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Abstract: A convenient protocol for the synthesis of 25,26,27-tribenzoyl-28-[((S)-1-diphenylphos-
phanyl-propan-2-yl)oxy]-calix[4]arene via stereospecific methylation on Evans’ oxazolidinone moiety
was reported. According to the 13C NMR analysis of this phosphine, the calix[4]arene skeleton
adopted a 1,3-alternate conformation. The latter conformation of the macrocycle and the (S)-chirality
of the carbon atom bearing the methyl substituent were confirmed by a single-crystal X-ray diffraction
study. After coordination of the phosphinated ligand to the dimeric [RuCl2(p-cymene)]2 organometal-
lic precursor, the resulting arene–ruthenium complex was tested in the asymmetric reduction of
acetophenone and alcohol was obtained with modest enantiomeric excess.
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1. Introduction

Calix[4]arenes are macrocyclic compounds formed by condensation of four molecules
of phenol and four molecules of formaldehyde, which, after adequate functionalization,
could be used as building blocks for applications in host–guest chemistry, coordination
chemistry, homogeneous catalysis, and materials or medicinal sciences [1–12].

Furthermore, calix[4]arenes are dynamic molecules that can exist under the following
four conformational isomeric structures: cone, partial cone, 1,2-alternate, and 1,3-alternate
(Figure 1). Ring inversion occurs through “oxygen-through-the-annulus rotation” [13] and
it is well-established that the introduction of propyl substituents at the phenolic positions
is sufficient to block this rotation and lock the conformation of calix[4]arenes [14].
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Figure 1. Conformational isomeric structures of calix[4]arene.

With appropriate functionalization, generic calix[4]arene provides a useful preorgani-
zation platform for the preparation of optically active phosphinated ligands. As examples,
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these can be used in the asymmetric reduction of olefins or in the asymmetric formation of
carbon–carbon bonds (Figure 2).
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optically active ligands.

For instance, for the asymmetric rhodium-catalyzed hydrogenation of methyl-(Z)-
2-(acetamido)acrylate (Equation (1) in Figure 2), van Leeuwen and co-workers reported
the use of calixarenyl diphosphite A (Figure 3) based on the (R,R)-2,2-dimethyl-α,α,α’,α’-
tetraphenyldioxolane-4,5-dimethanol moiety. The catalytic system was generated in situ
from the ligand and [Rh(nbd)2]BF4 (nbd = bicyclo[2.2.1]hepta-2,5-diene) as an organometal-
lic precursor (1 mol%) in dichloromethane. After 20 h at room temperature under 5 bar
of hydrogen, the (R)-alanine derivative was quantitatively obtained with an enantiomeric
excess (ee) of 94% [15]. A slightly higher enantioselectivity (ee = 98%) was obtained by
Sandoval and co-workers using [Rh(cod)2]BF4 (1 mol%; cod = 1,5-cyclooctadiene) and the
non-conformationally flexible calixarenyl diphosphite B (Figure 3) as the catalytic system.
The run was performed in dichloromethane under 5 bar of hydrogen at 30 ◦C for 11 h [16].

Using the ephedrine methodology, Harvey, Jugé, and co-workers synthetized in two
steps aminophosphine–phosphinite C (Figure 3). Catalytic hydrogenation was carried
out using the well-defined [Rh(cod)(C)]BF4 complex (3 mol%) in benzene under 15 bar
of hydrogen. After 16 h, full reduction of the substrate was observed and (R)-methyl
2-acetamidopropionate was formed with a modest enantioselectivity (ee = 34%). Repeating
the run with (Z)-N-acetyl-dehydro-phenylalanine methyl ester as the substrate (Equation (2)
in Figure 2), under only 1 bar of hydrogen, enantioselectivity of the reduced (R)-methyl
2-acetamido-3-phenylpropionate reached the value of 98% [17].

In the case of asymmetric rhodium-catalyzed hydrogenation of methyl ester (Z)-N-
acetyl-dehydro-phenylalanine, recently, we studied the positioning of the two phosphito
units on the calix[4]arene platform and its effect on the transfer of chirality from the ligand
to the substrate (Equation (2) in Figure 2). The two phosphito units were grafted either
on distal (B) and proximal (D) aromatics of the lower rim or on distal (E) aromatics of
the upper rim. The catalytic system was generated in situ starting from [Rh(cod)2]BF4
(1 mol%) and the ligand. The runs were performed in CH2Cl2 at room temperature under
5 bar of hydrogen for 24 h. Under the latter catalytic conditions, the pro-chiral olefin was
fully reduced and the enantioselectivities increased in the order E (ee 57%) < D (ee = 62%)
< B (ee = 91%). These differences could be explained by steric factors generated by the
second coordination sphere of the ligand, i.e., by the calix[4]arene skeleton. In accordance
with molecular models, the more sterically constrained active species (encapsulation of the
catalytic center inside a molecular pocket), obtained when the diphosphite B was employed,
led to the more efficient chirality transfer from the ligand to the substrate [18].
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Regarding the carbon–carbon bond formation, the most popular reaction is the
palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenylprop-2-enyl acetate with
dimethyl malonate, released generally with the N,O-bis(trimethylsilyl)acetamide and ac-
etate salt as bases (Equation (3) in Figure 2). In this context, diphosphine F, in which the
calix[4]arene platform exhibits an inherent chirality [19], led to a moderate enantiomeric
excess of 67% [20]. A higher enantioselectivity (ee = 82%) was reported by Harvey, Jugé,
and co-workers using the C2 symmetry P-chirogenic diphosphine G, [Pd(η3-C3H5)Cl]2 as
an organometallic precursor and nBuLi as the base [21]. The best enantiomeric excess value
(ee = 86%) was measured by Manoury and co-workers using the in situ catalytic system
resulting from calixarenyl di-ferrocenylphosphine H and [Pd(η3-C3H5)Cl]2 (6 mol%) with
MOAc (M = Na or K) as the base. With this system, the enantioselectivity of the product
strongly depended on the acetate counterion, and the highest enantiomeric excess value
was measured when KOAc was employed [22].

In 2019, our group reported the rhodium-catalyzed asymmetric hydroformylation of
styrene (Equation (4) in Figure 2) with diphosphite E, in which the two phosphito units were
grafted on the upper rim of the calix[4]arene platform. Using the [Rh(acac)(CO)2] source
of metal (0.1 mol%) and an excess of ligand (5 equiv./Rh) after 24 h at 50 ◦C in toluene
under 20 bar of syngas, the aldehydes were formed in a conversion of 82%, and the 2-
phenylpropanal was observed with a b/l ratio of 88:12 and an ee of 89%. Molecular models
reveal that the most favorable conformation of the trigonal bipyramidal [RhH(CO)2(E)]
active species has the rhodium atom turned towards the exterior of the cavity with the
apical hydride and the equatorial carbon monoxide ligands located in a chiral hindered
environment generated by the two binaphthyl moieties [23].

In this context, and to the best of our knowledge, there is no example of a ruthenium
catalyst based on optically calixarenyl phosphine achieving the transfer hydrogenation
of ketones. In continuation of our quest to develop a new macrocyclic ligand, herein
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we report the synthesis of phosphine 1 (Figure 4) and its application in the asymmetric
ruthenium-catalyzed reduction of ketones.
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2. Results and Discussion
2.1. Synthesis of the Phosphine Borane Adduct

In continuation of our preliminary research on the optically active calixarenes [24],
we reinvestigated our work on Evans’ oxazolidinone calix[4]arene for the synthesis of
{25,26,27-tribenzoyl-28-[((S)-1-diphenylphosphanyl-propan-2-yl)oxy]-calix[4]arene} borane
(8) (Scheme 1).
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Scheme 1. Synthesis of borane adduct 8.

Synthesis of the targeted borane adduct 8 started with the grafting of Evans’ ox-
azolidinone on the partial cone 25,26,27-tribenzoyl-28-hydroxycalix[4]arene (2). Then,
a Williamson substitution was carried out in DMF in two steps. First, a deprotona-
tion of the calixarenyl phenol with NaH followed by the addition of (R)-4-benzyl-3- (2-
bromoacetyl)oxazolidin-2-one (3) [25,26]. After purification, the optically pure calixarene 4
was isolated in 59% yield. NMR spectra confirmed the presence of the oxazolidinone sub-
stituent. In addition, careful examination of the 13C NMR spectrum revealed the presence
of two signals at 37.30 and 37.25 ppm for the ArCH2Ar methylene carbons. According to
the observations of de Mendoza, Prados, and co-workers, such 13C NMR values are typical
for CH2 groups bridging anti-oriented phenol rings [27], which implies a 1,3-alternate
conformation of the calix[4]arene skeleton.

Having in hand the optically pure calixarenyl oxazolidinone 4, asymmetric methy-
lation, induced by the chiral auxiliary, was achieved on the methylenic position using
potassium bis(trimethylsilyl)amide (KHMDS) as the base and methyl iodide as the elec-
trophile [28,29]. The methylated calixarene 5 was isolated in 46% yield as a unique di-
astereoisomer, as shown by its 1H NMR spectrum, where only one signal could be observed
at 1.62 ppm (doublet with 3JHH = 6.5 Hz) for the grafted methyl group. This may be
explained by the coordination of the potassium cation between the enolate intermediate
and the carbonyl group of the carbamate function. This flat conformation induced a more
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accessible approach for steric reasons of the electrophile (MeI) on the opposite side (si-face)
of the benzyl group (Scheme 2) [30].
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In agreement with the work of Prashad and co-workers [31], after treatment of Evans’
compound 5 with NaBH4 in THF/H2O, oxazolidinone-free calixarene 6 was isolated in 72%
yield. Its 13C NMR spectrum displayed a singlet at 67.47 ppm attributed to the CH2OH
group resulting from the cleavage of the chiral auxiliary. Iodide derivative 7 was then
obtained by reacting 6 with iodine in the presence of imidazole and triphenylphosphine.
After purification, calixarene 7 was isolated in 72% yield. The presence of the iodide
atom was confirmed by its 13C NMR spectrum, in which the CH2I signal was observed at
8.89 ppm.

Finally, borane adduct 8 was prepared by reacting in situ-generated nucleophilic
lithium diphenylphosphido borane (Ph2P(BH3)Li) and electrophilic calixarene–iodide 7.
After purification by preparative TLC, air-stable phosphinated compound 8 was isolated in
21% yield. The 13C NMR spectrum showed for the CH2P moiety a doublet at 31.72 ppm
due to phosphorus/carbon coupling (1JPC = 33.6 Hz). The 31P NMR spectrum revealed
the presence of a broad singlet at 11.3 ppm close to the reported value for [(2-methoxy)-2-
methyl]ethyldiphenylphosphine borane (14.4 pm) [32].

Note that, for the synthetized compounds 3–8, the calix[4]arene skeleton adopted a
1,3-alternate conformation (vide infra). Their 13C NMR spectra displayed signals in the
range of 37.25–38.47 ppm for the ArCH2Ar methylene carbons.

2.2. Single-Crystal X-ray Diffraction Study

In 25,26,27-tribenzoyl-28-[((S)-1-hydroxypropan-2-yl)oxy]-calix[4]arene (6), the confor-
mation of calix[4]arene and the chirality of the stereogenic center of the carbon atom bearing
the methyl moiety were confirmed by a single-crystal X-ray diffraction study (Figure 5).
Molecule 6 crystallized in the orthorhombic chiral Sohncke space group P212121 [33]. The
unit cell contained four molecules of 6 and four molecules of methanol. Each macrocyclic
compound 6 was linked to two molecules of solvent by hydrogen bonds (1.955 Å for the
CH(CH3)CH2OH•••O(H)Me bond and 2.073 Å for the C=O•••HOMe bond corresponding
to 2.773(12) and 2.903(12) Å for the O•••O interactions, respectively, as shown in Figure 6).

This study revealed that the calix[4]arene platform adopted a 1,3-alternate conforma-
tion, in which the opposite phenoxy rings displayed dihedral angles of 20.30◦ and 29.75◦,
respectively. The separations between the aromatic carbon atoms of opposite phenolic
rings were 6.339 (C5–C33) and 6.513 Å (C19–C47). Furthermore, the X-ray diffraction study
unambiguously confirmed the (S)-configuration of the methylated carbon atom (C49; Flack
parameter of 0.03(13) [34]).

Interestingly, careful examination of the structure revealed that the benzoyl aromatic
ring attached to the oxygen atom O3 was oriented towards the macrocycle cavity and was
located on the bisector of the angle formed by the two phenolic planes, with dihedral angles
of 10.67◦ and 11.43◦, respectively. Similarly, the two aromatic cycles of the benzoyl groups
attached to the oxygen atoms O1 and O5 were embedded into the calixarenyl cavity with a
dihedral angle of 39.51◦.
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2.3. Synthesis of the Ruthenium Complex and Its Catalytic Activity

Finally, ruthenium complex 9 was synthetized in two steps from borane adduct 8
without isolation of P(III) intermediate 1 (Scheme 3). First, protected calixarenyl phosphine
borane 8 was refluxed in methanol [35], and the reaction was monitored by TLC until full
conversion, which was observed after 7 h. The formation of deprotected phosphine 8 was
confirmed by 31P NMR analysis carried out on the crude reaction mixture, which showed
a shift of the unique signal from 11.3 ppm for 8 to −22.2 pm for 1, in agreement with
the value reported for the 1-diphenylphosphinopropan-2-yl acetate (−22 ppm) [36]. The
ligand (1 equivalent) was then reacted with the dimeric [RuCl2(p-cymene)]2 organometallic
precursor (0.5 equivalent) in dichloromethane. After recrystallization, ruthenium complex
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9 was isolated in 72% yield. Its 31P spectrum displayed an important upfield shift from
−22.2 ppm in the free ligand to 17.2 ppm for the complex. It is interesting to note that the
p-cymene ligand showed in the 13C NMR spectrum a desymmetrization of its four aromatic
CH atoms, which appeared as four signals at 91.25, 89.61, 86.65, and 84.23 ppm. In addition,
the two CH3 of the isopropyl group were, in the 1H NMR spectrum, unusually shielded
at 0.71 and 0.90 ppm, compared with the classical chemical shift around 0.90 ppm [37,38].
Finally, high-resolution mass spectrometry (HRMS) showing two peaks corresponding
to the [M + Na]+ (m/z = 1291.2774) and to the [M + K]+ (m/z = 1307.2502) cations, with
the expected isotopic profiles, unambiguously confirmed the formation of ruthenium
complex 9.
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Scheme 3. Synthesis of ruthenium complex 9.

Ruthenium complex 9 was tested for the asymmetric reduction of acetophenone. The
runs were performed using classical conditions [39] using NaOH as the base in isopropanol
(iPrOH) as the solvent and hydrogen source. Three experiments, with 1 mol% of catalyst,
were carried out at different temperatures for 1 h (Table 1). At 60 ◦C, a conversion of
60% with an ee of 12% was observed (Table 1, entry 1). Increasing the temperature to
80 ◦C slightly modified the catalytic outcome; the conversion rose to 68% with an ee of
14% (Table 1, entry 2). Conversely, repeating the run at 100 ◦C did not favor the catalytic
reaction; the conversion was identical as in the case of 80 ◦C; however, the ee decreased to
4% (Table 1, entry 3). These observed weak enantiomeric excesses were of the same order
of magnitude as those generally measured with monodentate ligands [40]. These results
show that even when calix[4]arene is a sterically hindered substituent, its influence on the
transfer of chirality from the ligand to the substrate is relatively low.

Table 1. Ruthenium-catalyzed reduction of acetophenone 1.
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Entry Temperature (◦C) Conversion (%) ee (%)

1 60 60 12
2 80 68 14
3 100 67 4

1 Reagents and conditions: ruthenium complex 9 (1 mol%), acetophenone (0.10 mmol), NaOH (0.025 mmol),
iPrOH (0.125 mL, 1.63 mmol), 1 h. The conversions were determined on the crude reaction mixture by 1H NMR
spectroscopy by integrating the CH3 signals, and the ees were determined by chiral-phase GC.

3. Materials and Methods
1H, 13C{1H} and 31P{1H} NMR spectra were recorded with the Bruker Avance III

spectrometer (500 MHz) (Billerica, MA, USA) in CDCl3 and were calibrated according
to residual protonated solvent (δ = 7.26 ppm and 77.16 ppm for 1H and 13C{1H} NMR,
respectively). 31P{1H} NMR spectroscopic data were given relative to external H3PO4.
Optical rotations ([α]20

D ) were recorded using a 10 cm quartz cuvette with Polarimeter Model
341 (Perkin–Elmer, Waltham, MA, USA) at a wavelength of 589 nm. 25,26,27-tribenzoyl-28-
hydroxycalix[4]arene (partial cone) (2) [41] and (R)-4-benzyl-3-(2-bromoacetyl)oxazolidin-
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2-one (3) [42] were prepared by following the adapted literature procedures, see details in
Supplementary Materials.

3.1. Synthesis of 25,26,27-Tribenzoyl-28-[2-((R)-4-benzyl-2-oxooxazolidin-3-yl)-2-oxoethoxy]
calix[4]arene (1,3-alternate) (4)

Oil free NaH (0.046 g, 1.92 mmol, 1.4 equiv.) was added to a white slurry of 25,26,27-
tribenzoyl-28-hydroxycalix[4]arene (partial cone) (2) (0.837 g, 1.13 mmol) in dry DMF
(10 mL) at 0 ◦C. After 2.5 h at room temperature, a solution of (R)-4-benzyl-3-(2-bromoacetyl)
oxazolidin-2-one (3) (0.380 g, 1.24 mmol, 1.1 equiv.) in dry DMF (3 mL) was added to the
previous green solution. After 45 h at 80 ◦C, CH2Cl2 (25 mL) and water (10 mL) were added
to the stirred reaction mixture. After decantation, the organic layer was treated with water
(8 × 10 mL) and brine (10 mL). The organic solution was dried over Na2SO4, filtered, and
concentrated. The resulting crude product was purified by column chromatography on
silica gel (AcOEt/cyclohexane with a gradient of solvent from 1:5 to 1:2) to afford calixarene
4 (0.633 g, 59%) as a white solid. ([α]20

D = −16.1 (c = 1.07, CH2Cl2). 1H NMR (500 MHz,
CDCl3): δ = 7.87–7.85 (m, 4H, benzoyl aromatic CH), 7.77 (t, 2H, benzoyl aromatic CH,
3JHH = 7.5 Hz), 7.63 (t, 1H, benzoyl aromatic CH, 3JHH = 7.0 Hz), 7.57 (t, 4H, benzoyl aro-
matic CH, 3JHH = 7.5 Hz), 7.55–7.49 (m, 4H, benzoyl aromatic CH), 7.41 (t, 2H, benzyl
aromatic CH, 3JHH = 7.3 Hz), 7.36–7.31 (m, 3H, benzyl aromatic CH), 7.26–7.23 (m, 2H,
calixarenyl aromatic CH), 6.70 (d, 2H, calixarenyl aromatic CH, 3JHH = 7.5 Hz), 6.67–6.64 (m,
2H, calixarenyl aromatic CH), 6.62 (d, 2H, calixarenyl aromatic CH, 3JHH = 8.0 Hz), 6.60–6.56
(m, 3H, calixarenyl aromatic CH), 6.49 (t, 1H, calixarenyl aromatic CH, 3JHH = 7.5 Hz), 5.18
and 5.11 (AB system, 2H, NC(=O)CH2, 2JHH = 17.5 Hz), 4.88–4.83 (m, 1H, NCH), 4.39 (dd,
1H, C(=O)OCH2, 2JHH = 9.0 Hz, 3JHH = 8.6 Hz), 4.32 (dd, 1H, C(=O)OCH2, 2JHH = 9.0 Hz,
3JHH = 3.1 Hz), 4.05 and 3.59 (AB system, 2H, ArCH2Ar, 2JHH = 15.0 Hz), 4.04 and 3.60 (AB
system, 2H, ArCH2Ar, 2JHH = 15.0 Hz), 3.61 (AB system, 4H, ArCH2Ar, 2JHH < 0.5 Hz), 3.50
(A part of an ABX system, 1H, 2JAB = 13.5 Hz, 3JAX = 3.0 Hz, CH2Ph), 2.94 (B part of an
ABX system, 1H, 2JAB = 13.5 Hz, 3JAX = 9.5 Hz, CH2Ph); 13C{1H} NMR (126 MHz, CDCl3):
δ = 167.94 (s, Cquat NC(=O)CH2), 164.58 (s, Cquat C(=O)Ph), 164.56 (s, Cquat C(=O)Ph),
164.31 (s, Cquat C(=O)Ph), 156.28 (s, Ar Cquat C-O of calixarene), 153.81 (s, Cquat NC(=O)O),
148.39 (s, Ar Cquat C-O of calixarene), 148.04 (s, Ar Cquat C-O of calixarene), 148.00 (s, Ar
Cquat C-O of calixarene), 135.06–122.84 (Ar C), 70.62 (s, NC(=O)CH2), 67.58 (s, C(=O)OCH2),
55.13 (s, NCH), 38.20 (s, CH2Ph), 37.30 (s, ArCH2Ar), 37.25 (s, ArCH2Ar) ppm. Elemental
analysis (%) calcd. for C61H47NO10 (954.03): C 76.80, H 4.97, N 1.47 found: C 76.65, H 4.88,
N 1.36).

3.2. Synthesis of 25,26,27-Tribenzoyl-28-{(S)-1-[((R)-4-benzyl-2-oxooxazolidin-3-yl)-
1-oxopropan-2-yl]oxy}-calix[4]arene) (1,3-alternate) (5)

Calixarene 4 (422 mg, 0.44 mmol) was dissolved in dry THF (11 mL) and cooled to
−78 ◦C before a dropwise addition of KHMDS (potassium bis(trimethylsilyl)amide 0.5 M
in toluene, 2 mL, 2.3 equiv.). The addition of MeI (340 µL, 12.3 equiv.) was performed after
a period of stirring at −78 ◦C of 30 min. The cold bath was removed and the stirring was
then continued for 4 h, allowing the temperature to rise to −5 ◦C. The reaction was stopped
by addition of a saturated solution of NH4Cl (2 mL), water (8 mL), and aqueous HCl 10%
(1 mL) to adjust the pH to 4–5. The resulting solution was diluted with AcOEt (15 mL).
After decantation, the organic layer was washed successively with water (10 mL) and brine
(4 mL) before being dried over Na2SO4, filtered, and concentrated. The crude white solid
was purified by chromatography on silica gel (AcOEt/cyclohexane 1:2 as eluent) to afford
the desired white solid 5 (192 mg, 46%). ([α]20

D = −46.3 (c = 1.0, CHCl3). 1H NMR (500 MHz,
CDCl3): δ = 7.91 (d, 2H, benzoyl aromatic CH, 3JHH = 7.5 Hz), 7.78–7.74 (m, 4H, benzoyl
aromatic CH), 7.66 (t, 1H, benzoyl aromatic CH, 3JHH = 7.2 Hz), 7.59–7.53 (m, 4H, benzoyl
aromatic CH), 7.50–7.45 (m, 3H, benzoyl and calixarenyl aromatic CH), 7.40–7.34 (m, 5H,
benzoyl, benzyl and calixarenyl aromatic CH), 7.30 (t, 1H, benzyl aromatic CH, 3JHH = 7.2 Hz),
7.22 (d, 2H, benzyl aromatic CH, 3JHH = 7.0 Hz), 6.74–6.70 (m, 2H, calixarenyl aromatic
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CH), 6.67–6.64 (m, 3H, calixarenyl aromatic CH), 6.61–6.56 (m, 4H, calixarenyl aromatic
CH), 6.44 (t, 1H, calixarenyl aromatic CH, 3JHH = 7.5 Hz), 6.35 (q, 1H, NC(=O)CHCH3,
3JHH = 6.5 Hz), 4.57–4.53 (m, 1H, NCH), 4.56 and 3.46 (AB system, 2H, ArCH2Ar,
2JHH = 14.5 Hz), 4.12 (dd, 1H, C(=O)OCH2, 3JHH = 9.5 Hz, 4JHH = 3.0 Hz), 4.04 (d, 1H,
C(=O)OCH2, 3JHH = 9.5 Hz), 4.03 and 3.64 (AB system, 2H, ArCH2Ar, 2JHH = 15.0 Hz),
3.63 and 3.61 (AB system, 4H, ArCH2Ar, 2JHH < 0.5 Hz), 3.26 (A part of an ABX system,
1H, 2JAB = 13.5 Hz, 3JAX = 3.0 Hz, CH2Ph), 2.82 (B part of an ABX system, 1H, 2JAB = 13.5
Hz, 3JAX = 9.2 Hz, CH2Ph), 1.62 (d, 3H, NC(=O)CHCH3, 3JHH = 6.5 Hz); 13C{1H} NMR
(126 MHz, CDCl3): δ = 172.55 (s, Cquat NC(=O)CH2), 164.67 (s, Cquat C(=O)Ph), 164.43 (s,
Cquat C(=O)Ph), 164.13 (s, Cquat C(=O)Ph), 154.29 (s, Ar Cquat C-O of calixarene), 153.32
(s, Cquat NC(=O)O), 148.50 (s, Ar Cquat C-O of calixarene), 148.29 (s, Ar Cquat C-O of cal-
ixarene), 135.31–122.41 (Ar C), 71.52 (s, NC(=O)CHCH3), 66.83 (s, NC(=O)CH2), 55.17 (s,
NCH), 38.07 (s, ArCH2Ar), 37.77 (s, CH2Ph), 37.31 (s, ArCH2Ar), 37.28 (s, ArCH2Ar), 18.81
(s, NC(=O)CHCH3) ppm. Elemental analysis (%) calcd. for C62H49NO10 (968.05): C 76.92,
H 5.10, N 1.45 found: C 76.63, H, 5.10, N 1.46).

3.3. Synthesis of 25,26,27-Tribenzoyl-28-[((S)-1-hydroxypropan-2-yl)oxy]-calix[4]arene
(1,3-alternate) (6)

An aqueous (0.3 mL) solution of NaBH4 (33 mg, 0.87 mmol, 5.3 equiv.) was slowly
added to a THF (2 mL) solution of calixarene 5 (160 mg, 0.16 mmol) at 0 ◦C. The resulting
white heterogeneous reaction mixture was warmed to an ambient temperature during
the 5 h stirring. The reaction was quenched by the addition of water (5 mL). The pH was
adjusted to 2 with aqueous HCl 10% (0.5 mL) and the resulting solution was diluted with
CH2Cl2 (10 mL). After decantation, the organic layer was washed with water (5 mL), brine
(4 mL), dried over Na2SO4, filtered, and concentrated under vacuum to give a white solid.
The crude product was purified by chromatography on silica gel (AcOEt/cyclohexane 1:2
as eluent) to afford white alcohol 6 (94 mg, 72%). ([α]20

D = +3.1 (c = 1.02, CH2Cl2). 1H NMR
(500 MHz, CDCl3): δ = 7.88 (dd, 2H, benzoyl aromatic CH, 3JHH = 9.0 Hz, 4JHH = 1.0 Hz),
7.86 (dd, 2H, benzoyl aromatic CH, 3JHH = 9.0 Hz, 4JHH = 1.0 Hz), 7.80–7.77 (m, 2H,
benzoyl aromatic CH), 7.68–7.65 (m, 1H, benzoyl aromatic CH), 7.61–7.58 (m, 4H, benzoyl
aromatic CH), 7.47–7.40 (m, 4H, benzoyl aromatic CH), 7.33 (dd, 1H, calixarenyl aromatic
CH, 3JHH = 8.5 Hz, 2JHH = 2.5 Hz), 7.26 (dd, 1H, calixarenyl aromatic CH, 3JHH = 8.5 Hz,
4JHH = 2.5 Hz), 6.71–6.67 (m, 4H, calixarenyl aromatic CH), 6.65–6.61 (m, 3H, calixarenyl
aromatic CH), 6.60–6.57 (m, 2H, calixarenyl aromatic CH), 6.45 (t, 1H, calixarenyl aromatic
CH, 3JHH = 7.5 Hz), 4.70–4.64 (m, 1H, CH2CHCH3), 3.91–3.82 (m, 2H, CH2CHCH3), 3.88 and
3.62 (AB system, 2H, ArCH2Ar, 2JHH = 14.0 Hz), 3.86 and 3.54 (AB system, 2H, ArCH2Ar,
2JHH = 14.0 Hz), 3.60 (AB system, 4H, ArCH2Ar, 2JHH < 0.5 Hz), 1.10 (d, 3H, CHCH3,
3JHH = 7.0 Hz); 13C{1H} NMR (126 MHz, CDCl3): δ = 164.57 (s, Cquat C(=O)Ph), 164.55 (s,
Cquat C(=O)Ph), 164.10 (s, Cquat C(=O)Ph), 153.52 (s, Ar Cquat C-O of calixarene), 148.54
(s, Ar Cquat C-O of calixarene), 148.30 (s, Ar Cquat C-O of calixarene), 148.28 (s, Ar Cquat
C-O of calixarene), 135.19–122.34 (Ar C), 74.84 (s, CHCH3), 67.47 (s, HOCH2), 38.19 (s,
ArCH2Ar), 37.75 (s, ArCH2Ar), 37.29 (s, ArCH2Ar), 37.27 (s, ArCH2Ar), 15.67 (s, CHCH3)
ppm. Elemental analysis (%) calcd. for C52H42O8 (794.88): C 78.57, H 5.33 found: C 78.46,
H 5.36).

3.4. Synthesis of 25,26,27-Tribenzoyl-28-[((S)-1-iodopropan-2-yl)oxy]-calix[4]arene (1,3-alternate) (7)

A solution of iodine (94 mg, 0.37 mmol, 2.2 equiv.) in dry THF (2 mL) was added
at room temperature to a clear solution of calixarene 6 (134 mg, 0.17 mmol), imidazole
(46 mg, 0.67 mmol, 4.0 equiv.), and triphenylphosphine (94.8 mg, 0.35 mmol, 2.1 equiv.)
in dry THF (4 mL). The clear solution rapidly turned to orange with the formation of a
white precipitate. After 5 h at room temperature, the reaction was then stopped by the
addition of an aqueous solution of Na2S2O3 (1 M, 1 mL) and water (5 mL). After dilution
with AcOEt (10 mL) and decantation, the organic layer was washed with water (5 mL),
brine (5 mL), dried over Na2SO4, filtered, and concentrated. The crude with solid was
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purified by chromatography on a silica gel (AcOEt/cyclohexane 1:3 as eluent) to afford
desired compound 7 (109 mg, 72%). ([α]20

D = +4.60 (c = 0.76, CH2Cl2). 1H NMR (500 MHz,
CDCl3): δ = 7.83 (d, 4H, benzoyl aromatic CH, 3JHH = 7.0 Hz), 7.76 (t, 2H, benzoyl aromatic
CH, 3JHH = 7.5 Hz), 7.66 (t, 1H, benzoyl aromatic CH, 3JHH = 7.5 Hz), 7.57 (d, 2H, benzoyl
aromatic CH, 3JHH = 7.5 Hz), 7.55 (d, 2H, benzoyl aromatic CH, 3JHH = 8.0 Hz), 7.43 (d,
2H, benzoyl aromatic CH, 3JHH = 8.0 Hz), 7.36 (t, 2H, benzoyl aromatic CH, 3JHH = 8.0 Hz),
7.22 (t, 1H, calixarenyl aromatic CH, 3JHH = 7.7 Hz), 7.21 (t, 1H, calixarenyl aromatic CH,
3JHH = 7.7 Hz), 6.69–6.63 (m, 6H, calixarenyl aromatic CH), 6.61–6.57 (m, 3H, calixarenyl
aromatic CH), 6.47 (t, 1H, calixarenyl aromatic CH, 3JHH = 7.5 Hz), 4.60–4.54 (m, 1H,
ICH2CHCH3), 3.85 and 3.60 (AB system, 2H, ArCH2Ar, 2JHH = 15.0 Hz), 3.83 and 3.60 (AB
system, 2H, ArCH2Ar, 2JHH = 15.0 Hz), 3.61 (AB system, 4H, ArCH2Ar, 2JHH < 0.5 Hz), 3.28–3.19
(m, 2H, ICH2CHCH3), 1.50 (d, 3H, CHCH3, 3JHH = 6.0 Hz); 13C{1H} NMR (126 MHz,
CDCl3): δ = 164.56 (s, Cquat C(=O)Ph), 164.08 (s, Cquat C(=O)Ph), 153.72 (s, Ar Cquat C-O
of calixarene), 148.39 (s, Ar Cquat C-O of calixarene), 148.36 (s, Ar Cquat C-O of calixarene),
148.33 (s, Ar Cquat C-O of calixarene), 135.32–122.62 (Ar C), 75.57 (s, CHCH3), 38.21 (s,
ArCH2Ar), 38.20 (s, ArCH2Ar), 37.32 (s, ArCH2Ar), 19.48 (s, CHCH3), 8.89 (s, ICH2) ppm.
Elemental analysis (%) calcd. for C52H41O7I (904.78): C 69.03, H 4.57 found: C 68.93,
H 4.64).

3.5. Synthesis of {25,26,27-Tribenzoyl-28-[((S)-1-diphenylphosphanyl-propan-2-yl)oxy]-calix[4]
arene} borane (1,3-alternate) (8)

A solution of nBuLi (1.39 M in hexane, 0.11 mL, 2.2 equiv.) was added to a solution
of diphenylphosphine borane (34 mg, 2.4 equiv.) in dry THF (0.5 mL) at −78 ◦C. The
resulting yellow solution was stirred at the same temperature for 0.5 h before being added
to a solution of calixarene 7 (64 mg, 0.07 mmol) in dry THF (1 mL) at −78 ◦C. After 0.5 h
at −78 ◦C, the cold bath was removed and the stirred reaction mixture was warmed to
room temperature. After 22 h, the reaction was quenched with water (5 mL). AcOEt
(10 mL) was added and the reaction mixture was acidified to pH = 3–4 with an aqueous
solution of HCl 10% (0.1 mL). After decantation, the organic layer was washed with water
(5 mL), brine (5 mL), dried over Na2SO4, filtered, and concentrated. The crude product
was purified by preparative TLC (AcOEt/cyclohexane 1:10 as eluent) to afford the desired
white product 8 (14 mg, 21%). [α]20

D = −6.41 (c = 0.53, CH2Cl2). (1H NMR (500 MHz,
CDCl3): δ = 7.83 (dd, 2H, benzoyl aromatic CH, 3JHH = 7.0 Hz, 4JHH = 1.5 Hz), 7.80 (dd,
2H, benzoyl aromatic CH, 3JHH = 7.5 Hz, 4JHH = 1.0 Hz), 7.78 (t, 1H, benzoyl aromatic
CH, 3JHH = 7.5 Hz), 7.76 (t, 1H, benzoyl aromatic CH, 3JHH = 7.5 Hz), 7.72–7.69 (m, 2H,
benzoyl aromatic CH), 7.58–7.54 (m, 4H, benzoyl aromatic CH), 7.53–7.47 (m, 7H, benzoyl
and diphenylphosphanyl aromatic CH), 7.39–7.35 (m, 4H, diphenylphosphanyl aromatic
CH), 7.31 (dd, 1H, calixarenyl aromatic CH, 3JHH = 7.5 Hz, 4JHH = 1.5 Hz), 7.18 (t, 2H,
diphenylphosphanyl aromatic CH, 3JHH = 7.7 Hz), 7.08 (dd, 1H, calixarenyl aromatic CH,
3JHH = 7.5 Hz, 4JHH = 1.5 Hz), 6.68–6.65 (m, 3H, calixarenyl aromatic CH), 6.63–6.58 (m, 3H,
calixarenyl aromatic CH), 6.56–6.53 (m, 3H, calixarenyl aromatic CH), 6.47 (t, 1H, calixarenyl
aromatic CH, 3JHH = 7.5 Hz), 4.68–4.63 (m, 1H, PCH2CHCH3), 3.81 and 3.61 (AB system,
2H, ArCH2Ar, 2JHH = 15.0 Hz), 3.59 and 3.58 (AB system, 4H, ArCH2Ar, 2JHH < 0.5 Hz),
3.35 (AB system, 2H, ArCH2Ar, 2JHH < 0.5 Hz), 2.69–2.63 (m, 1H, PCH2CHCH3), 2.53–2.47
(m, 1H, PCH2CHCH3), 1.43–0.90 (br signal, 3H, BH3), 1.31 (d, 3H, CHCH3, 3JHH = 5.5 Hz);
13C{1H} NMR (126 MHz, CDCl3): δ = 164.55 (s, Cquat C(=O)Ph), 164.52 (s, Cquat C(=O)Ph),
154.05 (s, Cquat C(=O)Ph), 153.03 (s, Ar Cquat C-O of calixarene), 148.35 (s, Ar Cquat C-O of
calixarene), 148.31 (s, Ar Cquat C-O of calixarene), 148.26 (s, Ar Cquat C-O of calixarene),
134.99–122.54 (Ar C), 70.89 (d, PCH2CHCH3, 2JPC = 8.7 Hz), 38.47 (s, ArCH2Ar), 37.82 (s,
ArCH2Ar), 37.30 (s, ArCH2Ar), 37.28 (s, ArCH2Ar), 31.72 (d, PCH2, 1JPC = 33.6 Hz), 21.86
(s, CHCH3); 31P{1H} NMR (121 MHz, CDCl3): δ = 11.3 (br s, P(BH3)Ph2) ppm. Elemental
analysis (%) calcd. for C64H54BO7P•H2O (994.91): C 77.26, H 5.67 found: C 76.98, H 5.52).
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3.6. Synthesis of Dichloro-P-{25,26,27-tribenzoyl-28-[((S)-1-diphenylphosphanyl-propan-2-yl)
oxy]-calix[4]arene} (p-cymene)ruthenium(II) (1,3-alternate) (9)

In a first step, degassed methanol (3 mL) was added to calixarene 8 (14.0 mg, 14.3 µmol).
The suspension was heated at 85 ◦C. During the heating, the reaction mixture became a
clear solution and the reaction was monitored by TLC until full conversion. After 7 h,
31P{1H} NMR (121 MHz, C6D6; δ = −22.2 pm, PPh2) confirmed the formation of P(III)
intermediate 1. The solvent was then removed under reduced pressure and the resulting
solid was heated at 50 ◦C under vacuum for 1 h. White solid phosphine 1 (13.8 mg) was
obtained with a quantitative yield and was immediately engaged in the second step with-
out any further purification. Phosphine 1 (13.8 mg, 14.3 µmol) and [RuCl2(p-cymene)]2
(4.4 mg, 7.2 µmol) were dissolved in distilled and degassed CH2Cl2 (1 mL). The red clear
solution was stirred at room temperature for 19 h and then the solvent was removed under
reduced pressure to achieve a brown/red solid, which was recrystallized in CH2Cl2/n-
hexane. Ruthenium complex 9 was recovered with a yield of 72% (13.1 mg). ([α]20

D = +1.8
(c = 0.97, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 7.96 (d, 1H, benzoyl aromatic CH,
3JHH = 7.5 Hz), 7.94 (d, 1H, benzoyl aromatic CH, 3JHH = 8.5 Hz), 7.84 (d, 2H, benzoyl
aromatic CH, 3JHH = 7.5 Hz), 7.77 (d, 2H, benzoyl aromatic CH, 3JHH = 7.0 Hz), 7.76–7.72
(m, 2H, benzoyl aromatic CH), 7.56–7.46 (m, 10H, benzoyl and diphenylphosphanyl aro-
matic CH), 7.41 (t, 1H, diphenylphosphanyl aromatic CH, 3JHH = 7.5 Hz), 7.35–7.30 (m,
3H, diphenylphosphanyl aromatic CH), 7.26–7.23 (m, 3H, diphenylphosphanyl aromatic
CH), 7.09 (d, 1H, calixarenyl aromatic CH, 3JHH = 7.5 Hz), 6.91 (d, 1H, calixarenyl aromatic
CH, 3JHH = 7.0 Hz), 6.69 (d, 1H, calixarenyl aromatic CH, 3JHH = 7.0 Hz), 6.64 (d, 1H, cal-
ixarenyl aromatic CH, 3JHH = 7.5 Hz), 6.60 (d, 1H, calixarenyl aromatic CH, 3JHH = 7.5 Hz),
6.55–6.43 (m, 7H, calixarenyl aromatic CH), 5.24 and 5.03 (AA’BB’ spin system, 2H, Ar H
of p-cymene, 3JHH = 6.0 Hz), 5.03 and 4.93 (AA’BB’ spin system, 2H, Ar H of p-cymene,
3JHH = 6.0 Hz), 4.35–4.28 (m, 1H, PCH2CHCH3), 3.81 and 3.48 (AB system, 2H, ArCH2Ar,
2JHH = 16.0 Hz), 3.57 and 3.48 (AB system, 2H, ArCH2Ar, 2JHH = 16.0 Hz), 3.53 (AB system,
2H, ArCH2Ar, 2JHH < 0.5 Hz), 3.38 and 3.32 (AB system, 2H, ArCH2Ar, 2JHH = 16.0 Hz),
3.17–3.11 (m, 1H, PCH2CHCH3), 2.87–2.80 m, 1H, PCH2CHCH3), 2.47 (hept, 1H, CH(CH3)2,
3JHH = 7.0 Hz), 1.80 (s, 3H, CH3 of p-cymene), 0.90 (d, 3H, CH(CH3)2, 3JHH = 7.0 Hz), 0.71
(d, 3H, CH(CH3)2, 3JHH = 6.5 Hz), 0.62 (d, 3H, CHCH3, 3JHH = 6.0 Hz); 13C{1H} NMR
(126 MHz, CDCl3): δ = 164.52 (s, Cquat C(=O)Ph), 164.19 (s, Cquat C(=O)Ph), 153.21 (s, Ar
Cquat C-O of calixarene), 148.31 (s, Ar Cquat C-O of calixarene), 148.19 (s, Ar Cquat C-O of
calixarene), 148.11 (s, Ar Cquat C-O of calixarene), 136.09–122.44 (Ar C), 108.98 (s, Ar Cquat
of p-cymene), 94.28 (s, Ar Cquat of p-cymene), 91.25 (d, Ar H of p-cymene, 2JCP = 4.9 Hz),
89.61 (s, Ar H of p-cymene), 86.65 (d, Ar H of p-cymene, 2JCP = 4.8 Hz), 84.23 (d, Ar H of
p-cymene, 2JCP = 4.8 Hz), 71.39 (d, PCH2CHCH3, 2JCP = 5.2 Hz), 38.37 (s, ArCH2Ar), 37.94
(s, ArCH2Ar), 37.27 (s, ArCH2Ar), 30.06 (s, CH(CH3)2), 29.52 (d, PCH2, 1JCP = 24.3 Hz),
22.15 (s, CH(CH3)2), 21.82 (s, CHCH3), 20.95 (s, CH(CH3)2), 17.45 (s, CH3 of p-cymene);
31P{1H} NMR (121 MHz, CDCl3): δ = 17.2 (s, PPh2) ppm. ESI-MS: displays a peaks at m/z
1291.2774 [M + Na]+ (calcd. for C74H65Cl2O7PRuNa: 1291.2781) and 1307.2502 [M + K]+

(calcd. for C74H65Cl2O7PRuK: 1307.2520)).

3.7. X-ray Crystal Structure Analysis

Slow diffusion of methanol into a CH2Cl2 solution of calixarene 6 led to the formation
of single crystals, which were suitable for X-ray analysis. Analysis was carried out on a
Bruker APEX II DUO Kappa-CCD diffractometer equipped with an Oxford Cryosystem
liquid N2 device, using Cu-Kα radiation (λ = 1.54178 Å). The crystal detector distance was
40 mm. The cell parameters were determined (APEX3 software [43]) from reflections taken
from three sets of six frames, each at 20 s exposure. The structure was solved using the
program SHELXT-2018 [44]. The refinement and all further calculations were carried out
using SHELXL-2018 [45]. H-atoms were included in calculated positions and treated as
riding atoms using SHELXL default parameters. Non-H atoms were refined anisotropically,
using weighted full-matrix least-squares on F2. A semi-empirical absorption correction
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was applied using SADABS in APEX3 [43]. Data collection and structure refinement details
are given in Table 2.

Table 2. Crystal data and structure refinement parameters for calixarene 6.

CCDC depository 2313707 color/shape colorless/block
chemical formula C53H46O9 formula weight (g mol−1) 826.90

crystal system orthorhombic space group P212121

unit cell
parameters

a (Å) 12.790(3) unit cell
parameters

α (◦) 90
b (Å) 12.890(3) β (◦) 90
c (Å) 25.477(7) γ (◦) 90

volume (Å3) 4200.4(17) Z 4
D (g cm−3) 1.308 µ (mm−1) 0.717
Tmin, Tmax 0.5999, 0.7528 F(000) 1744

crystal size (mm) 0.220 × 0.140 × 0.090
index ranges

−15 ≤ h ≤ 15
θ range for data collection (◦) 3.469 ≤ θ ≤ 67.329 −13 ≤ k ≤ 15

reflections collected 19,727 −27 ≤ l ≤ 30
independent/observed 6600/3288 Rint 0.0737

data/restraints/parameters 6600/483/563 goodness-of-fit on F2 1.045
final R indices (I > 2.0 σ(I)) R1 = 0.0968, wR2 = 0.2723 R indices (all data) R1 = 0.2383, wR2 = 0.3385

∆ρmax, ∆ρmin (eÅ−3) 0.434, −0.687 Flack parameter 0.03(13)

3.8. General Procedure for Ruthenium-Catalyzed Reduction of Acetophenone

A 1 mL vial, under inert atmosphere, was filled with NaOH (1.0 mg, 25 µmol), ace-
tophenone (12 µL, 100 µmol), and a solution of ruthenium complex 9 (1.3 mg, 1 µmol) in
iPrOH (0.125 mL, 1.63 mmol, around 16 equiv./ketone). The reaction mixture was heated
for 1 h. The solution was diluted with 0.2 mL of CH2Cl2 and passed through a Millipore
filter. An aliquot was analyzed by GC with a Chirasil-DEX CB column (25 m × 0.25 mm)
(Agilent Technologies, Santa Clara, CA, USA) to determinate the enantiomeric excess. The
remaining solution was concentrated under vacuum and the resulting crude solution was
analyzed by 1H NMR spectroscopy to determinate the conversion.

4. Conclusions

We herein describe the synthesis, in six steps, of 25,26,27-tribenzoyl-28- [((S)-1-
diphenylphosphanyl-propan-2-yl)oxy]-calix[4]arene (1), in which the (S)-chirality of the
carbon atom bearing the methyl substituent was generated via alkylation of Evans’ oxa-
zolidinone auxiliary. In accordance with the 13C NMR spectra made on the calixarenyl
compounds, and as confirmed by a single-crystal X-ray diffraction study carried out on the
intermediate 25,26,27-tribenzoyl-28-[((S)-1-hydroxypropan-2-yl)oxy]-ca- lix[4]arene (6), the
macrocyclic skeleton adopted a 1,3-alternate conformation.

The arene-ruthenium complex, generated from the phosphine precursor and [RuCl2(p-
cymene)]2, was tested in the asymmetric reduction of acetophenone. Although sterically
congested, the calix[4]arenyl substituent did not allow an effective transfer of chirality from
the ligand to the substrate, resulting in a modest enantiomeric excess.

Further work is aimed at exploiting the potential of Evans’ oxazolidinone methodology
for the synthesis of chiral phosphinated calixarenes and their application as ligands in the
asymmetric reduction of olefins.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29051156/s1. Characterizing data of 25,26,27-tribenzoyl-
28-[2-((R)-4-benzyl-2-oxooxa- zolidin-3-yl)-2-oxoethoxy]calix[4]arene (1,3-alternate) (4) with Figure S1:
1H NMR spectrum (CDCl3), Figure S2: 13C{1H} NMR spectrum (CDCl3); Characterizing data
of 25,26,27-tribenzoyl-28- {(S)-1-[((R)-4-benzyl-2-oxooxazolidin-3-yl)-1-oxopropan-2-yl]oxy}-calix[4]
arene (1,3-alternate) (5) with Figure S3: 1H NMR spectrum (CDCl3), Figure S4: 13C{1H} NMR
spectrum (CDCl3); Characterizing data of 25,26,27-tribenzoyl-28-[((S)-1-hydroxypropan-2-yl)oxy]-
calix[4]arene (1,3-alternate) (6) with Figure S5: 1H NMR spectrum (CDCl3), Figure S6: 13C{1H}

https://www.mdpi.com/article/10.3390/molecules29051156/s1
https://www.mdpi.com/article/10.3390/molecules29051156/s1
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NMR spectrum (CDCl3); Characterizing data of 25,26,27-tribenzoyl-28-[((S)-1-iodopropan-2-yl)oxy]-
calix[4]arene (1,3-alternate) (7) with Figure S7: 1H NMR spectrum (CDCl3), Figure S8: 13C{1H}
NMR spectrum (CDCl3); Characterizing data of {25,26,27-tribenzoyl-28-[((S)-1-diphenylphosphanyl-
propan-2-yl)oxy]-calix[4]arene} borane (1,3-alternate) (8) with Figure S9: 1H NMR spectrum (CDCl3),
Figure S10: 13C{1H} NMR spectrum (CDCl3), Figure S11: 31P{1H} NMR spectrum (CDCl3); Charac-
terizing data of 25,26,27-tribenzoyl-28-[((S)-1-diphenylphosphanyl-propan-2-yl)oxy]-calix[4]arene
(1,3-alternate) (1) with Figure S12: 31P{1H} NMR spectrum (C6D6); Characterizing data of dichloro-
P-{25,26,27- tribenzoyl-28-[((S)-1-diphenylphos-phanyl-propan-2-yl)oxy]-calix[4]arene}(p-cymene)
ruthenium(II) (1,3-alternate) (9) with Figure S13: 1H NMR spectrum (CDCl3), Figure S14: 13C{1H}
NMR spectrum (CDCl3), Figure S15: 31P{1H} NMR spectrum (CDCl3), Figure S16: 1H/1H COSY
spectrum (CDCl3), Figure S17: High-resolution mass spectrum (ESI-TOF), Figure S18: High-resolution
mass spectrum (ESI-TOF): exp. spectrum (top); calc. spectrum (bottom) for C74H65Cl2O7PRuNa,
Figure S19: High-resolution mass spectrum (ESI-TOF): exp. spectrum (top); calc. spectrum (bottom)
for C74H65Cl2O7PRuK.
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