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Abstract: The additional sex combs-like (ASXL) family, a mammalian homolog of the additional
sex combs (Asx) of Drosophila, has been implicated in transcriptional regulation via chromatin mod-
ifications. Abnormal expression of ASXL family genes leads to myelodysplastic syndromes and
various types of leukemia. De novo mutation of these genes also causes developmental disorders.
Genes in this family and their neighbor genes are evolutionary conserved in humans and mice. This
review provides a comprehensive summary of epigenetic regulations associated with ASXL family
genes. Their expression is commonly regulated by DNA methylation at CpG islands preceding
transcription starting sites. Their proteins primarily engage in histone tail modifications through
interactions with chromatin regulators (PRC2, TrxG, PR-DUB, SRC1, HP1α, and BET proteins) and
with transcription factors, including nuclear hormone receptors (RAR, PPAR, ER, and LXR). Histone
modifications associated with these factors include histone H3K9 acetylation and methylation, H3K4
methylation, H3K27 methylation, and H2AK119 deubiquitination. Recently, non-coding RNAs have
been identified following mutations in the ASXL1 or ASXL3 gene, along with circular ASXLs and
microRNAs that regulate ASXL1 expression. The diverse epigenetic regulations linked to ASXL
family genes collectively contribute to tumor suppression and developmental processes. Our under-
standing of ASXL-regulated epigenetics may provide insights into the development of therapeutic
epigenetic drugs.
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1. Introduction

Epigenetic regulation is a dynamic process that enables the activation or repression of
genes at the transcriptional level in response to external stimuli, developmental cues, and
cellular demands. It plays a particularly important role in development, cellular homeosta-
sis, and cancer. The molecular mechanism underlying transcription involves the binding
of transcription factors to specific DNA sequences for the regulation of target genes [1].
However, transcription factors typically do not act alone; they require the assistance of
transcriptional coregulators to precisely manage gene expression. Coregulators, a diverse
group of proteins, interact directly or indirectly with transcription factors. Participating in
epigenetic regulation, coregulators modify the chromatin structure by inducing biochemi-
cal changes, such as methylation, acetylation, and other modifications. Considering their
essential role in regulating the expression of genes controlling metabolism and cell fate,
dysregulation of coregulators has been implicated in various defects, including metabolic
disorders and malignancy [2,3].

The additional sex combs (Asx) gene in Drosophila acts as a transcriptional coregulator
during embryonic development [4–6]. The mammalian homolog, known as additional
sex combs-like (ASXL) gene (including ASXL1, ASXL2, and ASXL3), shares functional
similarities [7–9]. In Drosophila, Asx participates in both transcriptional repression and
activation through genetic interactions with the polycomb-repressive complex 2 (PRC2)
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or trithorax group (TrxG). It is currently unclear whether the mammalian ASXL family
functions in transcriptional regulation similar to Drosophila Asx. This function may be
influenced by promoter context, extracellular signals, or targeted transcription factors
associated with epigenetic modifications. ASXL1 mutations are associated with disorders
such as Bohring–Opitz syndrome (BOS), acute myeloid leukemia (AML), and embryonic
developmental defects [10–14]. While the molecular biology of ASXL1 has been partially
clarified, certain epigenetic mechanisms remain elusive. This review provides insight into
the epigenetic regulation governed by the ASXL family.

2. Genetic and Structural Conservation

The chromosomal loci of ASXL family genes vary among family members and across
species: for example, there is human hASXL1 at 20q11, hASXL2 at 2p23.3, and hASXL3 at
18q12.1 but murine mAsxl1 at 2H1, mAsxl2 at 12A1.1, and mAsxl3 at 18A2 (Figure 1).
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Unlike other species, Drosophila lacks a familial gene for Asx. The increased number of
ASXL homologous genes may stem from gene duplication, leading to the evolution of new
biological functions or divergence in the DNA sequence from the original gene [15]. Genetic
evidence suggests that the ASXL family underwent gene duplication during evolution.
Sequence comparisons of ASXL family genes suggest that ASXL2 and ASXL3 originated
from a duplication of the ancestral ASXL1 gene during early mammalian evolution. In ad-
dition to the sequence similarities within the ASXL family, there is evidence of evolutionary
conservation of neighboring genes around ASXL family members in both humans and mice
(Figure 1) [15]. The KIF3B gene is located upstream of ASXL1, whereas KIF3C is positioned
upstream of ASXL2. DNMT3B/NCOA6 and DNMT3A/NCOA1, common neighbor genes,
are located downstream of ASXL1 and ASXL2, respectively. DTNB and DTNA genes are
shared downstream genes for ASXL2 and ASXL3. NOL4L and NOL4 genes are downstream
of ASXL1 and ASXL3. The presence of related neighboring genes around the ASXL family
suggests that the evolutionary conservation of paralogous ASXL genes plays crucial roles
in functional diversification and contributes to essential regulatory elements in biological
processes, reflecting the evolutionary history of the genome.

The three proteins encoded by ASXL family genes exhibit evolutionarily conserved
domains similar to Asx, including the ASX N-terminal domain (ASXN), the ASX homol-
ogous domain (ASXH), and the plant homeodomain (PHD) (Figure 2). While Drosophila
Asx consists of 1669 amino acids (aa), its human homologs have varying lengths: 1541 aa
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(ASXL1), 1435 aa (ASXL2), and 2248 aa (ASXL3) [16]. The N-terminal ASXN domain
contains the HARE-HTH motif, absent in Asx, and is predicted to mediate DNA bind-
ing [17]. The ASXH domain, highly conserved in both Asx and ASXL members, includes a
DEUBAD domain that interacts with and activates BAP1 (Calypso in Drosophila) to remove
ubiquitin from the monoubiquitinated histone H2A at lysine 119 (H2AK119ub) [18–20].
The C-terminal PHD finger is implicated in preferential binding to dimethylated histone 3
lysine 4, H3K4me2 [21]. The nuclear receptor (NR) box, responsible for nuclear hormone
receptor-mediated transcriptional regulation, is conserved in the ASXL family [21–25].
ASXL1 and ASXL3 share the heterochromatin protein 1 (HP1)-binding motif, which is
absent in ASXL2 [23]. The ASXH domain in the ASXL family is responsible for interac-
tion with the histone demethylase KDM1A (LSD1) [21,25]. In addition, an interaction
between the ASXM domain of ASXL1/3 and BRD4, a member of the bromodomain and
extraterminal (BET) proteins, has recently been reported [26,27].
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3. Tumor Suppression

Mutations in ASXL1, a candidate tumor suppressor gene, are frequently observed in
myeloid malignancies, such as acute myeloid leukemia and myelodysplastic syndrome
(MDS), which are often associated with a poor prognosis [11,12,28–30]. The predominant
ASXL1 mutations involve frameshift or nonsense mutations in exon 12, causing the ex-
pression of truncated forms of ASXL1 [31–33]. These mutations typically lead to a loss of
protein, but in some instances, they result in the production of truncated proteins with
gain-of-function or dominant-negative features [32,34–36]. Numerous studies have demon-
strated that truncated ASXL1 mutants, including the ASXL1 fragment containing amino
acids 1–587, promote myeloid transformation by forming a stable polycomb-repressive
deubiquitinase (PR-DUB) complex with BAP1, enhancing BAP1 deubiquitinase (DUB)
activity [37–39]. This mutant also interacts with BRD4 and activates the transcription
of genes involved in myeloid malignancies [27,40]. However, the precise mechanism by
which ASXL1 mutations acquire a dominant-negative function needs further investiga-
tion. Several mouse models have been developed to investigate the impact of changes in
ASXL1 on hematopoiesis and myeloid transformation [13,41–44]. ASXL1 is also considered
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a tumor suppressor in other types of cancers, including that of the prostate, colorectal,
and lung [45–47]. Database analysis of circular RNAs in bladder cancer has shown that
circASXL1 is highly expressed in bladder cancer tissues and correlated with overall sur-
vival [48].

ASXL2 is believed to have overlapping or redundant functions with ASXL1 due to
their similarity in protein domains, expression patterns, and neighboring gene sets at
their genomic loci. However, they differ in certain aspects. Unlike the high mutation rate
in exon 12 of ASXL1, ASXL2 mutations in myeloid malignancies are found at exons 11
and 12 [49]. Notably, ASXL2 mutations occur frequently in acute myeloid leukemia with
t(8;21)/RUNX1-RUNX1T1 and less frequently in other myeloid malignancies, indicating
mutual exclusivity with ASXL1 mutations [49,50]. Mouse studies have suggested that Asxl2
loss dysregulates the self-renewal of hematopoietic stem cells and accelerates leukemogene-
sis driven by AML1-ETO, indicating distinct effects from Asxl1 deletion [51]. Another study
demonstrated that Asxl2 deletion leads to a myelodysplastic syndrome-like disease and
increases the self-renewal of hematopoietic stem cells [52]. The mutual exclusivity between
ASXL1 and ASXL2 mutations remains unclear. Similar to ASXL1, ASXL2 forms a stable
and distinct PR-DUB complex with BAP1, promoting ubiquitin removal from histone H2A.
However, unlike ASXL1, ASXL2 is stabilized by BAP1 [53,54], indicating the existence of
additional regulatory mechanisms. ASXL2 is also associated with solid tumors. Elevated
ASXL2 expression is linked to poor survival and is correlated with the prognosis of breast,
colorectal, and pancreatic cancers [21,55,56], whereas its downregulation is associated with
hepatocellular carcinoma [57]. In mice, ASXL2 loss leads to myeloid leukemia, suggesting
a dual role in tumorigenesis.

The relationship between ASXL3 and tumor development is unclear, as it is rarely
mutated and not as closely associated with leukemia as ASXL1 and ASXL2 [58,59]. How-
ever, recent studies have found its potential role in certain cancers. A study demonstrated
that ASXL3 forms an oncogenic axis with BRD4 and BAP1, activating ASCL1/MYCL/E2F
signaling in small cell lung cancer [26]. Despite its limited involvement in tumorigenesis,
changes in ASXL3 are implicated in developmental defects, congenital heart disease, and
Bainbridge–Ropers syndrome (BRS) [60–62], which shares similarities with BOS, caused by
autosomal truncations in ASXL1 [63,64].

4. Developmental Roles

In addition to their roles in myeloid malignancies, deletion studies in mice have
shown that both Asxl1 and Asxl2 regulate hematopoiesis [41–44,51,52], whereas the role of
Asxl3 in hematopoiesis remains unexplored. De novo mutations in ASXL family members
are associated with various developmental defects: ASXL1 mutations are linked to BOS,
ASXL2 mutations to Shashi–Pena syndrome (SPS), and ASXL3 mutations to BRS [10,62–66].
ASXL1 mutations leading to BOS are characterized by distinctive facial features, cleft
palates, intellectual disability, microcephaly, breathing problems, skeletal abnormalities,
and eye defects [10,65,67]. However, the molecular mechanisms underlying the role of such
mutations in causing BOS are not fully understood. In vitro studies have shown that Asxl1
ablation in embryonic stem cells from mice impairs neural differentiation [68]. ASXL1-
deleted mouse models have defects in kidney podocyte development [69], embryonic
fibroblast proliferation [70], and embryonic lung maturation [14]. Germline mutations of
ASXL2 cause developmental syndromes, including SPS, characterized by the absence of
slowed growth and microcephaly [66,71]. ASXL3 mutations leading to BRS are associated
with intellectual disability, developmental delay, and speech and language difficulties.
However, the underlying molecular mechanisms remain unclear [63,72,73]. This different
phenotype suggests that the epigenetic mechanisms of ASXL1/3 and ASXL2 may differ.
Notably, ASXL1 and ASXL2 have opposite roles in mediating adipogenesis and lipogenesis
in vitro [23,24], with ASXL1 demonstrating similar effects to ASXL3 in repressing LXRα
during lipogenesis [25].
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5. Epigenetic Associations
5.1. CpG Islands and DNA Methylation

In addition to their functional similarity, ASXL familial genes share a common genetic
feature: CpG islands, evolutionarily conserved in both humans and mice, are located before
the transcriptional starting sites of genes (Figure 3). Using hg18 as the reference genome
for humans and mm9 for mice, the length of the CpG island for human ASXL1 and mouse
Asxl1 genes is identical at 592 base pairs, with identical sequences (Figure 3).
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human ASXL genes. CpG island analysis in ASXL family genes was performed using the DBCAT
web tool (http://dbcat.cgm.edu.tw/, accessed on 24 March 2023). (B) Alignment rate of CpG island
of ASXL genes between human and mouse. The alignment rate was analyzed using the Multalin web
tool (http://multalin.toulouse.inra.fr/multalin/, accessed on 25 March 2023).

These findings suggest the importance of ASXL1 gene regulation, preserved through-
out evolution. Both human ASXL2 and mouse Asxl2 have the same CpG island length (i.e.,
496 bp). However, the alignment rate of the CpG island between humans and mice is only
44.71%. The CpG islands of ASXL3 differ in length between humans (948 bp) and mice
(2010 bp), with a relatively high alignment ratio (73.52%), suggesting that the activity of
ASXL genes may be regulated by DNA methylation at CpG islands. In line with this, the
publicly available dataset GSE81680, generated by methylated DNA immunoprecipitation
sequencing, provides evidence of DNA methylation around ASXL genes in murine embry-
onic stem cells [74]. Conversely, genome-wide DNA methylation profiles could be altered
by ASXL1 mutations [75,76]. The interaction between Asxl1 and Wtip during podocyte
development suggests that Asxl1 regulates DNA methylation [69]. Wtip interacts with the
transcription factor WT1, which in turn regulates DNA methylation by interacting with the
TET2 enzyme [77]. However, whether Asxl1 or other family members participate in the
regulation of DNA methylation via WT1 or TET2 has not been investigated. Considering
the prognostic and therapeutic significance of ASXL1, WT1, and TET2 mutations in myeloid
leukemia, further investigations are needed to elucidate the mechanisms underlying the
transcriptional regulation of ASXL genes through DNA methylation.

5.2. Histone Modifications

Early studies on Drosophila Asx revealed its dual role as a member of the “enhancers
of trithorax and polycomb” (ETP) group, influencing epigenetic processes through dif-
ferential histone modifications. It represses or activates transcription by modulating the
trimethylation levels of histone H3 lysine 27 (H3K27me3) or histone H3 lysine 4 (H3K4me3)
through direct interaction with histone methyltransferases Enhancer of zeste E(z), a mem-

http://dbcat.cgm.edu.tw/
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ber of the polycomb group, or by Trx, a member of the Trithorax group, respectively [6,78].
In mammalian systems, ASXL family members interact with various histone modifiers,
including PRC2, TrxG, BAP1 deubiquitinase, NCOA1 (SRC1), HP1α, histone demethy-
lase KDM1A (LSD1), and BRD4 (Figure 4A). However, their functions and underlying
mechanisms in transcriptional regulation are unclear. The role of the ASXL family in
regulating gene expression through interactions with PRC2 has been extensively investi-
gated [70,79,80]. Enhancer of zeste homolog 2 (EZH2), a key component of PRC2, acts as a
histone methyltransferase, catalyzing the trimethylation of H3K27, leading to transcrip-
tional repression (Figure 4B). ASXL1 participates in transcriptional repression by interacting
with EZH2 [42,70,79]. ASXL2 also mediates chromatin recruitment of EZH2 and increases
H3K27me3 levels [80]. Compared to ASXL1 or ASXL2, the function of PRC2-associated
ASXL3 remains unexplored. In particular, considering the frequent mutations of ASXL1 in
various types of leukemia, the synergistic role of ASXL2 and PRC2 complex in leukemia
development and hematopoiesis has been explored [80].
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Recent studies have demonstrated that lysine demethylase 6B (KDM6B), which
demethylates H3K27me3, is elevated in ASXL1-mutant leukemic cells [81]. This upregula-
tion enhances the expression of leukemogenic genes and contributes to myeloid transfor-
mation. The effects of KDM6B have been validated through the heterozygous deletion of
Kdm6b in Asxl1Y588XTg mice. The histone modification H3K4me3 is a crucial epigenetic
marker of active gene expression [82,83]. TrxG proteins include the histone lysine methyl-
transferases MLL and SET1, which regulate H3K4me3 by adding methyl groups to histone
H3 at lysine 4 and modulate lineage commitment during differentiation [84–86]. The biva-
lent histone code, involving both H3K4me3 and H3K27me3, is essential for maintaining
gene expression patterns during differentiation and development [87,88]. Unlike the dual
role observed in the Drosophila Asx protein, the mammalian ASXL family shows diverse
functions, functioning as a coactivator or corepressor, depending on specific isotypes and
promoter contexts. ASXL family members exhibit distinct roles in modulating the tran-
scriptional activity of NRs by influencing various histone modifications (Table 1) [21–25].
In particular, ASXL1 and ASXL3 act as corepressors for certain NRs (PPARα and LXRα) by
interacting with HP1α, resulting in an increase in the repressive histone mark H3K9me3.
Conversely, ASXL1 acts as a coactivator for retinoic acid receptor α (RARα) by interacting
with SRC1, a histone acetyltransferase, leading to the accumulation of acetylated H3K9.
ASXL2 acts as a coactivator for estrogen receptor α (ERα) by upregulating the active his-
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tone mark H3K4me3 and downregulating the repressive marks H3K9me2 and H3K27me3.
Despite their similar structure and domain arrangements, the precise mechanism under-
lying the bivalent roles of the ASXL members in modulating H3K27me3 and H3K4me3
remain elusive.

Table 1. Histone modifications associated with ASXL-mediated nuclear receptor regulation.

ASXL NR * Interactions Transcription Histone Marks ** Reference

ASXL1

RARα SRC1 Activation H3K9ac ↑ [32]

PPARγ HP1α Repression H3K9me3 ↑ [33]

LXRα ND * Repression ND [34]

ASXL2

ERα LSD1, UTX, MLL2 Activation H3K9me2 ↓, H3K27me3 ↓, H3K4me3 ↑ [30]

PPARγ, MLL1 Activation H3K9ac ↑, H3K4me3 ↑ [33]

LXRα ND Activation ND [34]

ASXL3 LXRα LSD1, HP1α Repression ND [35]

* NR, nuclear receptor. **: ↑, increased; ND, not determined; ↓, decreased.

In addition to the bivalent epigenetic mechanism involving H3K27me3 and H3K4me3,
the ASXL family plays a crucial role in regulating histone H2A (H2AK119ub) ubiquitina-
tion, an essential epigenetic process during cellular differentiation, organ development,
and disease pathology [89,90]. H2AK119ub is catalyzed by PRC1 and subsequently re-
moved by the polycomb-repressive deubiquitinase (PR-DUB) complex, including BAP1
and ASXL1 in both Drosophila and mammals (Figure 4B) [18–20]. EZH2, a component of
core PRC2, is the key enzyme responsible for catalyzing H3K27me3. Subsequently, PRC1
recognizes H3K27me3 through CBX, leading to H2A ubiquitination via RING1B for gene
repression [91]. Truncated ASXL1 mutants promote myeloid transformation by creating a
potent PR-DUB complex with BAP1 [37–39]. ASXL2 interacts with the C-terminal domain
of BAP1 and enhances PR-DUB activity. In cancer cells expressing a BAP1 mutant defective
in ASXL2 binding, PR-DUB activity is disrupted, suggesting that BAP1 C-terminal domain
mutations may contribute to cancer development [53]. Intriguingly, ASXL3, similar to
ASXL1 and ASXL2, forms a PR-DUB complex with BAP1 but also exclusively interacts
with BRD4, which binds to acetylated histones via its bromodomains in small cell lung
carcinoma [26]. The intricate epigenetic coordination between H3K27me3 catalyzation and
H2AK119ub elimination by ASXL family members provides insights into the regulation
mediated by ASXL proteins.

Recent studies have revealed that ASXL proteins are physically and functionally linked
to histone acetylation (Figure 4B) [26,27,40]. The BET protein family, acting as an epigenetic
reader of acetylation for histones H3 and H4, is associated with the RNA polymerase II
complex to activate transcription [92,93]. During leukemogenesis, truncated ASXL1 acts as
a gain-of-function mutant through interaction with BRD4, a BET protein [26,40]. Although
previous studies have mainly focused on the physical interaction between ASXL1–3 and
BRD4 and the biological significance of truncated ASXL1 in hematological malignancies,
the epigenetic role of this interaction in regulating target genes and histone acetylation
needs further exploration. In small cell lung cancer patients, BRD4 interacts with ASXL3
but not ASXL1 or ASXL2 [27]. The PR-DUB.3 complex shares common target genes with
BRD4 through its interaction with ASXL3. Although the binding of PR-DUB.3 and BRD4 to
target genes has been validated by chromatin immunoprecipitation followed by sequencing,
the precise epigenetic mechanism driving the oncogenic function of the ASXL3 complex
remains unclear. Moreover, it is essential to explore the physical interaction between
ASXL1–3 and other BET proteins, such as BRD2, BRD3, and BRDT, and to investigate
their biological and epigenetic roles during tumorigenesis and developmental processes.
Understanding these mechanisms could lead to the development of epigenetic drugs, such
as BET inhibitors, for cancer therapy.
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5.3. Non-Coding RNAs (ncRNAs)

NcRNAs constitute a diverse group of RNAs that perform various biological func-
tions, independent of translation [94,95]. They can be categorized based on their length,
shape, or function. MicroRNAs (miRNAs), typically consisting of 21–23 nucleotides and
forming short hairpins before maturation, serve as epigenetic regulators by interacting with
target mRNAs and suppressing their expression. Circular RNAs (circRNAs), characterized
by a single-stranded RNA with a covalently closed continuous loop, can be generated
through the RNA splicing process. They play an indirect role in epigenetic regulation by
acting as miRNA sponges, where miRNAs are sequestered against the complementary
region of circRNA, resulting in enhanced expression of the corresponding miRNA target
genes. Furthermore, they serve as sequestering agents for RNA-binding proteins and
transcription factors. Their interactions with transcriptional regulators can impact the
enzymatic activities of epigenetic modifiers. Although numerous approaches have been
used to investigate the role of ASXLs in epigenetics, the biological relationship between the
ASXL family and ncRNAs has not been fully explored. Notably, ASXL1 gene mutations
with C-terminal truncations lead to elevated miR-125a expression by disrupting the EZH2-
mediated methylation of H3K27, resulting in a myelodysplastic syndrome-like disease in
mice [42]. The increased miR-125a level downregulates Clec5a expression, which is associ-
ated with normal myeloid differentiation. Moreover, during DMSO-induced myocardial
differentiation of P19 cells, ASXL3 knockdown induces differential expression of various
miRNAs linked to the PI3K-Akt, MAP kinase, and Rap1 signaling pathways, as well as
heart development [96].

Unlike the ncRNAs regulated by ASXL proteins, certain circRNAs are transcribed at
the gene loci of the ASXL family. For instance, circASXL1 (circBase ID: hsa_circ_0001136),
initially identified through the circular RNA database related to bladder cancer, is as-
sociated with tumor grade and shorter overall survival [48]. In colorectal cancer (CRC)
progression [97], circASXL1 induces GRIK3 expression by sponging miR-1205, thereby
promoting tumor growth. Additional circASXL1 variants have been identified through
RNA sequencing in leukemic cells, with one reported to bind directly to BAP1, inhibiting
the deubiquitinase activity of the PR-DUB complex [98]. However, the mechanism by which
circASXL1 interferes with BAP1 activity and whether it affects ASXL1 expression through
a feedback loop remain to be determined. ASXL1 is also susceptible to downregulation by
specific ncRNAs. For instance, circ-ITGA7, downregulated in CRC cells, suppresses CRC
proliferation by sponging miR-3187–3p, which potentially targets ASXL1–5′UTR, resulting
in the silencing of ASXL1 expression [99]. On the other hand, LINC00586, a long ncRNA,
exhibits high expression in CRC and promotes tumorigenesis by recruiting LSD1 into the
ASXL1 promoter, causing ASXL1 downregulation [100]. In addition to cancers, circASXLs
have been implicated in other diseases. For instance, the role of circAsxl2 in neuronal
injury has been demonstrated in the neuronal cells of mice [101], revealing that it is up-
regulated in cells subjected to oxygen-glucose deprivation/reperfusion treatment, leading
to increased Foxo3 expression through sponging miR-130b-5p. However, the biological
function of circASXL3 remains unexplored. Further exploration on the roles of ncRNAs
linked to the ASXL family may facilitate biomarker identification and advancements in
epigenetic therapy.

6. Conclusions and Future Perspectives

Despite the first documentation of the biological function of the Drosophila Asx gene
in 1986, our understanding of the various mechanisms utilized by the chromatin factor
Asx or the ASXL family in mammals to regulate ASXL-related physiological processes
remains incomplete, particularly at the epigenetic level. Most studies have investigated the
mutation sites and their role in cancer. For example, the role of different truncated ASXL1
(aa 1–587, aa 1–635, aa 1–643, aa 1–646) in hematopoietic stem cells has been investigated
to understand the ASXL association in cancer progression [37–40,42]. However, the devel-
opment of therapeutic strategies based on the molecular mechanisms of ASXL mutants
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is still lacking. De novo mutations in ASXL members can cause severe developmental
disorders, but our understanding of the underlying molecular mechanisms is currently
limited. The tissue-specific functions of ASXL genes can be determined through the con-
ditional deletion of these genes in mice. Primary cells, including stem cells derived from
ASXL-deleted mice, offer a valuable resource to investigate the molecular mechanisms
underlying ASXL-associated physiological processes. Recently, several notable advance-
ments have been made in the knowledge of epigenetics, based on molecular biological
techniques and innovative bioinformatic technology. For a comprehensive understanding
of the dynamic regulation of target genes at chromatin, linked to DNA methylation and
histone modification, further identification of transcription factors beyond NRs [21–25] or
the FOXK family [102,103] may extend our understanding of the chromatin localization of
the ASXL family and their biological importance at the transcriptional level. In addition,
genome-wide studies, encompassing ChIP sequencing, ATAC sequencing, and chromo-
some conformation capture (3C) technology coupled with high-throughput sequencing, are
necessary to unveil the role of ASXL proteins in orchestrating chromatin rearrangement and
three-dimensional genome organization at specific genomic loci. To investigate genomic
interactions, an initial approach would be to examine the physical interaction between
ASXL proteins and the CCCTC-binding factor/cohesin complex, a regulator of high-order
chromatin organization. Truncated ASXL1 mutants, specifically the ASXL1 fragment con-
taining amino acids 1–587, drive myeloid transformation by forming a stable PR-DUB
complex with BAP1, thereby enhancing BAP1 deubiquitinase activity [37–39]. This mutant
also interacts with the BET protein BRD4, activating the transcription of genes involved
in myeloid malignancies [26,40]. In contrast to the oncogenic function of truncated ASXL1
mutants, the mechanism underlying the tumor-suppressing role of full-length ASXL1 re-
quires exploration across various types of cancers, including leukemia. Peptide pull-down
and ChIP assays can be employed to demonstrate the interaction between ASXL1 and BET
proteins (BRD2–4 and BRDT) disrupting BET association with acetylated chromatin (at
lysine 5 and 12 of histone 4 or lysine 14 of histone 3) through its bromodomain, leading to
downregulation of target oncogenes such as MYC and BCL2. Subsequent studies should in-
volve other ASXL family members, ASXL2 and ASXL3, to ascertain whether their functions
are redundant or distinct in cancers and developmental defects. The crucial involvement of
ASXL family genes in cancer and development suggests that exploring novel epigenetic
drugs targeting their underlying molecular mechanisms could present a promising avenue
for therapeutic development.
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