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Abstract: KCTD1 plays crucial roles in regulating both the SHH and WNT/β-catenin signaling
pathways, which are essential for tooth development. The objective of this study was to investigate
if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically
and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome
sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants
in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two
families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth
agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root
development is supported by our immunohistochemical study showing high expression of Kctd1
in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found
to be located in the C-terminal domain, which might disrupt protein–protein interactions and/or
SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental
anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on β-catenin
levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and
isolated dental anomalies.

Keywords: root anomalies; hypodontia; tooth agenesis; taurodontism; supernumerary tooth; oral
exostoses
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1. Introduction

During tooth development, tooth number, size, and position are regulated by the
collaboration of WNT, SHH, FGF, and BMP signaling [1,2]. Normal root morphogene-
sis requires optimal levels of WNT/β-catenin and SHH signaling [2]. SHH is primarily
found in the dental epithelium throughout tooth development, starting from initiation and
continuing through root formation stages. It regulates the formation of enamel, dentin,
cementum, and the surrounding periodontal structure [3]. In contrast, WNT/β-catenin
signaling plays an essential role in neural crest cell survival, differentiation, and devel-
opment of ectodermally derived structures, including skin, hair, mammary gland, nails,
and teeth [4,5]. WNT signaling regulates various processes involved in odontogenesis,
including tooth bud initiation, tooth crown morphogenesis, and tooth root development.

Several stages of tooth development require optimal WNT/β-catenin signaling [2].
Downregulation of WNT/β-catenin signaling in the dental epithelium is implicated in
tooth agenesis or microdontia, whereas overactivation of WNT/β-catenin signaling in the
dental epithelium is implicated in the formation of supernumerary teeth [1,6–8]. In contrast,
upregulation of WNT signaling in the dental mesenchyme has been shown to result in
tooth agenesis [9].

Genetic variants in the Potassium Channel Tetramerization Domain-Containing Pro-
tein 1 gene (KCTD1; MIM 613420) are implicated in Scalp-Ear-Nipple or Finlay–Marks
syndrome (SEN; MIM 181270), which is characterized by cutis aplasia of the scalp, mal-
formations of breasts, external ears, digits, and nails, as well as renal and dental anoma-
lies [10–14]. Dental anomalies found in patients with Scalp-Ear-Nipple syndrome include
microdontia, tooth agenesis, and enamel defects [10,13,15–18]. To date, thirteen genetic
variants in KCTD1, all of which impact the N-terminus of the protein, have been reported
to be associated with Scalp-Ear-Nipple syndrome [10–14].

The KCTD1 gene encodes the KCTD1 protein, which directly binds to β-catenin
through its BTB (Broad-complex, Tramtrack, and Bric-a-brac) domain, enhances its degra-
dation, and inhibits canonical WNT/β-catenin signaling [19,20]. KCTD1 also functions as
a transcriptional repressor, which interacts with transcription factor AP2-alpha (TFAP2A;
MIM 107580), transcription factor AP2-beta (TFAP2B; MIM 601601), and transcription factor
AP2-gamma (TFAP2C; MIM 601602) via its BTB domain and acts as a strong repressor of
TFAP2A transcriptional activity [12,19]. Therefore, KCTD1 functions as a potent transcrip-
tional repressor of TFAP2A and a negative regulator of WNT/β-catenin signaling, which is
important for embryonic development and homeostatic self-renewal in tissue regeneration
and repair [8,21]. Of note, KCTD1 has also been reported to function as a suppressor of the
hedgehog pathway [22].

The BTB domain of KCTD1 is located at the N-terminus of the protein. It generally
forms a close pentameric structure when it binds to its functional partner [23]. The BTB
domain has been highly conserved throughout evolution from Drosophila to mammals.
Interestingly, the 257 amino acid mouse Kctd1 and human KCTD1 are identical, while only
a single amino acid difference is found in rat [23]. The frequent association of KCTD1 with
putative transcriptional regulators containing zinc finger motifs suggests that it plays an
important role in transcriptional regulation [12,19,21,23,24].

Here, we report a novel variant and a rare variant of KCTD1 in nine patients from
two unrelated families with isolated dental anomalies including taurodontism, unsepa-
rated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus
mandibularis. Maldevelopment of roots appeared to be a common finding. Our study
sheds light on a novel understanding of the influence of KCTD1 variants on odontogenesis.

2. Results
2.1. Clinical Description of Patients

Nine patients from two unrelated families were found to have taurodontism, unsepa-
rated roots, generalized thin and tapered roots, long roots, shortened roots, tooth agenesis,
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microdontia, a supernumerary tooth, torus palatinus, and torus mandibularis (Table 1,
Figures 1–3).

Table 1. Patients with KCTD1 variants and their dental phenotypes.

Patients Genders Families Phenotypes KCTD1 Variants

1
(I-2; Male)

1

Taurodontism of teeth 16, 17, and 27; 18, 28 unseparated root;
generalized long roots

c.722G>A
p.Arg241Gln

chr18-24035759-C-T
rs776466895

MAF = 0.00001193
DANN score = 0.9988

CADD score = 23.5

2
(II-1; Male)

Taurodontism of teeth 16, 17, 18, 26, 27, 28, 38, and 48; torus
palatinus and torus mandibularis

3
(II-2; Female) Taurodontism of teeth 16, 17, 18, 26, 27, 28, 37, and 47

4
(II-3; Female)

Taurodontism of teeth 16, 17, 26, 27, 36, 37, 46, and 47; generalized
long roots; agenesis of tooth 18

5
(II-4; Female)

Taurodontism of teeth 16, 26, 37, and 47; unseparated roots of teeth
17 and 27; generalized thin and tapered roots; agenesis of tooth 35

6
(II-5; Female)

Taurodontism of teeth 16 and 26; shortened roots of teeth 16, 26, 36,
and 46

7
(I-1; Female)

2

Unseparated roots of teeth 17, 27; agenesis of teeth 25, 36, 38, and
47; microdontia of teeth 12, 22; torus palatinus

c.727C>T;
p.Pro243Ser

chr18-24035754-G-A
NOVEL

DANN score = 0.9425
CADD score = 16.16

8
(II-2; Male) Taurodontism of teeth 16, and 26; agenesis of tooth 15

9
(II-3; Male)

Taurodontism of tooth 26; agenesis of teeth 35 and 45; a
supernumerary tooth
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Figure 2. Family 1 (a) Patient 1 at age 48 years. Panoramic radiograph showing taurodontism of
teeth 16, 17, and 27 (arrows). Teeth 18 and 28 have unseparated roots (arrowheads). Generalized long
roots. (b) Patient 2 at age 20 years. Maxillary teeth and torus palatinus (arrowhead). Mandibular
teeth and torus mandibularis (arrowheads). (c) Patient 3 at age 17 years. Panoramic radiograph
showing taurodontism of teeth 16, 17, 18, 26, 27, 28, 37, and 47 (arrows). (d) Patient 2 at age 20 years.
Panoramic radiograph showing taurodontism of teeth 16, 17, 18, 26, 27, 28, 38, and 48 (arrows).

2.2. Whole Exome Sequencing and Bioinformatic Analysis

Whole exome sequencing was performed on all 362 affected individuals. We initially
focused on unrelated individuals that carried rare variants in the KCTD1 gene. This
assessment identified two potentially pathogenic variants in KCTD1: one rare missense
variant (c.722G>A; p.Arg241Gln) and one novel missense variant (c.727C>T; p.Pro243Ser).
Both individuals presented with similar isolated dental anomalies with or without torus
palatinus and mandibularis. Subsequent Sanger sequencing of amplicons showed that all
affected family members from both families (nine patients total in the two families) carried
the respective heterozygous KCTD1 variant, while all the unaffected members of the two
families did not, strongly supporting a genotype–phenotype correlation (Figures 1 and 4).
None of the nine patients had any clinical findings consistent with Scalp-Ear-Nipple
syndrome (Table 1, Figures 1–3).

In order to rule out other known genetic causes of dental anomalies, we screened
the whole exome sequencing results of all nine patients for other rare variants with allele
frequencies < 0.0003, focusing on genes including WNT10A, WNT10B, LRP5, LRP6, PAX9,
AXIN2, MSX1, WLS, BMP4, KDF1, ATF1, DUSP10, EDA, EDAR, EDARADD, GREM2,
TFAP2B, TSPEAR, PITX2, EVC, EVC2, COL1A2, ANTXR1, FGF10, KREMEN1, CASC8, and
SMOC2 [25–28]. This assessment identified only a single rare variant in LRP5 (chr11:g.68201
132G>A; NM_001291902.2: c.2083G>A; NP_001278831.1: p.Gly695Arg; rs370744430) in
patient 7 who had unseparated roots of teeth 17 and 27, agenesis of teeth 25, 36, 38, and 47,
microdontia of teeth 12 and 22, and a torus palatinus. The allele frequency of this variant is
0.00000716 (gnomAD database, v2.1). In a multiple sequence alignment of LRP5 proteins
from 494 species of vertebrates, the amino acid residue Gly695 is found in 117 species of
vertebrates, suggesting it is not well conserved. The LRP5 variant c.2083G>A; p.Gly695Arg
is predicted to be a polymorphism (prob = 0.860781214034341) and benign (0.003) by
MutationTaster and PolyPhen-2, respectively. The Combined Annotation Dependent
Depletion (CADD) and Deleterious Annotation of genetic variants using Neural Networks
(DANN) scores for this variant are 21.8 and 0.9059, respectively. Since genetic variants
in LRP5 have been reported to be associated with tooth agenesis, taurodontism, and oral
exostoses, it is possible that this LRP5 variant contributes to the dental phenotypes and
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torus palatinus in patient 7. However, the variant was not found in other affected family
members, ruling it out as the primary causal variant in this family.
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Figure 3. Family 1 (a) Patient 4 at age 14 years. Panoramic radiograph showing taurodontism of
teeth 16, 17, 26, 27, 36, 37, 46, and 47 (arrows). Generalized long roots. Agenesis of tooth 18 (asterisk).
(b) Patient 5 at age 12 years. Panoramic radiograph showing taurodontism of teeth 16, 26, 37, and 47
(arrows). Unseparated roots of teeth 17 and 27 (arrowheads). Generalized thin and tapered roots.
Agenesis of tooth 35 (asterisk). (c) Patient 6 at age 7 years. Panoramic radiograph showing mixed
dentition and taurodontism of teeth 16 and 26 (arrows). Shortened roots of teeth 16, 26, 36, and 46
(asterisks). Family 2 (d) Patient 7 at age 28 years. Panoramic radiograph showing unseparated roots
of teeth 17 and 27 (arrowheads). Agenesis of teeth 25, 36, 38, and 47 (asterisks). Microdontia of teeth
12 and 22 (arrows). (e) Patient 7. Microdontia of teeth 12 and 22 (asterisks). Torus palatinus (arrow).
(f) Patient 8 at age 10 years. Panoramic radiograph showing mixed dentition. Taurodontism of teeth
16 and 26 (arrows). Agenesis of tooth 15 (asterisk). (g) Patient 9 at age 7 years. Panoramic radiograph
showing mixed dentition, taurodontism of tooth 26 (arrow). Agenesis of teeth 35 and 45 (asterisks).
A supernumerary maxillary tooth (arrowhead).

2.3. p.Arg241Gln Variant

A rare variant, c.722G>A; p.Arg241Gln, was identified in patients 1, 2, 3, 4, 5, and 6 of
family 1, who had tooth agenesis, taurodontism, unseparated roots of permanent molars,
long roots, root dilaceration, torus palatinus, and torus mandibularis (Figure 4a). According
to gnomAD, this variant is rare, with an allele frequency of 0.00001193. This variant has
not been reported in the South Asian and East Asian populations. According to the T-REx
database, this allele was found in 1 out of 2184 alleles (allele frequency = T:0.00045788
or 0.04%) in Thai subjects. A multiple sequence alignment showed that the amino acid
residue Arg241 is conserved across 438 out of 476 species of vertebrates (Figure 5). This
variant is predicted to be disease causing by MutationTaster (prob = 0.999946005902276)
(https://www.mutationtaster.org; accessed on 24 September 2023), probably damaging by
PolyPhen-2 (0.997) (http://genetics.bwh.harvard.edu/pph2/; accessed on 24 September
2023), and damaging by SIFT (0.01) (https://bio.tools/sift; accessed on 24 September 2023).
The DANN score of this variant (https://cbcl.ics.uci.edu/public_data/DANN/; accessed
on 24 September 2023) is 0.9988, which suggests the association between the variant and

https://www.mutationtaster.org
http://genetics.bwh.harvard.edu/pph2/
https://bio.tools/sift
https://cbcl.ics.uci.edu/public_data/DANN/
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disease risk (https://varsome.com/about/resources/germline-implementation/ accessed
on 24 September 2023). The CADD of this variant (https://cadd.gs.washington.edu;
accessed on 24 September 2023) is 23.5, suggesting that this variant is predicted to be
among the 1.0% most deleterious possible substitutions in the human genome (https:
//genome.ucsc.edu/ accessed on 24 September 2023).
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2.4. p.Pro243Ser Variant

The heterozygous missense variant c.727C>T; p.Pro243Ser was identified in patients
7, 8 and 9, of family 2 who had tooth agenesis, taurodontism, a supernumerary tooth,
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unseparated roots of permanent molars, and a torus palatinus (Figure 4b). This variant is
not reported in gnomAD (https://gnomad.broadinstitute.org; accessed on 24 September
2023), LOVD (https://www.lovd.nl; accessed on 24 September 2023), HGMD (https://
www.hgmd.cf.ac.uk/ac/index.php; accessed on 24 September 2023), or the Thai reference
exome variant database (T-REx) [29]; therefore, it is considered novel. The amino acid
residue Pro 243 is highly conserved, being present in 289 out of 476 species of vertebrates, a
selection of which are shown in Figure 5. This variant is predicted to be a polymorphism
by MutationTaster (0.931756239937238) (https://www.mutationtaster.org; accessed on 24
September 2023), benign by PolyPhen-2 (0.007) (http://genetics.bwh.harvard.edu/pph2/;
accessed on 24 September 2023), and tolerated by Sorting Intolerant From Tolerant (0.1)
(SIFT; https://bio.tools/sift; accessed on 24 September 2023). The CADD (https://cadd.
gs.washington.edu; accessed on 24 September 2023) and DANN (https://cbcl.ics.uci.edu/
public_data/DANN/; accessed on 24 September 2023) scores for this variant are 16.16 and
0.9425, respectively, suggesting it may be benign (https://varsome.com/about/resources/
germline-implementation/ accessed on 24 September 2023). Neither variant has any
predicted cryptic impact on KCTD1 mRNA splicing, as determined using SpliceAI and
Pangolin (https://spliceailookup.broadinstitute.org/ accessed on 24 September 2023).

2.5. Functional Studies

KCTD1 functions as an inhibitor of the WNT/β-catenin signaling pathway, and
cytoplasmic β-catenin levels reflect the WNT signaling activity [30]. Immunoblotting
was conducted to investigate the impact of p.Arg241Gln and p.Pro243Ser variants on the
expression of KCTD1 and β-catenin. The results demonstrated that both p.Arg241Gln and
p.Pro243Ser proteins were expressed in the cells, with band intensities comparable to the
wild-type protein. Interestingly, p.Arg241Gln led to a significant reduction in β-catenin
levels compared to the WT. This indicates that the alteration in the p.Arg241Gln variant
decreased WNT signaling activity. In contrast, the p.Pro243Ser variant produced a higher
level of β-catenin, but it was not significantly different from that of wild type (Figure 6a,b;
Figure S1; Table S1).
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WT, p.Arg241Gln, and p.Pro243Ser variants, along with β-catenin and β-tubulin. (b) The fold change
in the intensity of the bands relative to the wild-type KCTD1 was compared and shown in the bar
chart (means and standard deviations of four experiments). Statistical significance is indicated by *.

2.6. Kctd1 Expression in Mouse Tooth Development

Expression of Kctd1 in the developing teeth of mice was assessed by immunoflu-
orescence. Expression was not evident in mouse tooth germs at embryonic day E12.5
(Figure 7a) but was detectable in tooth epithelium at E13.5 and E14.5 (Figure 7b,c). Kctd1 is
not expressed in dental epithelium at the bud stage, while it is expressed at the cap stage.
Kctd1 expression was also detected in ameloblasts and Hertwig epithelial root sheath at
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postnatal day (P) 10 (Figure 7d,e). At all stages, Kctd1 expression was detected in the oral
epithelium and then increasingly in mesenchymal cells.
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Figure 7. Frontal section showing immunohistochemistry of Kctd1 in wild-type mouse at E12.5
(a), E13.5 (b), E14.5 (c), and P10 (d). (a) Immunohistochemical study of Kctd1 expression of frontal
sections of wild-type mouse embryo during early mouse tooth development. No expression of Kctd1
is observed in early bud stage of tooth germ at embryonic day (E) 12.5 (E12.5) (arrow). (b,c) Kctd1
is expressed in dental epithelium (arrows) at (b) late bud stage (E13.5) and (c) cap stage (E14.5).
(d,e) Kctd1 expression is found in ameloblasts and HERS at postnatal day (P) 10 (P10) (arrowheads),
suggesting its important role in root development. (e) High magnification arrowhead indicated in (d).
Scale bars; 100 µm (a–d) and 50 µm (e). Arrows and arrowhead indicate tooth germ and Hertwig
epithelial root sheath, respectively. Kctd1 is not expressed in dental epithelium at the bud stage,
while it is expressed at the cap stage. Kctd1 is highly expressed in Hertwig epithelial root sheath.

2.7. The Structure of KCTD1

The positions of the mutated residues were inspected in the human KCTD1 structure
(Protein Databank, PDB, https://www.rcsb.org/structure/6s4l, accession 6S4L; accessed
on 24 September 2023). The previously reported KCTD1 variants are found exclusively
in the N-terminal disordered region and BTB domain (Figure 8a). The variants reported
in this study p.Arg241Gln and p.Pro243Ser are located adjacent to the C-terminal H1
tetramerization domain and are neighboring other highly conserved residues in the turn
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between the C-terminal domain and the extended tail (Figure 8b,c). Both substitutions
are likely to increase the flexibility of this region, particularly conversion from Pro, which
has limited backbone flexibility, to Ser at 243, so they may affect the angle at which the
C-terminal tail is extended. The proximity of the two variants and the high degree of
conservation of these residues suggests that they could have similar impacts on protein
function, thus explaining the similar dental anomalies.
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Figure 8. The structure of KCTD1 protein showing the positions of the Arg241Gln, Pro243Ser, and
previously reported mutations. (a) A schematic map of the primary structure of human KCTD1 based
on the structure of KCTD1 showing the mutation locations. Structural domains are coded by color
as indicated. The starting and ending positions of each structural domain are marked. The residue
numbering is based on accession number NCBI: NP_001129677.1. Note that the previously reported
KCTD1 variants (in black) are found exclusively in the N-terminal disordered region and BTB domain.
The KCTD1 variants reported in this study (in red) are found in the C-terminal tail. (b) The full-length
structure of KCTD1 (PDB entry 6S4L—doi: 10.2210/pdb6S4L/pdb) is a pentamer and covers, with
the exception of 25 N-terminal and 4 C-terminal amino acid residues, the entire protein. (c) The
monomer of KCTD1 (PDB entry 6S4L—doi: 10.2210/pdb6S4L/pdb) with the expanded view of
mutated and neighboring amino acid side chains shown in stick. Both mutations change amino acids
at the turn from the C-terminal domain to the extended flexible tail and change from larger to smaller,
more flexible amino acid sidechains, thereby likely changing the position of the extended C-terminus.

3. Discussion
3.1. KCTD1 Variants Are Associated with Isolated Dental Anomalies

Whole exome sequencing of 362 patients with dental anomalies identified a rare
(p.Arg241Gln) variant and a novel variant (p.Pro243Ser) of KCTD1, both of which com-
pletely segregated with the dental presentations in the respective families (a total of nine
individuals) supporting a causal relationship. The isolated dental anomalies observed
in our patients consist of taurodontism, unseparated roots, long roots, tooth agenesis, a
supernumerary tooth, torus palatinus, and torus mandibularis. Both KCTD1 variants found
in our patients, p.Arg241Gln and p.Pro243Ser, reside in close proximity to each other in the
C-terminal domain of the protein and both impact highly conserved residues. This is in
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contrast with all previously reported variants in KCTD1 associated with Scalp-Ear-Nipple
syndrome, which reside in the N-terminal disordered region or in the BTB domain, sug-
gesting a possible genotype–phenotype correlation. Until now, no pathological variants
have been reported in the C-terminal end of KCTD1 protein [10–14]. More patients with
isolated dental anomalies and KCTD1 variants in the C-terminal domain would confirm a
causal relationship.

3.2. Possible Impacts of KCTD1 Variants on Their Functions

The Arg241Gln variant is predicted to be deleterious or damaging by multiple algo-
rithms. In addition, this is supported by our functional study, which demonstrated that
the alteration in Arg241Gln protein had a significant effect on β-catenin levels. Based
on the protein structure, Arg241 is located at the hinge point between a highly compact
region and the extended unstructured tail. The change to glutamine at this position will
decrease the overall positive charge and the size of the side chain, which may increase
flexibility of the C-terminal end. The change in the charge distribution could potentially
affect the interaction with interacting proteins, including those involved in posttranslational
modification of the C-terminal tail. The deleterious effect of this mutant protein model is in
support of its functional study at the cellular level.

Although the p.Pro243Ser variant is computationally predicted to be benign and its
functional study did not show that it significantly affects β-catenin levels, its novelty,
high degree of conservation, segregation with the phenotypes, and proximity to Arg241
still warrant its consideration as potentially pathogenic. The p.Pro243Ser change may
similarly affect the angle at which the C-terminal tail extends since proline in this position
would potentially restrict the main chain torsion angles due to the connection of its side
chain to its amino nitrogen. Such changes in the C-terminal tail angle could impact the
interaction of the tail with other proteins. In this regard, the KCTD1 protein has been
identified as a substrate for SUMOylation, an important post-translational modification
that regulates protein function in eukaryotes [31,32]. A SUMOplot (https://www.abcepta.
com/sumoplot; accessed on 24 September 2023) analysis identified a predicted consensus
sequence for SUMOylation, ψKXE (with SUMOylation at K252), in the C-terminal tail of
KCTD1. Notably, SUMOlyation plays important roles in tooth development [33]. Therefore,
it is possible that the variants in our patients interfere with the SUMOlyation of KCTD1,
although follow up functional studies would be required to test this. It should be noted that
the p.Pro243Ser variant also introduces a new potential phosphorylation or O-GlcNAc site,
raising an alternate possible mechanism to disrupt partner protein interactions and normal
protein function. Therefore, it is possible that the altered KCTD1 protein may have an effect
on tooth development that is not related to WNT signaling. It is nevertheless important to
note that dental abnormalities are not life threatening and do not result in severe disability.
Most patients with dental anomalies, especially those with root maldevelopments, do not
even know they have them. It is therefore our considered opinion that mutation algorithms
may not accurately predict the effects of all genetic variants underlying relatively benign
dental variations.

3.3. KCTD1 Variants, Tooth Agenesis, Microdontia, and Supernumerary Tooth Formation

The role of KCTD1 is to repress canonical WNT/β-catenin signaling by enhancing
β-catenin degradation [20]. Disruption of KCTD1 function as a result of genetic variants
might result in upregulation of WNT signaling in the dental epithelium, with secondary
impact on the neural crest-derived mesenchyme and the genes specifying incisor and molar
fate, which could explain agenesis and formation of a supernumerary maxillary tooth in
the same individual [34–36]. In line with a causal role for KCTD1 variants in various dental
anomalies, our immunofluorescence investigation showed that detectable Kctd1 expression
begins at the cap stage.

Tfap2a and Tfap2b have been demonstrated to have important roles in tooth pattern-
ing [37]. As previously mentioned, KCTD1 has been reported to interact with TFAP2A,
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TFAP2B, and TFAP2C [12]. TFAP2A inhibits the WNT/β-catenin signaling by associating
with APC protein. Subsequently, the TFAP2A/APC/β-catenin complex induces the nu-
clear β-catenin into an inactive state and interrupts its binding to T-cell factor/lymphoid
enhancer factor (TCF/LEF) transcription factors. Thus, genetic variants in KCTD1 might
disrupt WNT/β-catenin signaling via its interaction with TFAP2A and TFAP2B and subse-
quent tooth development. This is supported by the findings of isolated dental anomalies,
including tooth agenesis, microdontia, supernumerary teeth, and root maldevelopments,
in patients with TFAP2B variants [38].

SHH also modulates the growth and shape of the tooth, and aberrant Shh signaling
during early tooth development in mice results in tooth malformations [39,40]. KCTD1 has
also been reported to function as a suppressor of the hedgehog pathway [22]. So, it remains
possible that the tooth agenesis, microdontia, supernumerary tooth, torus palatinus, and
torus mandibularis found in our patients’ results, at least in part, are from the impact of the
KCTD1 variants on SHH signaling.

3.4. KCTD1 Variants and Root Maldevelopment

Root maldevelopments including taurodontism, unseparated roots of molars, short-
ened roots, and generalized long roots were found in all nine patients with KCTD1 variants.
This implies an important role of KCTD1 in development of roots. Taurodontism is caused
by decreased proliferation of Hertwig epithelial root sheath cells at the initial stage of root
development and excessive proliferation of adjacent dental mesenchyme cells in dental
papilla during root development [41]. The fundamental defects of the root maldevelop-
ments appear to relate to disruptive root lengthening and formation of root furcations [41].
The elongation and invagination of Hertwig epithelial root sheath cells into the underlying
mesenchyme, which determines the length and number of roots, is also strongly dependent
on WNT/β-catenin signaling [41–45]. In support of this, taurodontism or unseparated
roots of molars is seen in Wnt10a knockout mice [46,47] and in most patients with genetic
variants in WNT/β-catenin signaling such as WNT10A, WNT10B, LRP4, LRP5, LRP6, DKK1,
WLS, and DLX3 [48–50].

SHH and BMP signaling also play crucial roles in root development [42,51], with
genetic variants in BMP4 having been implicated in tooth agenesis, root maldevelopment,
and oral exostoses, similar to the features found in our patients with KCTD1 variants [26].
Therefore, in addition to aberrant WNT and SHH signaling, the root maldevelopment in
our patients with KCTD1 variants might have been the effects of disruptive BMP signaling
as well.

Taken together, it is hypothesized that root maldevelopments in patients 1–9 were the
consequences of KCTD1 variants that affected KCTD1 protein function and subsequently
led to abnormal root development. Our finding of immunofluorescence study of Kctd1
expression in the Hertwig epithelial root sheath at postnatal days supports the hypothesis.

3.5. KCTD1 Variants, Torus Palatinus, and Torus Mandibularis

The finding of torus palatinus and torus mandibularis in patients 2 and 7 can also be
explained by aberrant WNT/β-catenin and BMP signaling, as pathogenic variants in LRP5,
BMP4, LRP6, LRP4, DKK1, and WLS are implicated in the formation of these tori [26–28,52].
Patient 7 also carried an LRP5 variant, which might contribute to the formation of the
torus palatinus, in conjunction with the KCTD1 variant. Dysregulation of BMP signaling
similarly can lead to various bone disorders, including abnormal bone mass [53], and might
contribute to the formation of the tori in our patients with KCTD1 variants.

4. Materials and Methods
4.1. Ethic Statement

This study was conducted with informed consent from all participants or their parents
and was approved by the Human Experimentation Committee of the Faculty of Dentistry,
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Chiang Mai University (certificate of approval number 71/2020) and is in accordance with
the ethical standards of the Declaration of Helsinki.

4.2. Patient Recruitment and Clinical Investigations

Inclusion criteria for patient recruitment were patients with isolated dental anomalies,
including tooth agenesis, microdontia, macrodontia, supernumerary teeth, odontomas,
talon cusps, enamel hypoplasia, tooth fusion, dens evaginatus, failure of tooth eruption,
and root anomalies. Oral and radiographic examinations were performed on the cohort
of 362 patients who came to The Pediatric Dental Clinic, Faculty of Dentistry, Chiang Mai
University (Figure 9). The participants included 196 (54.14%) females and 166 (45.86%)
males. The genetic studies of this cohort have been published [6,26,50].
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4.3. Whole Exome Sequencing

Depending on the availability, either saliva or blood from the patients was collected
as a source of genomic DNA to be sequenced. The saliva collection procedure follows
the protocols outlined in the Oragene DNA OG-575 kit (DNA Genotek Inc., Ottawa, ON,
Canada), and genomic DNA was extracted from the saliva using an ethanol precipitation
protocol and the prepIT L2P reagent. The blood collection procedure utilizes 4 mL of blood
in BD Vacutainer®EDTA tubes (10.0 mL K2E, containing EDTA 18.0 mg) (BD-Plymouth,
PL6 7BP, UK), and genomic DNA was extracted from the blood using protocol 131 of the
QuickGene DNA whole blood kit (Kurabo Industries Limited, Osaka, Japan).

Whole exome sequencing (WES) was performed on the genomic DNA of all patients.
The SureSelect exome capture library (Agilent Technologies, Santa Clara, CA, USA) was
used to target all coding exons and UTRs of the human genome. The output sequenc-
ing reads in the FASTQ format were aligned using BWA-MEM to the reference sequence,
hg19/GRCh37. The duplication reads were marked with GATK-MarkDuplicate utility.
Following the GATK best practices, base quality score recalibration was used prior to
HaplotypeCaller to produce each patient’s list of variants (VCF file format). GATK Geno-
typeGVCF was used to call genotype from all individuals. The resulting variants including
SNVs and INDELs were combined with those variants from the in-house cohort (799 sam-
ples), producing a combined VCF of 1161 samples. We filtered these variants again using
GATK-VQSR and fed the passed variants to Variant Effect Predictor (VEP) build 110 with
dbNSFP 4.4a to annotate them with the predicted variant functional effects. At this stage,
there were over 32 million variants that were subject to the VEP prediction. To further
narrow down the huge search space, we exercised the predisposing gene list hypothesis
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and adopted hard-filtering criteria such as considering only those with moderate to high
impact on the predicted functions, which were really rare or novel (MAF < 0.0009999 in
gnomADe, gnomADg, 1000 Genomes databases and MAF < 0.01 from the Thai specific
variant database (T-REx)). The hard-filtering criteria reduced the number of search space
down to approximately 4000 variants (Figure 10). We found the candidate variants in the
KCTD1 gene. Sanger sequencing was performed to confirm the variants. The sequence
primers used were as follows: Exon5, forward: 5′-TTGCTGTCCCAACTGCACATA-3′;
reverse: 5′-ACATGGGTGCTGGATGAGATG-3′.
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4.4. Assessment of Protein Sequence and Structure

The human sequence was aligned with 476 vertebrate KCTD1 protein sequences with
Clustal Omega, (https://www.ebi.ac.uk/Tools/msa/clustalo/; accessed on 24 September
2023) to generate a multiple sequence alignment and evaluate the conservation of the
mutated amino acids. The context of the mutations in the KCTD1 protein structure was
analyzed based on the crystal structure of the full-length pentamer structure of KCTD1
(PDB entry 6S4L—doi: 10.2210/pdb6S4L/pdb). The protein models carrying mutations
were made by simply changing the amino acids and selecting the most favorable rotamers,
and wild-type and mutant structures were visualized in PyMol (version 2.5.0, Schrödinger
LLC, New York, NY, USA).

4.5. Functional Studies

Recombinant Plasmids

Recombinant plasmids were purchased from GeneScript (Piscataway, NJ, USA). The
3FLAG-tagged pCMV expression vector contained wild-type KCTD1 (CCDS11888.1) or
KCTD1 harboring either the Arg241Gln or Pro243Ser variant. The nucleotide sequences of
all constructed plasmids were verified after the construction.

Cell Transfection

Human embryonic kidney 293 (HEK293, CRL-1573) were seeded in 24-well plates and
cultured in Dulbecco’s modified eagle medium (DMEM, Gibco BRL, Carlsbad, CA, USA)
with supplement of 10% fetal bovine serum (HyClone, Logan, UT, USA), 1% L-glutamine,

https://www.ebi.ac.uk/Tools/msa/clustalo/
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100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco BRL) in a 5% CO2 humidified
atmosphere at 37 ◦C. After 24 h of incubation, cells were transfected by using Lipofectamine
3000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instruction.

SDS-PAGE and Immunoblotting

The whole cell lysate of transfected HEK293 was subjected to sodium dodecyl-sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and subsequent immunoblot analysis.
Blots were probed with primary antibodies (mouse anti-FLAG (Merck, St. Louis, MO, USA,
Cat. No. F1804-200UG), mouse anti-β-tubulin (BioLegend, Inc., San Diego, CA, USA, Cat.
No. 605102), and rabbit anti-β-catenin (Sigma-Aldrich, St. Louis, MO, USA, Cat. No. C2206)
and secondary antibodies (goat anti-mouse IgG and goat anti-rabbit IgG HRP conjugated
IgG (R&D Systems, Inc., Minneapolis, MN, USA, Cat. No. HAF007 and HAF008)). The
bands were visualized using the superSignalTM West Femto maximum sensitivity substrate,
and images were captured using the Amersham Imager 600 (GE Healthcare, Chicago, IL,
USA). Immunoblotting was performed in duplicates and carried out for two independent
experiments. The intensity of the bands was determined using ImageJ 1.54 software.

Statistical Analysis

Data are presented as means ± standard deviations (SD). GraphPad Prism 9.4.1 was
used for statistical analysis of band intensities (n = 4) using the Mann–Whitney U test to
compare differences between two independent groups. A p-value ≤ 0.05 was considered to
be statistically significant.

4.6. Immunohistochemical Study

CD-1 strain mice were used in this study. Embryo and newborn mouse heads were
fixed in 4% buffered paraformaldehyde, wax embedded, and serially sectioned at 7 µm.
Sections were incubated with the antibodies against Kctd1 (Invitrogen; PA5-24877). The
tyramide signal amplification system was used (Parkin Elmer Life Science, Waltham, MA,
USA) to detect the Kctd1 antibody.

5. Limitations of the Study

Cone beam computed tomography would have been preferable to further characterize
the root maldevelopment seen in all patients with the KCTD1 variant, but this technology
was not clinically available at the times of assessment. Functional studies of p.Pro243Ser
did not show significant effects on β-catenin levels. However, our SUMOplot analysis
identified a predicted consensus sequence for SUMOylation, ψKXE (with SUMOylation at
K252), in the C-terminal tail of KCTD1. Therefore, functional studies to test the effect of
the p.Pro243Ser variant on SUMOylation may have supported the effects of this variant
on tooth development. Lastly, functional studies of the effects of both KCTD1 variants on
SHH signaling could be performed in the future to directly test the effects of these variants
on this pathway that also plays a critical role in tooth development.

6. Conclusions

In summary, we present evidence to support the contribution of KCTD1 variants
to the presentation of isolated dental anomalies and oral exostoses in our two families
because (1) both variants are rare (p.Arg241Gln) or novel (p.Pro243Ser); (2) the variants fully
segregated with the phenotypes in each family; (3) previously reported patients with KCTD1
mutation-associated Scalp-Ear-Nipple syndrome were reported to have dental anomalies,
indicating the link between KCTD1 and tooth development; (4) the location of our identified
variants is in the C-terminal end of KCTD1, compared to those of patients with Scalp-Ear-
Nipple syndrome, who had variants located in the N-terminal BTB domain; and (5) no other
rare variants in the known dental anomalies-associated genes were identified to cosegregate
with dental anomalies in the families. This study demonstrates for the first time that genetic
variants in KCTD1 are associated with isolated dental anomalies. This is supported by the
functional studies, which showed that the p.Arg241Gln KCTD1 variant affected β-catenin
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levels, an effector of Wnt/β-catenin signaling. Both variants (p.Arg241Gln and p.Pro243Ser)
are located in the C-terminal tail of the protein, suggesting a possible genotype–phenotype
correlation. Further studies addressing the impact of the variants on protein–protein
interactions, protein stability, and SUMOylation, and subsequent aberrant WNT-SHH-BMP
signaling are needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25105179/s1.
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