, which was noted when
increasing concatenations of chemicals hardly influenced the toxic effect, and therefore,
the data points were arranged close to the horizontal line reflecting their average value.
The model parameters were not estimated for ethanol influence on S. sclerotiorum growth
because no signs of inhibition were observed, even in the highest ethanol concentrations
(see Supplementary Materials, Tables S2 and S3).

3.2.3. Kinetic Study for 32

The inhibition constant for 32 was determined according to procedures and calcu-
lations reported previously [47,48] using commercially available laccase from Trametes
versicolor (Sigma-Aldrich).

3.2.4. Phytotests

In the experiments with plants, two aspects were taken under consideration: (1) phyto-
toxicity, which determined the toxicity of the hydrazide–hydrazones on seed germination
and root growth, and (2) study on the behavior of seeds in the presence of the tested
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hydrazide–hydrazones and pathogens producing laccase (B. cinerea and S. sclerotiorum).
The non-coated seeds of Linum usitatissimum, Helianthus annuus, and Brassica napus
var. napus were provided by the Institute of Soil Science and Plant Cultivation, National
Research Institute in Pulawy, Department of Weed Science and Tillage Systems, and Insti-
tute of Technology and Life Sciences–National Research Institute Falenty (Poland). Both
phytotests were performed based on direct-contact microbiotests following the protocol
recommended by the manufacturer (PhytotestkitTM, MicroBio Tests, Mariakerke, Belgium)
with the authors’ modifications.

The main phytotest equipment (Tigret, Warsaw, Poland) and general methods are
described as follows. Test plates (21 × 15.5 × 0.8 cm) provide optimal moisture and enable
observation of seed germination and data reading at the end of the test. A single plate is
made of polyvinylchloride and composed of both a transparent bottom and a covering part
that are stuck together by a set of press buttons. The bottom part is separated horizontally
with a middle ridge into two equal shallow rectangular areas, in which the lower area was
filled with 90 mL of roasted sand and 30 mL of the ethanol solution of the tested compound.
In tests (1) and (2), the selected hydrazide–hydrazones were dissolved to 50 µM in the
water–ethanol solution 0.5% (v/v) and distributed uniformly into the sand. Such prepared
wet support was covered with a black filter paper that soaked the solution and was applied
for further testing.

In the assay of phytotoxicity (1), the seeds of three dicota plants were used, namely ten
seeds of flax or rapeseed and six seeds of sunflower. The seeds were transferred directly on
the filter surface by placing them along the line at approximately 1 cm from the ridge at
equal distances. Then, the seeds on the filter surface were covered with a covering part and
placed in a holder.

In assay (2), the direct interaction between seed-microorganism-tested hydrazide–
hydrazone was tested. Before the seeds were transferred on the surface of wet support, they
were covered with mycelium of B. cinerea or S. sclerotiorum for flax or sunflower, respectively.
For that purpose, 100 or 50 seeds of flax or sunflower, respectively, were transferred to the
Petri dish (90 mm diameter) with a 7-day-old culture and gently shaken. Then, the seeds
were placed on the prepared soaked support with the black filter and covered with the
upper part of the plate. The choice of type of fungi and seeds was arbitrary since both
molds attack both types of plant.

All test plates were put vertically in a special incubator to allow free germination and
growth of roots at 25 ◦C through 5 days in the dark. The test was performed in triplicate for
each test plant. The results were expressed as the germination index values (GI, Equation (2))
concerning the plant growth controls in water–ethanol solution for (1). The results obtained for
(2) were also related to the control obtained in (1) test. The GI was calculated from the formula
and categorized as an inhibition for GI values < 90%, as stimulation > 110%, and between 90
and 110% as non-toxic/no effect as proposed in the literature [86,87].

GI, % =
Gs × Ls
Gc × Lc

× 100% (2)

where Gs is seed germination (%), Ls is root elongation (mm) for the test plate, and Gc and
Lc are corresponding values for the control plates. Gc was calculated as the proportion of
germinated seeds in the test in relation to the number of germinated seeds in the control.
The control was the representative number of seeds that germinated on a medium with
0.5% (v/v) of ethanol.

3.2.5. Cytotoxicity
Cell Lines

Antiproliferative tests were performed on a normal human breast cell line, MCF-10A,
and a mouse embryonic fibroblast: Balb/3T3. Both cell lines were obtained from the
American Type Culture Collection (Rockville, MD, USA). The cell lines were maintained
in the Institute of Immunology and Experimental Therapy, Wroclaw, Poland. MCF-10A
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cells were cultured in the F-12 nutrient mixture (Gibco, Scotland, UK), supplemented with
5% horse serum (Gibco, Scotland, UK), 10 µg/mL of cholera toxin (Vibrio cholerae Pacini),
10 µg/mL of hydrocortisone and 20 ng/mL of human epidermal growth factor (all from
Sigma-Aldrich, Chemie GmbH, Steinheim, Germany). Balb/3T3 cells were cultured in
Dulbecco medium (Gibco, Darmstadt, Germany) supplemented with 10% fetal bovine
serum (Thermo Fisher Scientific, Waltham, MA, USA) and 2 mM l-glutamine (Sigma-
Aldrich, St. Louis, MO, USA). All culture media contained antibiotics: 100 U/mL penicillin
(Sigma-Aldrich, St. Louis, MO, USA) and 100 µg/mL streptomycin (Polfa-Tarchomin,
Warsaw, Poland). Both cell lines were cultured during the entire experiment in a humid
atmosphere at 37 ◦C and 5% CO2. Amistar 250 SC (fungicide) with active compound
azoxystrobin was provided by the Institute of Soil Science and Plant Cultivation, National
Research Institute in Pulawy, Department of Weed Science and Tillage Systems in Wroclaw,
Poland in a humid.

Antiproliferative Assay In Vitro

Twenty-four hours prior to the applications of the tested compounds, MCF-10A and
Balb/3T3 cells were plated in 96-well plates at a density of 104 cells per well and cultured
at 37 ◦C in a humid atmosphere saturated with 5% CO2 for 24 h. Stock solutions of the
compounds were prepared ex tempore for each test by dissolving in DMSO. The cells were
also exposed to the reference drugs: cis-platin (Accord, London, UK) (10–0.01 µg/mL) and
DMSO (Sigma-Aldrich) (at the concentrations corresponding to those in the tested agent
dilutions). The solutions were then diluted in culture medium RPMI 1640 + Opti-MEM
(1:1) (both from Gibco, Scotland, UK), supplemented with 2 mM l-glutamine, 5% fetal
bovine serum (all from Sigma-Aldrich Chemie GmbH, Steinheim, Germany). An assay was
performed after 72 h of exposure to the tested compounds 13, 17, 18, 19, 25, 27, 30, 4-hba,
4-hbah, and 3,4,5-hba (0.5, 5.0, 50, and to 500 µM) and azoxystrobin fungicide (0.05, 0.5, 5.0
and 50 µM). The antiproliferative effect in vitro was determined by the SRB method [103]
(sulforhodamine B colorimetric assay). The optical densities of the samples were measured
on the Synergy H4 photometer (BioTek Instruments, Winooski, VT, USA) at 540 nm. The
results were calculated as 50% inhibitory concentration (IC50), namely the dose of the tested
compound inhibiting proliferation of the tested cells by 50% as compared to the untreated
control cells, in the Prolab-3 system based on Cheburator 0.4 software using the two-point
method [104]. The mean values of ID50 for each experiment ± SD are presented in Table 5.
Each test was repeated 3–5 times.

4. Conclusions

In the present article, we presented the results of the biological evaluation of hydrazide–
hydrazones, derivatives of carboxylic acid hydrazides, and aldehydes, which previously
were tested as laccase inhibitors. We postulated that the laccase might be the target
enzyme produced by the phytopathogenic fungi, and inhibition may prevent or slow
pathogen development in infected plants. We performed screening tests of all hydrazide–
hydrazones at 50 µg/mL on laccase-producing fungi, Botrytis cinerea, Sclerotinia sclerotiorum,
and Cerrena unicolor and further detailed tests to determine IC50 parameters. Among the
tested molecules, derivatives of 4-hydroxybenzoic acid and salicylic aldehydes, namely
3-tert-butyl-, 3-Ph-, 3,5-di-tert-butyl, and 3-tert-butyl-5-methylsalicylic aldehyde (18, 19,
27, and 30, respectively), showed high antifungal activity, which corresponded to their
high laccase inhibition potency [48]. The most susceptible phytopathogen among tested
laccase-producing fungi was S. sclerotiorum, for which the determined IC50 was up to
0.5 µg/mL. Good results were also obtained for the thymol derivative 28, which was not
active against laccase but showed high potency on S. sclerotiorum with IC50 9.8 µg/mL. We
also performed tests of phytotoxicity and cytotoxicity on selected hydrazide–hydrazones
to determine their potential future application in the plant protection sector. Most of the
tested molecules showed low or no phytotoxicity for tested dicotyledonous plants, and for
two compounds, we observed no pathogen effect on the germination index of sunflower
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and flax seeds. Cytotoxicity results show that our compounds are non-toxic or less toxic
than the azoxystrobin fungicide commonly used in agriculture. Therefore, we assumed
that the derivatives of salicylic aldehydes and 4-hydroxybenzoic acid, namely 18, 19, 27,
28, and 30, are promising antifungal agents that can be further optimized as fungicidal
candidates for application in the agriculture of dicot plant produced of oilseed crops used
in manufacturing edible and industrial oils, especially for biofuels.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29102212/s1. General Methods are in S3–S4; Table S1: Characteristics
of the hydrazide–hydrazones 1–35 in S5; procedures and spectral data in Figures S1–S128: FT-IR, 1H NMR,
and 13C NMR spectra, dept-135 and 2D experiments of selected hydrazide–hydrazones; 4, 12 (Nifuroxazide),
13, 22, 23, 25, 26, 28, and 32 and aldehydes 60 (4-hydroxy-gentisaldehyde), 62 (2-hydroxy-3-(hydroxymethyl)-
5-methylbenzaldehyde), 63 [2-hydroxy-3-(hydroxymethyl)-5-methoxybenzaldehyde], 65 (3-iso-propyl-6-
methylsalicylic aldehyde), and 68 (2,4-diformylphloroglucinol) in S7–S74; procedures of hydrazide 38–
40 preparation in S75. Fungicidal profiles for DMSO and ethanol are in Table S2, and for hydrazide-
hydrazones 18, 19, 27, 28, 30 and fenhexamid are in Table S3 and Figure S129. Cytotoxicity profiles for
13, 17, 18, 19, 25, 27, 30, 4-hba, 4-hbah, gallic acid (3,4,5-hba), azoxystrobin and cis-platin are in S79–S83.
References [41,47,48,52,66–69,71,89–99,101,102] are cited in the supplementary materials.
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62. Tronina, T.; Bartmańska, A.; Popłoński, J.; Rychlicka, M.; Sordon, S.; Filip-Psurska, B.; Milczarek, M.; Wietrzyk, J.; Huszcza, E.
Prenylated Flavonoids with Selective Toxicity against Human Cancers. Int. J. Mol. Sci. 2023, 24, 7408. [CrossRef] [PubMed]

63. Grimster, N.P.; Connelly, S.; Baranczak, A.; Dong, J.; Krasnova, L.B.; Sharpless, K.B.; Powers, E.T.; Wilson, I.A.; Kelly, J.W. Aromatic
Sulfonyl Fluorides Covalently Kinetically Stabilize Transthyretin to Prevent Amyloidogenesis While Affording a Fluorescent
Conjugate. J. Am. Chem. Soc. 2013, 135, 5656–5668. [CrossRef] [PubMed]

64. Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Stereoselective Ring-Opening Polymerization of a Racemic Lactide by Using
Achiral Salen- and Homosalen-Aluminum Complexes. Chem.—A Eur. J. 2007, 13, 4433–4451. [CrossRef] [PubMed]

65. Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G. Selective Reaction between Phenols and Formaldehyde. A Novel
Route to Salicylaldehydes. J. Chem. Soc. Perkin. 1980, 1, 1862–1865. [CrossRef]

66. Gou, H.; Zhang, J.; Li, P.; Li, C.; Wang, H.; Hong, W. A Practical Total Synthesis of Wedelolactone. Synth. Commun. 2023, 53,
1126–1133. [CrossRef]

67. Hu, Y.; Hu, H. A Novel Selective Oxidation of 5-Substituted 2-Hydroxy-3-Hydroxymethylbenzaldehydes. Synthesis 1991, 4,
325–326. [CrossRef]

68. Fan, H.; Peng, X. Photoinduced DNA Interstrand Cross-Linking by Benzene Derivatives: Leaving Groups Determine the Efficiency
of the Cross-Linker. J. Org. Chem. 2021, 86, 493–506. [CrossRef] [PubMed]

69. Lee, H.; Park, R.Y.; Park, K. Total Syntheses of 4′,6′-Dimethoxy-2′-Hydroxy-3′,5′-Dimethylchalcone Derivatives. Bull. Korean
Chem. Soc. 2021, 42, 66–71. [CrossRef]

70. Ndikuryayo, F.; Kang, W.M.; Wu, F.X.; Yang, W.C.; Yang, G.F. Hydrophobicity-Oriented Drug Design (HODD) of New Human
4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Eur. J. Med. Chem. 2019, 166, 22–31. [CrossRef] [PubMed]

71. Giurg, M.; Maniak, H. Iminowe Pochodne Aldehydów Salicylowych i Hydrazydu Kwasu 4-Hydroksybenzoesowego Oraz
Sposób Ich Wytwarzania. U.S. Patent PL 233208 B1, 30 September 2019.

72. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Socrates, G., Ed.; John Wiley &Sons, Ltd.:
Chichester, UK; New York, NY, USA; Weinheim, Germany; Toronto, ON, Canada; Brisbane, Australia; Singapore, 2001.

73. Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger,
S.; et al. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia Sclerotiorum and Botrytis Cinerea. PLoS Genet. 2011,
7, e1002230. [CrossRef] [PubMed]

74. Ali, F.E.M.; Elfiky, M.M.; Fadda, W.A.; Ali, H.S.; Mahmoud, A.R.; Mohammedsaleh, Z.M.; Abd-Elhamid, T.H. Regulation
of IL-6/STAT-3/Wnt Axis by Nifuroxazide Dampens Colon Ulcer in Acetic Acid-Induced Ulcerative Colitis Model: Novel
Mechanistic Insight. Life Sci. 2021, 276, 119433. [CrossRef] [PubMed]

75. Maniak, H.; Witkowska, D.; Giurg, M. Zastosowanie Hydrazydu Kwasu 4-Hydroksybenzoesowego Oraz Zastosowanie
Hydrazydo-Hydrazonów Pochodnych Kwasu 4-Hydroksybenzoesowego Aldehydów Zawierających Fragment Aromatyczny.
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