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Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by genetic
predisposition, environmental factors, immune dysregulation, and skin barrier dysfunction. The
skin microbiome and metabolome play crucial roles in modulating the skin’s immune environment
and integrity. However, their specific contributions to AD remain unclear. We aimed to investigate
the distinct skin microbial communities and skin metabolic compounds in AD patients compared
to healthy controls (HCs). Seven patients with AD patients and seven HCs were enrolled, from
whom skin samples were obtained for examination. The study involved 16S rRNA metagenomic
sequencing and bioinformatics analysis as well as the use of gas chromatography time-of-flight
mass spectrometry (GC-TOF-MS) to detect metabolites associated with AD in the skin. We observed
significant differences in microbial diversity between lesional and non-lesional skin of AD patients
and HCs. Staphylococcus overgrowth was prominent in AD lesions, while Cutibacterium levels
were decreased. Metabolomic analysis revealed elevated levels of several metabolites, including
hypoxanthine and glycerol-3-phosphate in AD lesions, indicating perturbations in purine metabolism
and energy production pathways. Moreover, we found a positive correlation between hypoxanthine
and glycerol-3-phosphate and clinical severity of AD and Staphylococcus overgrowth. These findings
suggest potential biomarkers for monitoring AD severity. Further research is needed to elucidate the
causal relationships between microbial dysbiosis, metabolic alterations, and AD progression, paving
the way for targeted therapeutic interventions.
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1. Introduction

Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder character-
ized by intense pruritus, xerosis, and recurrent eczematous skin lesions. It is a multifactorial
disease influenced by genetic predisposition, environmental factors, immune dysregulation,
and skin barrier dysfunction. Among the many factors contributing to AD, the skin micro-
biome and metabolome play pivotal roles in modulating the skin’s immune environment
and integrity.

The skin microbiome refers to the diverse community of microorganisms, including
bacteria, fungi, and viruses, residing on the skin surface [1]. These microbial communities
are crucial for maintaining skin health, protecting against pathogens, and modulating
immune responses. In AD, dysbiosis of the skin microbiome, particularly the overgrowth
of Staphylococcus aureus (S. aureus), has been closely associated with disease severity [2,3].

The skin metabolome encompasses the complete set of small-molecule chemicals found
within the skin, reflecting the metabolic processes that occur in response to both internal
and external stimuli. Metabolites, which are small molecules generated through cellular
activities, serve as indicators of metabolic functions and conditions related to diseases.

Recent insights underscore the intricate interplay between the skin microbiome, neu-
roendocrine signaling, and immune responses in the context of AD. Studies have elucidated
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communication pathways between the epidermal microbiome and the epidermal neuroen-
docrine network, shedding light on their roles in modulating skin physiology and immune
functions [4,5]. Despite advancements, gaps persist in the understanding of how the skin
microbiome and metabolome interact in AD.

Understanding how the metabolome affects the microbiome and vice versa is essential
for a deeper understanding of AD. Some previous studies have investigated how the
skin’s microbiota and metabolites interact in AD [6–9]. Skin microbes could alter the
skin’s metabolomic profile by producing enzymes that metabolize host lipids, proteins,
antimicrobial peptides, and macromolecules, thereby impacting skin barrier integrity and
immune responses [10]. Conversely, Emmert et al. [9] reported an increase in free fatty
acids (FFA) in AD skin, and this was largely associated with Staphylococcus. There is a noted
inverse relationship between the levels of saturated, shorter-chain FFAs and the presence
of Staphylococcus [9], as shorter fatty acids can penetrate and acidify the skin, inhibiting S.
aureus growth, which prefers less-acidic conditions [10]. Yet, there is limited knowledge
regarding the specific changes in metabolites beyond skin lipids and skin metabolites or
how these metabolites relate to the skin microbiome.

This study aims to investigate the distinct microbial communities and metabolic
compounds in patients with AD. By comparing the skin microbial and skin metabolic
profiles of lesional skin and non-lesional skin of AD and to those of healthy controls
(HCs), we intended to seek to unravel the specific contributions of these factors to the
pathophysiology of AD. Moreover, this study intends to establish connections between the
composition of the skin microbiota, skin metabolic profiles, and AD’s clinical characteristics
to pinpoint potential biomarkers for AD. Understanding these relationships is crucial for
developing targeted therapeutic strategies and improving the management of AD. Through
this study, we aspire to contribute to the broader understanding of AD’s underlying
mechanisms and pave the way for novel interventions that address the microbial and
metabolic dimensions of this complex skin disorder.

2. Results
2.1. Demographic Characteristics

The participants’ clinical characteristics are delineated in Supplementary Table S1. This
study included a total of seven individuals with AD and seven HCs. Comparative analysis
yielded no substantial disparities in age, sex, or body mass index (BMI) between the AD
cohort and the HC group. Notably, the AD cohort manifested significantly elevated Eczema
Area and Severity Index (EASI) scores, serum eosinophil percentages, total immunoglobulin
E (IgE) levels compared to the HCs. While the pH of lesional epidermis in the AD patients
was found to be increased relative to their non-lesional counterparts and the skin of the HCs,
this variation did not achieve statistical significance. Furthermore, there was a significant
difference in transepidermal water loss (TEWL) and the erythema index when comparing
the lesional and non-lesional skin of AD and the skin of the HCs.

The dataset encompassed 21 specimens analyzed through bacterial 16S rDNA V3-V4
sequencing. The resulting high-fidelity reads totaled an average count of 183,122, as
outlined in Supplementary Table S2. Sequences were clustered at a 99% similarity threshold,
culminating in the identification of a comprehensive array of amplicon sequence variants
(ASVs) that represent the bacterial microbiota.

2.2. Diversity Analysis

To assess the α diversity of each sample, we utilized the Chao1, Observed, and
Shannon indices. The Chao1 index, which indicates the richness of the bacterial population,
and the Observed index, reflecting the number of species distributed per sample, exhibited
significantly lower values in the lesional skin of the AD group compared to the non-lesional
AD group and the HCs (Figure 1A,B). The Shannon index, which represents both the
evenness and abundance of the bacterial population, showed significantly lower values in
the lesional skin of AD compared to the HCs (Figure 1C). However, the difference between
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the lesional skin of the AD group and the non-lesional skin of the AD group was not
statistically significant (Figure 1C).
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Figure 1. Bacterial diversity in the patients with atopic dermatitis and healthy controls. (A–C) Alpha
diversity of bacterial taxa, analyzed using the Chao1, Observed, and Shannon indices, respectively.
(D,E) Two-dimensional principal coordinate analysis (PCoA) plot depicting bacterial taxa diversity,
calculated using the Bray–Curtis and Jaccard indices. The asterisk (*) represents the significant level:
* p< 0.05.

We observed specific clustering within the microbial community between the groups
using the Bray–Curtis and Jaccard indices (Figure 1D). PERMANOVA analysis revealed
statistically significant variations in beta diversity when comparing among the lesional
skin of the AD group, the non-lesional skin of the AD group, and the HCs (Bray–Curtis:
p = 0.002, R2 = 0.283; Jaccard: p = 0.002, R2 = 0.219).

2.3. Taxonomic Composition of Bacterial Microbiota on the AD Skin

A comprehensive analysis of the bacterial microbiota on the skin revealed the presence
of 27 bacterial phyla, with Firmicutes (50.04%), Actinobacteriota (38.16%), Proteobacteria
(8.60%), and Bacteroidota (2.12%) being the most predominant. In our study, we identi-
fied 600 bacterial genera on the skin. The ten most abundant bacterial genera in all the
skin specimens were Staphylococcus, Cutibacterium, Corynebacterium, Enhydrobacter, Law-
sonella, Streptococcus, Finegoldia, Dermacoccus, Anaerococcus, and Enterococcus (Figure 2A).
The ten most abundant bacterial genera in the AD patients’ skin were Staphylococcus,
Corynebacterium, Cutibacterium, Lawsonella, Enhydrobacter, Dermacoccus, Finegoldia, Enterococ-
cus, Streoptococcus, and Bacteroides. Notably, the lesional skin of AD showed an increased
relative abundance of Staphylococcus (p = 0.002) than the HCs. In addition, the lesional skin
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of AD showed an increased relative abundance of Staphylococcus than the non-lesional skin
of AD (p = 0.015). The lesional skin of AD showed a decreased abundance of Cutibacterium
(p = 0.007), Streptococcus (p = 0.012), Enterococcus (p = 0.039), and Lawsonella (p = 0.039) than
the HCs (Figure 2B). In addition, a statistically significant decrease in the mean relative
abundance of Cutibacterium (p = 0.015), Streptococcus (p = 0.015), Enterococcus (p = 0.015),
Corynebacterium (p = 0.046), and Anaerococcus (p = 0.046) was observed in the lesional skin
of AD when compared to the non-lesional skin of AD (Figure 2B).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 12 
 

 

the skin specimens were Staphylococcus, Cutibacterium, Corynebacterium, Enhydrobacter, 
Lawsonella, Streptococcus, Finegoldia, Dermacoccus, Anaerococcus, and Enterococcus (Figure 
2A). The ten most abundant bacterial genera in the AD patients’ skin were Staphylococcus, 
Corynebacterium, Cutibacterium, Lawsonella, Enhydrobacter, Dermacoccus, Finegoldia, Entero-
coccus, Streoptococcus, and Bacteroides. Notably, the lesional skin of AD showed an in-
creased relative abundance of Staphylococcus (p = 0.002) than the HCs. In addition, the le-
sional skin of AD showed an increased relative abundance of Staphylococcus than the non-
lesional skin of AD (p = 0.015). The lesional skin of AD showed a decreased abundance of 
Cutibacterium (p = 0.007), Streptococcus (p = 0.012), Enterococcus (p = 0.039), and Lawsonella 
(p = 0.039) than the HCs (Figure 2B). In addition, a statistically significant decrease in the 
mean relative abundance of Cutibacterium (p = 0.015), Streptococcus (p = 0.015), Enterococcus 
(p = 0.015), Corynebacterium (p = 0.046), and Anaerococcus (p = 0.046) was observed in the 
lesional skin of AD when compared to the non-lesional skin of AD (Figure 2B). 

 
Figure 2. Skin microbiota composition in the lesional and non-lesional skin of patients with atopic 
dermatitis (AD) and healthy controls (HCs). (A) Relative abundance of the major bacterial genera in 
the lesional and non-lesional skin of AD and in HCs. (B) A plot depicting bacteria at the genus level 
with significant differences in relative abundance between the AD and HC groups. The asterisks 
(*,**) represent the significant levels: *, p< 0.05; **, p < 0.01. 

2.4. Differential Skin Metabolic Profiles in Patients with AD Compared to HCs 
To distinguish the metabolic profiles between the lesional and non-lesional skin of 

AD and the HCs, we used principal component analysis (PCA) and partial least squares 

Figure 2. Skin microbiota composition in the lesional and non-lesional skin of patients with atopic
dermatitis (AD) and healthy controls (HCs). (A) Relative abundance of the major bacterial genera in
the lesional and non-lesional skin of AD and in HCs. (B) A plot depicting bacteria at the genus level
with significant differences in relative abundance between the AD and HC groups. The asterisks (*,**)
represent the significant levels: *, p< 0.05; **, p < 0.01.

2.4. Differential Skin Metabolic Profiles in Patients with AD Compared to HCs

To distinguish the metabolic profiles between the lesional and non-lesional skin of
AD and the HCs, we used principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA). The PCA plot showed the separation between AD (lesional
skin) and HCs (R2X = 0.275, Q2 = −0.033, Figure 3A). Additionally, the PLS-DA score
plot confirmed a distinct separation among the lesional skin of AD and HCs (R2X = 0.250,
R2Y = 0.991, Q2 = 0.624, Figure 3B). When comparing the lesional skin of AD to the non-
lesional skin of AD, the PCA results demonstrated a clear distinction between the AD
lesional skin and the AD non-lesional skin, with the PCA plot indicating a separation
(R2X = 0.275, Q2 = −0.034, Figure 3C). Further analysis using the PLS-DA score plot also
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highlighted a clear differentiation between the metabolic profiles of the lesional and non-
lesional skin of AD, showcasing distinct clusters for each group (R2X = 0.203, R2Y = 0.994,
Q2 = 0.261, Figure 3D).
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Figure 3. Differentiation between patients with atopic dermatitis (AD) and healthy controls (HCs)
using metabolic profiles. (A) Scatterplot of 3D principal component analysis (PCA) model between
lesional skin of AD and HCs. (B) Scatterplot of partial least squares discriminant analysis (PLS-DA)
between lesional skin of AD and HCs. (C) Scatterplot of 3D PCA model between lesional skin of AD
and non-lesional skin of AD. (D) Scatterplot of PLS-DA between lesional skin of AD and non-lesional
skin of AD.

We screened for differential metabolites using the first principal component of variable
importance in the projection (VIP). Metabolites with VIP values exceeding 0.7 and Kruskal–
Wallis’s rank-sum tests with false discovery rate (FDR)-corrected p-values less than 0.05
were identified. A comparison of metabolite levels between lesional AD patients and
HCs revealed increased levels of four metabolites, including hypoxanthine, myo-inositol,
uracil, and 4-hydroxybenzoic acid, along with a decreased level of one metabolite, namely
urocanic acid (Figure 4A).

A pairwise comparison of metabolite levels between lesional and non-lesional skin
utilized the same VIP criteria and a p-value of less than 0.05 in the Mann–Whitney U test.
In the lesional AD skin, compared to non-lesional AD skin, six metabolites were found to
be increased (uracil, hypoxanthine, glycerol-3-phosphate, myo-inositol, 4-hydroxybenzoic
acid, and dodecane), and two metabolites were found to be decreased (thymine and glycolic
acid), as shown in Figure 4B.
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Figure 4. (A) A heatmap illustrating the differences in skin metabolite levels between the lesional
skin of atopic dermatitis (AD) and healthy controls (HCs). (B) A heatmap revealing the variations in
metabolite levels between lesional and non-lesional skin of AD patients. (C) A heatmap revealing
the variations in metabolite levels between non-lesional skin of AD patients and HCs. ‘*’ indicates
variable importance in projection (VIP) values exceeding 0.7, ‘**’ indicates VIP values exceeding 1.0,
and ‘⋆’ indicates Kruskal–Wallis’s rank-sum tests with false-discovery-rate-corrected p-values less
than 0.05.

2.5. Associations between Skin Metabolites with Skin Microbiota and Clinical Factors in AD
Patients

To investigate the relationships among skin metabolites, the biophysical characteristics
of skin, and the severity of AD, we performed correlation analyses. We then visualized
these relationships in a heatmap, focusing on Spearman’s correlation coefficients greater
than 0.6 or less than −0.6, with significance defined by p-values below 0.05 (Figure 5A).
The EASI score showed significant positive correlations with several metabolites, including
hypoxanthine, behenic acid, uracil, oleic acid, and glycerol-3-phosphate, but negative
correlations with 2-furoic acid, dodecane, and oxalic acid (all p < 0.05). Similarly, the skin
pH in the lesional skin correlated positively with metabolites such as glycerol-3-phosphate,
and hypoxanthine and negatively with dodecane, caproic acid, and oxalic acid.
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Figure 5. Associations between skin metabolites, clinical parameters, and microbial diversity in
AD skin lesions. (A) A heatmap generated from Spearman’s correlation analysis illustrating the
relationships between skin metabolites and various clinical parameters in lesional skin of AD. (B) A
heatmap from Spearman’s correlation analysis depicting the correlations between skin metabolites
and the composition of skin microbiota in lesional skin of AD.

2.6. Associations between Skin Metabolites and Skin Microbiota

As shown in Figure 5B, our analysis uncovered significant relationships between
certain bacterial groups and metabolites. In particular, Staphylococcus showed a positive
correlation with glycerol-3-phosphate and hypoxanthine and a negative correlation with or-
nithine and urocanic acid. In addition, glycerol-3-phosphate showed a negative correlation
with Finegoldia, Corynebacterium, and Anaerococcus.

Cutibacterium exhibited notable positive correlations with ornithine and urocanic acid.
Lawsonella exhibited significant positive correlations with glucose and ornithine. Several
other prominent bacterial genera, including Corynebacterium, Enhydrobacter, Streptococcus,
Finegoldia, Dermacoccus, Anaerococcus, and Enterococcus, were found to have significant
correlations with a variety of metabolites.

3. Discussion

We analyzed the bacterial microbiota in skin lesions from individuals with AD and
compared them to both non-lesional skin from the same AD patients and the skin samples
from HCs. Distinct variations in the bacterial populations in the skin were identified across
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these groups. Additionally, we explored the unique metabolomic profiles of the skin of AD
patients, uncovering significant differences in metabolite expression between the lesional
and non-lesional skin of AD as well as compared to that of the HCs.

This study observed a significant reduction in the diversity indices in lesional skin of
AD patients compared to the non-lesional skin of AD and HCs, suggesting a less diverse
bacterial community in AD, which is consistent with previous findings [11,12]. The signifi-
cant reduction in microbial diversity, particularly in the lesional skin of the AD patients,
underscores the critical role of the skin microbiome in maintaining cutaneous health and
its potential disruption in disease states. Studies have shown that a diverse microbial
community contributes to skin barrier integrity, immune regulation, and protection against
pathogenic colonization.

We found an increased relative abundance of Staphylococcus in the lesional skin of
AD compared to both the non-lesional skin of AD and HCs. Moreover, there was a de-
creased relative abundance of Cutibacterium and Streptococcus in the lesional skin of AD
when compared to both the non-lesional skin of AD patients and HCs, respectively. The
dominance of Staphylococcus, especially S. aureus, in AD lesions has been well documented
and is known to exacerbate the inflammatory response, leading to a worsening of AD
symptoms [11]. AD patients colonized by S. aureus exhibit a higher degree of Th2 immune
response polarization, increased sensitivity to allergens, and more extensive tissue dam-
age in comparison to individuals who are not colonized [13]. The decrease in beneficial
microbes, such as Cutibacterium, which are involved in the production of short-chain fatty
acids [14,15], further exacerbates skin barrier dysfunction. In addition, we found that the
skin of AD patients is already compromised, regardless of the presence of AD lesions. This
observation is supported by Figure 2A, which shows that the non-lesional skin microbiota
of AD patients does not resemble that of HCs. There is already a detectable difference in
the skin microbiota with patients with AD compared to HCs.

The metabolic profiling presented in this study, showing distinct differences between
the lesional and non-lesional skin of AD patients and HCs, highlights the profound impact
of AD on skin metabolism. Metabolomics provides a detailed method for examining
metabolites present in a wide range of biological materials, such as cells, tissues, and
fluids, in order to identify how alterations in these metabolites relate to health or disease
conditions [16]. The analysis often involves biofluids like serum, plasma, urine, saliva,
tears, cerebrospinal fluid, bile, pancreatic juice, intestinal fluid, and breast milk, in addition
to cellular and tissue samples [16]. Skin samples, in particular, offer crucial insights into
the metabolomic profile associated with skin diseases, extending beyond the conventional
analysis of blood and urine. Different biological specimens can reveal unique information.
For instance, analyzing the skin surface can significantly improve our understanding of
metabolites linked to skin conditions. A range of skin sampling methods, from invasive
procedures like biopsies to non-invasive approaches such as skin swabbing, tape stripping,
hydrogel micropatches, wet prep, and suction blisters have been established [17]. A study
has demonstrated that tape stripping excels in gathering a wider range of metabolites when
compared to the swabbing and wet prep methods [17]. By conducting non-invasive tape
stripping, we performed the skin metabolomic analysis in the patients with AD.

In our study, we observed significant metabolic changes in the lipid and purine
pathways in AD. Specifically, hypoxanthine levels were higher in AD lesions compared to
both non-lesioned AD skin and HCs, suggesting an upregulation of purine metabolism
possibly linked to increased DNA repair and replication in response to skin damage.
Hypoxanthine, a fundamental component of nucleic acids, plays a crucial role in energy
transactions and cellular signaling [18]. Through the purine salvage pathway, hypoxanthine
is recycled into nucleotides essential for DNA repair and other cellular functions [18]. The
elevated hypoxanthine in AD could be explained by the fast turnover and damage in AD
skin necessitating increased purine metabolism for recycling cell components. In addition,
the chronic skin inflammation characteristic of AD may prompt immune cells to release
substances that break down nucleotides to purines such as hypoxanthine. Similarly, a



Int. J. Mol. Sci. 2024, 25, 5211 9 of 12

recent study also observed elevated serum levels of hypoxanthine in asthma patients [19].
This increase in hypoxanthine among asthma patients might be associated with inhibited
xanthine oxidase activity, or it could result from an accumulation of hypoxanthine in the
purine metabolic pathway linked to asthma [19].

In addition, this study also found that there was an increased level of glycerol-3-
phosphate in the lesional skin of AD compared to that of the non-lesional skin of AD.
Glycerol-3-phosphate is a crucial element in energy production processes such as glycolysis
and the formation of glycerolipids [20]. It is involved in regulating metabolic pathways,
especially the cycle of glycerolipids and free fatty acids [21,22]. It also forms the core
structure for triglyceride synthesis by combining with three fatty acyl-CoAs [21,22]. Ex-
cessive glycerol-3-phosphate may cause metabolic stress, increase reactive oxygen species,
and damage essential biomolecules [21,22]. As glycerol-3-phosphate is crucial for energy
production and lipid synthesis, it is speculated that this could exacerbate AD by leading to
cellular damage, skin barrier dysfunction, and persistent inflammation in AD.

In addition, we found an imbalance in nitrogen (N) metabolism in the AD patients.
The nitrogen (N) imbalance is suggested by the insufficient turnover of amino acids and
elevated levels of purines and thymine-related metabolites. These metabolites are typically
associated with DNA repair and synthesis, yet their altered levels point to a disruption
in nitrogen metabolism. Intriguingly, this imbalance in nitrogen metabolism cannot be
corrected by the already compromised skin microbiome of AD patients. The nitrogen
imbalance was indicated by an inadequate turnover of amino acids and heightened levels
of purines and thymine-related metabolites in our study. These metabolites are typically
involved in DNA repair and synthesis, further implying a disrupted nitrogen metabolism.

We observed a positive correlation between hypoxanthine and glycerol-3-phosphate
levels with AD’s clinical severity. Additionally, a negative correlation was observed be-
tween mean relative abundance of Staphylococcus and the levels of hypoxanthine and
glycerol-3-phosphate in the lesional skin of AD. This suggests a potential link between the
clinical severity of AD and the levels of certain metabolites, indicating that the microbial
and metabolic profiles could be integral to understanding and treating AD more effectively.
The integration of the microbiome, metabolome, and clinical data provides a deeper insight
into AD’s pathophysiology, laying the groundwork for personalized treatments.

Acknowledging the limitations of this study, such as its small sample size and single-
center cohort design, underscores the need for large-scale validation studies to ensure
reliability and applicability globally. Moreover, while promising, the translation of insights
from microbiome and metabolome analyses into clinical practice faces challenges. The
variability in microbial and metabolic profiles among individuals, influenced by genet-
ics, environment, and lifestyle, complicates the identification of universal biomarkers or
therapeutic targets. Additionally, the dynamic nature of the microbiome and metabolome
necessitates longitudinal studies to capture fluctuations and their implications for disease
management. Future research should aim to elucidate causal relationships through longitu-
dinal and interventional studies that target the impact of the microbiome and metabolome
on disease outcomes.

In conclusion, our study highlights the significant role of the skin microbiome and skin
metabolome in AD. We found distinct variations in bacterial populations and metabolic
profiles between the lesional and non-lesional skin of AD patients and HCs, indicating
microbial dysbiosis and metabolic alterations associated with AD. We observed significant
differences in microbial diversity between the lesional and non-lesional skin of AD patients
and HCs, with a notable overgrowth of Staphylococcus in AD lesions, while the abundance
of Cutibacterium was decreased. These variations indicate microbial dysbiosis and sug-
gest a specific microbial signature associated with the disease state. Additionally, our
metabolomic analysis revealed elevated levels of hypoxanthine and glycerol-3-phosphate
in AD lesions, suggesting perturbations in purine metabolism and energy production
pathways. These findings suggest potential biomarkers for monitoring AD severity and
underscore the complex interplay between microbial and metabolic factors in the disease’s
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pathogenesis. Further research is needed to elucidate causal relationships between micro-
bial dysbiosis, metabolic alterations, and AD progression, leading the way for targeted
therapeutic interventions.

4. Materials and Methods
4.1. Recruitment of Study Participants

This study involved adult patients with AD, as confirmed by board-certified derma-
tologists, and compared them to HCs without AD. Recruitment took place at Incheon St.
Mary’s Hospital, Republic of Korea, from September 2022 to March 2023. Participants under
18, those who had taken antibiotics or antifungal treatments in the past month, and those
with a history of skin cancer were excluded. Written informed consent was obtained from
all participants prior to their involvement in the study. The research investigation adhered
to the ethical principles outlined in the Declaration of Helsinki and received approval from
the ethics committee of Incheon St. Mary’s Hospital (OC22TISI0088).

4.2. Skin Sample Collection

The collection of skin samples was conducted from lesional and non-lesional normal-
appearing antecubital skin located 5–10 cm apart in patients with AD and antecubital skin
lesions from HCs. Skin swabbing was performed for microbiota sampling from the skin
(a single sampling covering a 4 cm2 area) using sterile cotton swabs (TransportsystemTM

108C, Copan Diagnostics Inc., Murrieta, CA, USA). Tape strip sampling was also conducted
to sample the metabolites from the skin using D-Squame® standard sampling discs (Cud-
erm Corporation, Dallas, TX, USA). The swabs and tape strips were kept at a temperature
of −80 ◦C until further analysis.

The biophysical parameters of the affected skin were evaluated by measuring the
quantity of TEWL, skin sebum, pH levels, and the erythema index. A tewameter TM
HEX, sebumeter SM825, pH meter PH900, and a mexameter MX16 (manufactured by
Courage + Khazaka Electronic GmbH, Cologne, Germany) were used for these assessments.
Each parameter was measured three times per probe, and the average value was calculated
for analysis. The severity of AD was evaluated by a board-certified dermatologist using
the EASI scores [23].

4.3. DNA Extraction and Next Generation Sequencing (NGS) Analysis

Bacterial DNA extraction from the skin swab samples was performed using a Mag-
Bind® Universal Pathogen Kit. This involved suspending the samples in SLX-Mlus Buffer
and bead beating, followed by purification as per the manufacturer’s protocols (Omega
Bio-tek, Norcross, GA, USA).

The V3-V4 regions of the 16S rRNA gene were amplified for bacterial identification
using specific primers, as described in the manufacturer’s guidelines. This included
incorporating multiplexing indices and Illumina sequencing adapters (Illumina Inc., San
Diego, CA, USA). Post amplification, the samples were barcoded, and library sizes were
verified using LabChip (PerkinElmer, Waltham, MA, USA) and a QubitTM 1X dsDNA BR
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Sequencing was conducted on
an Illumina Miseq platform, ensuring anonymity of the original sequencing reads.

Subsequent data processing included quality filtering, demultiplexing, and denoising
using QIIME2 2021.2 and DADA2 [24], with taxonomic classification being conducted via
Silva138 [25]. The analyses were conducted using the phyloseq package in the R software
(version 4.3.0).

The alpha diversity indices such as Shannon, Observed, and Chao1 measured the
average species diversity within the samples. Beta diversity was assessed using the Bray–
Curtis and Jaccard indices, with PCoA and PERMANOVA (999 permutations) used for
analyzing group variations. Statistical comparisons among groups employed the non-
parametric Kruskal–Wallis and Wilcoxon rank tests, with p-values adjusted for multiple
testing via the Benjamini–Hochberg method to maintain an FDR of 0.05.
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4.4. Sample Extraction for Metabolomic Analysis and GC-TOF Analysis

For metabolite extraction from AD patients, three tape strips per sample were cut,
mixed with 1 mL of methanol, vortexed, and sonicated. The extracted samples were then
mixed with an internal standard (2-chloro-phenylalanine) and dried using a centrifugal
vacuum concentrator (HyperVAC, Daejeon, Republic of Korea). The dried samples under-
went derivatization with methoxyamine hydrochloride and N-methyl-N-trimethylsilyl-
trifluoroacetamide (MSTFA) followed by filtering for analysis.

GC-TOF-MS analysis was conducted on an Agilent 7890 system (Agilent Technologies,
Palo Alto, CA, USA) with a Pegasus BT-TOF-MS. The process involved using an Rtx-5MS
column, helium carrier gas, and specific temperature settings. Electro-ionization and full
scanning were performed for data collection. The obtained data were pre-processed using
the Chroma TOF software (LECO corporation, version 5.51.50.0) and aligned using the
Metalign software (version 041012). Multivariate statistical analysis, including PCA, PLS-
DA, and OPLS-DA, was performed using the SIMCA P+ software (version 16.0, Umetrics,
Umea, Sweden) to analyze the metabolites.
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