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Abstract: Cholestasis is characterized by disrupted bile flow from the liver to the small intestine.
Although etiologically different cholestasis displays similar symptoms, diverse factors can contribute
to the progression of the disease and determine the appropriate therapeutic option. Therefore,
stratifying cholestatic patients is essential for the development of tailor-made treatment strategies.
Here, we have analyzed the liver proteome from cholestatic patients of different etiology. In total,
7161 proteins were identified and quantified, of which 263 were differentially expressed between
control and cholestasis groups. These differential proteins point to deregulated cellular processes
that explain part of the molecular framework of cholestasis progression. However, the clustering
of different cholestasis types was limited. Therefore, a machine learning pipeline was designed
to identify a panel of 20 differential proteins that segregate different cholestasis groups with high
accuracy and sensitivity. In summary, proteomics combined with machine learning algorithms
provides valuable insights into the molecular mechanisms of cholestasis progression and a panel
of proteins to discriminate across different types of cholestasis. This strategy may prove useful in
developing precision medicine approaches for patient care.

Keywords: liver; cholestasis; quantitative proteomics; machine learning

1. Introduction

Cholestatic disease is caused by the disruption of bile flow from the hepatocyte to
the small intestine [1] Bile constitutes the primary way for the elimination of cholesterol
excess, bilirubin, and non-water-soluble xenobiotics that cannot be excreted through urine.
Under physiological conditions, bile is produced by the hepatocytes and secreted to the
bile canaliculus, then it flows to the gallbladder, where it is stored until it is released into
the duodenum. Both the defect of bile formation and secretion and the block of bile flow
can lead to cholestasis, either intrahepatic or extrahepatic, regardless of where the bile
accumulation occurs. Cholestasis can also be classified as obstructive or non-obstructive
according to the reason for the bile flow disruption. The main alterations observed in
cholestasis include jaundice, pruritus, bilirubinemia, elevated serum bile salts, and alkaline
phosphatase [2] The etiology of cholestasis is diverse, including cholestasis of pregnancy,
drug-induced cholestasis, inflammatory cholestasis, or genetic defects leading to different
types of familial cholestasis.

Progressive familial intrahepatic cholestasis (PFIC) is a severe rare disease presented
in 1/10,000 to 1/20,000 births [3] PFIC can be classified into subtypes according to the
affected gene. The impairment of the encoded proteins involved in the transport of bile
acids or phospholipids, such as phosphatidylserine, phosphatidylethanolamine, or phos-
phatidylcholine, is ultimately the triggering factor of PFIC. PFIC1 results from a defect
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in the ATP8B1 gene encoding for the FIC1 protein. PFIC2 is caused by the deficit of the
ABCB11 gene (BSEP protein). PFIC3 is due to mutations in the ABCB4 gene (MDR3 protein).
New variants of PFIC have been recently described: PFIC4, resulting from a loss of function
of tight junction protein 2 (TJP2), and PFIC5, caused by mutations in the NR1H4 gene.
Moreover, mutations in the MYO5B gene have been associated with PFIC as it has a vital
role in the trafficking of BSEP protein and hepatocyte membrane polarization [4,5] Other
genetic defects involved in cholestasis include a deficit of alpha-1-antitrypsin (AATD) [6]
or mutations in JAG1 that cause Alagille Syndrome (ALGS) type 1 or NOTCH2, leading to
ALGS type 2 [7].

Therapeutic options for cholestasis are scarce and currently involve pharmacological
approaches such as treatment with ursodeoxycholic acid or obeticholic acid or liver trans-
plantation for the more severe cases [8] Currently, the practice guidelines for cholestasis
treatment point out that accurate diagnosis and evaluation of parameters such as levels of
ALP, AST/ALT, GGT, or liver stiffness, among others, as well as the cause of the cholestasis,
are essential requirements. However, a detailed description of the molecular background
of the disease would allow us to elaborate a more efficient precision medicine-based ap-
proach. The ultimate goal would be to discriminate patients suffering from different types
of cholestasis to elaborate tailor-made treatments [9].

The recent developments in liquid chromatography coupled with tandem mass spec-
trometry (LC-MS) allow for the simultaneous identification and quantification of thousands
of proteins in a biological specimen. Although the intrinsic nature of mass spectrometry-
based proteomics is not quantitative, different approaches can be used to determine the
abundance of proteins. Among them are data-dependent acquisition label-free quantifica-
tion (DDA LFQ), data-independent acquisition label-free quantification (DIA LFQ), isobaric
labeling (e.g., TMT, ITRAQ) [10], or targeted proteomics, where a predefined list of pro-
teins and proteotypic peptides to be monitored is required [11]. Quantitative proteomics
analyses focused on protein abundance and posttranslational modifications (PTMs) mea-
surements reveal cell signaling and molecular mechanisms, which are central for disease
progression and propel the discovery of biomarkers with promising applications for patient
management [12].

Machine learning has been widely used in biology to analyze complex data generated
in high-density studies. With the advent of high-throughput proteomics technologies,
there has been a growing interest in modeling proteomics datasets with machine learning
methods [13,14]. The final goal is to discriminate across different classes of individuals
by constructing classifiers that facilitate an objective definition of specific phenotypes.
This approach has been successfully used to define a protein profile characteristic of early
pulmonary arterial hypertension in systemic sclerosis that allowed the classification of
patients with high accuracy (81.1%), sensitivity (77.3%), and specificity (86.5%) [15].

In this study, we examined the liver proteome of 40 subjects with etiologically different
cholestasis (biliary atresia, BA; Alagille Syndrome, ALGS; alph1 1 antitrypsin disease,
AATD; progressive familial intrahepatic cholestasis, PFIC) to explain the molecular mecha-
nisms underlying its pathogenesis. Moreover, we ranked the identified proteins according
to their importance to classify the cases under study using iterative random forest analysis.
Then, based on the calculated importance, machine learning algorithms were used for
feature selection of the variables, resulting in a panel of 20 proteins that classified the cases
according to the etiological groups with 91% accuracy.

2. Results and Discussion
2.1. Proteomics Analysis

Cholestasis is a liver disease condition that may result from different factors. Aiming
to dig deeper into the molecular background of cholestasis, the proteome of liver samples
from control and cholestatic patients was compared. Overall (Figure 1a), we identified
7161 protein groups with an FDR < 1% cut-off (Supplementary Table S2), of which
443 differential proteins were detected by ANOVA testing (Supplementary Table S3). How-
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ever, as observed in the PCA and heatmap (Figure 1b,c), the discriminatory power of the
differential proteins according to the ANOVA test was limited. It is worth mentioning that
the internal standard appeared in the central region of the PCA plot, as expected from its
composition (a mixture of all analyzed proteomes), which supports the robustness of the
analysis (Figure 1b). While cases were clearly separated from the control group in the PCA
analysis, only DAAT samples were clustered together and could be differentiated from
other etiologies. At the same time, PFIC, ALGS, and biliary atresia were not segregated.
Similar results were obtained when differential proteins were represented as a heatmap
(Figure 1c) where only control samples were clustered together and displayed a typical
protein pattern, different from cholestasis cases. These results suggested the close molecular
phenotype of cholestasis subtypes and that despite the detection of statistically significant
differences across them, further analysis was needed to improve the stratification of patients
based on proteomics profiles.
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Figure 1. Quantitative proteomics results. (a) Table showing a summary of the number of PSMs,
peptides, and proteins identified and differentially expressed in cholestasis (FDR < 1%). (b) PCA
analysis of a proteomics dataset showing the segregation of cholestasis and control samples. IS
corresponds to the internal standard containing equal amounts of each sample (ANOVA adj.
p-value < 0.05). (c) Heatmap and clustering of differentially expressed proteins in cholestasis (ANOVA
adj. p-value < 0.05).

To further understand the functional implications of the proteome changes in cholesta-
sis, control and cholestasis groups (regardless of the etiology) were compared, resulting
in a list of 263 differentially expressed proteins, (t-test adj. p-value < 0.05) (Figure 2a;
Supplementary Table S4). Both groups were well discriminated by PCA analysis (Figure 2b).
Functional enrichment analysis (Figure 2c) revealed that the main cellular processes al-
tered in cholestasis included metabolism (steroid hormone biosynthesis, drug metabolism
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by cytochrome P450, metabolism of xenobiotics by cytochrome P450, insulin signaling
pathway, and retinol, pyruvate, and propanoate metabolism), chemical carcinogenesis, min-
eral absorption, lysosome, PPAR signaling pathway, phagosome, and immune processes,
among others. Metabolic rewiring and inflammation appeared to be central components of
liver injury progression associated with cholestasis and agree well with a previous study
performed by our group focused specifically on PFIC3 [16].
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Figure 2. Functional analysis of the cholestatic proteome. (a) Volcano plot of differential proteins
when control and cholestasis samples were compared (t-test adj. p-value < 0.05). (b) PCA anal-
ysis of proteomics dataset showing the segregation of cholestasis and control samples. IS corre-
sponds to the internal standard containing equal amounts of each sample (t-test adj. p-value < 0.05).
(c) Cellular processes altered in cholestasis using the list of differentially expressed proteins in cholesta-
sis regardless of the etiology (KEGG pathways enrichment using KOBAS tool, adj. p-value < 0.05).

2.2. Machine Learning Analysis

As mentioned above, although statistically significant differences were found between
cholestasis subtypes, the stratification of etiologically different samples using classical
dimension reduction methods such as PCA or hierarchical clustering as shown in the
heatmap was limited (Figure 1a,b). This is a common finding arising from clinical pro-
teomics studies in which sample heterogeneity and the similarity of molecular phenotypes,
frequently prevent discrimination across disease subclasses and, therefore, compromise
the efficient stratification of patients. We then wondered if state-of-the-art data processing
algorithms may offer new opportunities to retrieve valuable information from complex
proteomics datasets that allow better discrimination across cholestasis classes. To ad-
dress this question, our proteomics dataset was analyzed with a machine learning-based
pipeline consisting of a first feature selection method phase using iterative random forests
followed by model training and final classifier assessment in the test set (Figure 3 and
Supplementary Figure S2).
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Figure 3. Machine learning analysis graphical workflow. (a) Workflow for iterative random forest-
based feature selection and posterior model building and evaluation. The workflow involved dividing
the original dataset into a 30–70% split for training and testing, ensuring an equal representation
of samples from each class. We repeated this process 100 times. We conducted iterative random
forest-based feature selection within each partition on the training set. We then used a binomial
test p-value to select the top 20 features consistently appearing in the highest-ranked features across
a significant portion of the data partitions. Using these selected features, we constructed a final
model in a new dataset partition using various classifiers. We then assessed the performance of these
classifiers (e.g., accuracy, area under the curve) using the test set from that partition. (b) Detailed
view of recursive random forest importance-based feature selection. In the recursive random forest
importance-based feature selection process, the training set was employed for each data partition to
select features based on their importance, which was determined through multiple iterations of the
random forest algorithm.

Feature selection methods are essential in identifying potential biomarkers from pro-
teomics data. These methods help select important attributes by eliminating redundant or
irrelevant data, which reduces the dataset’s size and increases the classifiers’ accuracy [17,18].
Here, we applied an algorithm for feature selection based on feature importance for sample
classification calculated from the iterative random forest to analyze the proteomics data
of cholestasis of different etiology and patients’ stratification [19–21]. Random forest is an
algorithm based on decision trees, a classification model known for its interpretability but
lacking predictive power [22]. These limitations can be circumvented by relying on the
following principles: (a) a bootstrap-based cross-validation method [23]; (b) limiting the
number of randomized variables per decision tree.

One of the problems in the field of machine learning is known as “n << p”, where “n”
represents the number of samples and “p” means the number of variables. This problem
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is a constant in “omics” disciplines due to the typically small number of samples that
comprise datasets and the value record of thousands of genes, transcripts, proteins, or
metabolites that define each sample. Random forest can be used as a variable selection
method by calculating importance and creating a classification model with the selected
variables. In this case, the model may be overfitted to the variables selected from a particular
dataset [24,25]. Thanks to the implicit bootstrap and its ability to handle many variables
simultaneously, the random forest becomes an exceptional candidate for working with
datasets with few samples and many variables to reduce overfitting. In 2006, Díaz-Uriarte
and Álvarez de Andrés [20] used random forest iteratively to eliminate the least important
variables in each classification round of the algorithm, gradually reducing the proportion
of variables in each iteration. On the other hand, Boruta [19] facilitated variable selection
through iterative random forest and played a role in addressing the “n << p” problem in
classification tasks.

To perform all calculations based on randomization, a seed was set in the R environ-
ment to ensure the reproducibility of computations. For machine learning calculations
(Figure 3), data were partitioned into training and test subsets comprising 70%
(n = 29 samples) and 30% (n = 11 samples) of the data, respectively (data partition was
performed maintaining the proportion of all classes). After that, the training dataset was
subjected to the importance ranking algorithm. The algorithm was executed by establishing
30 feature elimination rounds, meaning the original dataset was regenerated 29 times. The
variable ranking algorithm using random forest performed the following steps. (1) Random
forest was first executed: the importance value of each variable in the dataset was calculated,
and the variables were sorted by their importance according to a random forest. (2) The
importance value of each variable was accumulated. (3) Random forest was executed for
the second time: A dataset with double the size of the original dataset was generated. This
dataset contained a randomized version of each original variable. The importance value
of each variable was compared to one of its randomized versions. If the value associated
with the original variable was higher, a value of 1 was assigned; otherwise, 0 was assigned.
These binary values were accumulated into a binary vector assigned to each variable, which
was used to calculate a p-value. (4) Features were iteratively eliminated from the training
dataset through multiple rounds, considering a proportion of the least important. A value
of 1 was assigned to the retained features, while a value of 0 was assigned to those elimi-
nated in this and successive rounds. (5) When only one variable remained in the dataset,
the original dataset was regenerated, and steps from 1 to 4 were repeated. (6) Variables
were sorted in descending order of cumulative importance in a table. Then, p-values were
calculated using a binomial test from the accumulated hits and non-hits (1 s and 0 s). The
variable ranking algorithm sorted all proteins in the dataset according to their importance
value. The top 20 variables were chosen from this list based on their highest importance.

Random forest and stepwise iterative importance-based feature elimination allowed
us to obtain a robust subset of important features. By using many elimination steps and
repeating the entire elimination process many times, evidence accumulated to confirm that
the selected features are valuable in the classification processes. Nevertheless, and more
importantly, when the number of samples was reduced, the results could be affected by the
selected samples in the training dataset.

To reinforce the idea that a specific data partition did not bias the selected features,
the whole process was iterated on different data partitions on training and test subsets. By
choosing the “k” (20) most important features of each partition, the number of iterations a
feature appeared among the most important ones could be calculated. Finally, a subsequent
binomial test was used to assign a p-value to each feature designed as important in at least
one partition.

In detail, the binomial test p-value was calculated as follows: the union set of all
features that were among the most important at some partition is computed. After that, a
number of hits were calculated for each feature, which equals the number of partitions a
feature was selected as one of the 20 most important. Next, the hit probability was calculated
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by dividing the sum of the instances each feature was part of the 20 most important ones by
the product of all proteins and the number of partitions. This hit probability, the number of
hits, and the number of partitions were used to finally measure the p-value of each feature.
From these results, a set of significant features using the conventional threshold of 0.05
was concluded.

In this work, 100 different data partitions were made. Overall, 308 proteins were
classified as important in at least one partition. Ultimately, only 37 of these 308 proteins
had a binomial test-adjusted p-value ≤ 0.05 (Supplementary Figure S1). The high number
of proteins that at least appeared once among the top 20 important suggested there were
false positive biomarker candidates; false positive biomarker candidates appear when only
one data partition was performed, likely resulting from the restricted number of samples.
To overcome this limitation, we preserved the 20 most significant proteins among the
37 significant proteins to build the machine learning classifiers.

These 20 proteins (Table 1) were used to train seven classification algorithms: random
forest (RF), extreme gradient boosting (XGB), naïve Bayes (NB), k-nearest neighbors (KNN),
support vector machine (SVM), logistic regression, and linear discriminant analysis (LDA)
(Figure 4a). All classifiers were trained using leave-one-out cross-validation (LOOCV) as
their cross-validation-associated method. All classification algorithms provided very high
classification accuracy (>0.82) and area under the ROC curve values (>0.85) after testing
them with the testing dataset (Figure 4c).

Table 1. Panel of 20 proteins for classifying cholestasis of different etiology. UniProt accession, protein
description, gene name, and p-value determined by the algorithm.

Uniprot Accession Protein Description Gene ID p-Value

Q9NXD2 Myotubularin-related protein 10 MTMR10 <0.0001

P17568 NADH dehydrogenase [ubiquinone] 1 beta
subcomplex subunit 7 NDUFB7 <0.0001

Q15746 Myosin light chain kinase, smooth muscle MYLK <0.0001
Q8WWM9 Cytoglobin CYGB <0.0001

P48723 Heat shock 70 kDa protein 13 HSPA13 <0.0001

P07919 Cytochrome b-c1 complex subunit 6,
mitochondrial UQCRH <0.0001

P01009 Alpha-1-antitrypsin SERPINA1 <0.0001
Q14141 Septin-6 SEPTIN6 <0.0001
O94874 E3 UFM1-protein ligase 1 UFL1 <0.0001
P22105 Tenascin-X TNXB <0.0001
Q9P000 COMM domain-containing protein 9 COMMD9 <0.0001
P03950 Angiogenin ANG <0.0001

Q9H223 EH domain-containing protein 4 EHD4 <0.0001
Q9H0E2 Toll-interacting protein TOLLIP <0.0001
Q9H254 Spectrin beta chain, non-erythrocytic 4 SPTBN4 <0.0001
Q9NR48 Histone-lysine N-methyltransferase ASH1L ASH1L <0.0001
P42785 Lysosomal Pro-X carboxypeptidase PRCP <0.0001

Q9UBR2 Cathepsin Z CTSZ <0.0001
P55854 Small ubiquitin-related modifier 3 SUMO3 <0.0001
P62829 60S ribosomal protein L23 RPL23 <0.0001

The SVM algorithm achieved the highest kappa coefficient, corresponding to only one
misclassified sample in the test dataset. This misclassified sample was a PFIC case that was
grouped with the biliary atresia cases (Figure 4b).
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Figure 4. Machine learning analysis. (a) Performance of different algorithms: random forest, extreme
gradient boosting, linear discriminant analysis, k-nearest neighbors, naïve Bayes, support vector
machine, and logistic regression. (b) Confusion matrix of SVM algorithm; (c) ROC curves; (d) MDS
(multidimensional scaling) 3D plot of samples.

Consistently, the MDS (multidimensional scaling) plot showed a clear group segre-
gation except for one ALGS sample (Figure 4d). Next, a random forest final model was
generated using the previously selected 20 variables and considering all samples together
to calculate the variable importance associated with each class (Figure 5a,b) and a statistical-
descriptive representation such as boxplots (Figure 5c); a straightforward interpretation of
the model was achieved in terms of the overall relevance of variables in ensuring correct
general classification, as well as the relevance of variables considering their importance
classifying each specific class, and the direction in which each variable is important based
on the relative values of samples from each class compared to the rest. As no samples were
included in this study, the performance of the model for other genetic disorders leading to
cholestasis remains to be investigated.

It is worth mentioning that most of the proteins from the panel (Table 1) are involved
in cytoskeleton organization, metabolism and lysosomal activity, or inflammation, which
are cellular processes identified as dysregulated in cholestasis in the functional analysis of
the proteome (Figure 2a). Some of the proteins involved in cytoskeleton organization are
myotubularin-related protein 10 (MTMR10), myosin light chain kinase (MYLK), spectrin
beta, non-erythrocytic 4 (SPTBN4), or SEPTIN6. Maintaining the cytoskeleton organization
and the apicobasal configuration of the hepatocytes is essential to preserve their function,
including bile secretion. Loss of hepatocyte polarization leads to redistribution of bile
transporters and results in pathological processes connected with bile retention in the liver,
like cholestasis [26,27]. According to the Human Protein Atlas, EHD4 controls membrane
reorganization, and TNXB mediates cell interactions and extracellular matrix interactions.
It also accelerates collagen fibril formation and may play a role in supporting the growth of
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epithelial tumors. NDUFB7 (NADH:ubiquinone oxidoreductase subunit B7) is a protein
involved in the mitochondrial membrane respiratory chain NADH dehydrogenase (Com-
plex I), and UQCRH (Ubiquinol-cytochrome c reductase hinge protein) is a component of
the ubiquinol-cytochrome c oxidoreductase. This multisubunit transmembrane complex is
part of the mitochondrial electron transport chain, which drives oxidative phosphorylation.
Altered mitochondrial functions have been observed in chronic liver diseases, including
alcohol-induced liver disease, nonalcoholic fatty liver disease, viral hepatitis, liver regener-
ation [28], and primary and secondary cholestasis. Major changes included impairment
of the electron transport chain and/or oxidative phosphorylation, leading to decreased
oxidative metabolism of various substrates and decreased ATP synthesis [29]. Alterations
in mitochondrial function can lead to oxidative stress-induced damage. Related to this,
cytoglobin (CYBG) has proved to be protective against oxidative stress [30].
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Figure 5. Classification of cholestasis of different etiologies using the described machine learning
pipeline. (a) Heatmap representation of cholestasis subtypes clustering using the 20 proteins panel
selected by the algorithm. (b) Contribution of each protein to the classification of each cholestasis
group based on their estimated importance. (c) Boxplots representing the abundance values of each
protein from the classifier in the different cholestasis groups.
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Moreover, lysosomal function has been documented to be disturbed in cholestasis
models [31]. Following this, three proteins from our panel are involved in lysosomal
autophagy activity (LAMP2, PRCP, and CTSZ). Concomitantly, other panel proteins partic-
ipate in protein degradation through the proteasome pathway. HSPA13, UFL1, SUMO3,
and COMMD9 are proteins related to ubiquitination and proteasome, suggesting the im-
portance of this pathway as a potential source for biomarkers in cholestasis. Alterations
in the E3 ubiquitin ligases have already been described in PFICII [32] COMMD9 partici-
pates in E3 ubiquitin ligase activity regulation and in cholesterol homeostasis and NF-κB
pathway activation.

Interestingly, TOLLIP is a component of the signaling pathway of toll-like receptors,
connecting the ubiquitin pathway to autophagy by functioning as a ubiquitin-ATG8 fam-
ily adapter, thus mediating autophagic clearance of ubiquitin conjugates [33] Toll-like
receptors are highly expressed in immune system-related cells, which may indicate the
infiltration of immune cells in the liver of the cholestasis cases here analyzed, indicating
liver inflammation. In agreement with this hypothesis, MTMR10 is also expressed in the
nucleus of immune system cells. ASH1L is a histone methyltransferase whose dysregu-
lation may result from impaired S-Adenosylmethionine metabolism, a common feature
of liver diseases [34] including cirrhosis, hepatocellular carcinoma [35] and PFIC3 [16].
Angiogenin (ANG) induces angiogenesis after binding to actin on the surface of endothelial
cells and plays an essential role in cell growth and tumor progression. SERPINA1 (alpha-1-
antitrypsin) is a serine protease inhibitor belonging to the serpin superfamily whose targets
include elastase, plasmin, thrombin, trypsin, chymotrypsin, and plasminogen activator. In
alpha-1-antitrypsin deficiency (AATD), SERPINA1 is not released to serum, accumulating
in the liver as observed in the boxplot (Figure 5c). Consequently, this protein is especially
relevant for classifying AATD samples (Figure 5b). Finally, cytoglobin activation in all cases
could result from stellate cell activation as a response to control free radical production,
which is associated with fibrogenesis, a common feature of all types of cholestasis [36]
Most of the proteins included in the panel have been identified in plasma according to Pax-
DB [37] (Supplementary Table S5), reinforcing their potential as targets for the development
of clinical applications.

In conclusion, the combination of proteomics and machine learning analyses yielded a
detailed molecular phenotype of cholestasis and a panel of 20 proteins that allowed the
stratification of etiologically different cholestatic patients with 91% accuracy. This approach
opens new horizons for developing diagnostic, prognostic, and therapeutic strategies
according to personalized and precision medicine principles.

3. Materials and Methods
3.1. Biological Samples

Liver tissue fragments from the explanted livers of cholestasis patients (PFIC3 n = 12,
AATD n = 7, biliary atresia n = 7, ALGS n = 7) and from the liver graft of living donors
(N = 7) (Supplementary Table S1) were obtained at the time of liver transplantation and
stored frozen at −80 ◦C in RNAlater solution (Invitrogen, Carlsbad, CA, USA). Control
samples were obtained from liver specimens from the living donors of LDLT (Living Donor
Liver Transplant) surgeries. Pathogenic mutations were documented by genetic analysis.
Liver transplants were performed between 0 and 10 years old. All surgical procedures
were conducted in Hospital Universitario La Paz, Madrid, Spain. Liver samples were kept
at the institutional biobank. Written informed consent was obtained from the patient’s
legal guardians and graft donors. Study protocols conformed to the principles stated in the
Declaration of Helsinki and were approved by the Clinical Research Ethics Committee of
Hospital Universitario La Paz (HULP PI-3252).

3.2. Proteomics Analysis: Sample Preparation and LC-MS/MS Conditions

For sample preparation, liver specimens were processed as described previously [16]
First, hepatic tissue samples were mechanically disrupted with a Potter–Elvehjem homoge-
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nizer in lysis buffer containing 5% SDS (sodium dodecyl sulfate) (Sigma-Aldrich, ST Louis,
MO, USA), 100 mM triethylammonium bicarbonate (Thermo Fisher Scientific, Waltham,
MA, USA), and a protease/phosphatase inhibitor cocktail (Thermo Fisher Scientific). After
1 min sonication on the UP50H ultrasonic lab homogenizer (Hielscher Ultrasonics, Teltow,
Germany), samples were centrifugated at 10,000× g for 5 min. Protein concentration was
determined in the supernatant using the Pierce 660 nm Protein Assay, adding IDCR (Ion de-
tergent compatibility reagent) (Thermo Fisher Scientific, Waltham, MA, USA). Supernatants
were stored at −80 ◦C until use.

Before digestion, proteins were reduced and alkylated by adding 5 mM TCEP (tris(2-
carboxyethyl) phosphine) and 10 mM chloroacetamide for 30 min at 60 ◦C. Protein digestion
was performed in S-Trap filters (Protifi, Huntington, NY, USA). The amount of 80 µg
of protein of each sample was diluted to 40 µL in 5% SDS, 1.2% phosphoric acid, and
354 µL of binding buffer (90% methanol; 100 mM TEAB) and then loaded to an S-Trap
filter. Subsequently, the filter was washed 3 times with 150 µL of binding buffer. Finally,
MS-grade trypsin (Thermo-Fisher Scientific) was added to each sample in a ratio of 1:20
(trypsin/protein) in 20 µL of 100 mM TEAB. Digestion was performed at 37 ◦C overnight
in a wet chamber. After digestion, peptides were eluted by the addition of two stepwise
buffers: first, 40 µL of 25 mM TEAB, and then, 40 µL of 80% acetonitrile and 0.2% formic
acid in H2O, and finally, by a 2 min centrifugation at 3000× g. The peptide amount was
determined using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific). Eluted peptides were
centrifuged to dryness in a Speed Vac concentrator (Eppendorf, Hamburg, Germany).

The amount of 25 µg of the resulting peptide mixtures was then labeled using TMT-
11plex Isobaric Mass Tagging Kit (Thermo Scientific, Rockford, IL, USA) according to
the manufacturer’s instructions in four parallel labeling reactions, as shown in Table 2.
Labeled peptides of each reaction were pooled and used to analyze the proteome and the
phosphoproteome.

Table 2. TMT labeling of cholestasis liver samples.

Tag/
TMT Experiment 1 2 3 4

126 Control PFIC 3 PFIC 2 ALGS

127N PFIC 3 Biliary atresia ALGS AATD

127C Biliary atresia PFIC 3 AATD PFIC 1

128N ALGS AATD Control PFIC 4

128C PFIC 3 Control PFIC 2 Biliary atresia

129N Control PFIC 2 Biliary atresia ALGS

129C PFIC 3 Biliary atresia ALGS AATD

130N Biliary atresia ALGS AATD Control

130C ALGS AATD Control PFIC 4

131 AATD Control PFIC 1 Biliary atresia

131C pool pool pool pool

To increase the protein coverage, high pH reversed-phase peptide prefractionation was
performed with sulfonated divinylbenzene (CDS Empore™ SDB-RPS, Sigma-Aldrich) using
a step gradient elution with increasing acetonitrile concentrations (0–60% ACN) in a 10 mM
ammonium formate (NH4HCO2, pH 10.0), as described previously [16] Peptides were
collected into 10 different fractions and dried and stored at −20 ◦C until LC-MS analysis.

For LC-MS analysis, peptides were first solubilized in a solution containing 2% ace-
tonitrile (ACN) and 0.1% formic acid (FA). The peptide concentration was determined
using Qubit 2.0 Fluorometric Quantitation (Thermo Fisher Scientific). For analysis, 1 µg of
each fraction in 5 µL was injected into a nano-LC ESI-MS/MS (Liquid Chromatography
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Electrospray Ionization Tandem Mass Spectrometry). The system consisted of an Ulti-
mate 3000 nano HPLC system (Thermo Fisher Scientific) coupled to an Orbitrap Exploris
240 (Thermo Fisher Scientific). Peptides were separated using a 50 cm × 75 µm Easy-spray
PepMap C18 analytical column at 45 ◦C at a flow rate of 300 nL/min and a 120 min gradient
ranging from 2% to 95% mobile phase B (mobile phase A: 0.1% FA; mobile phase B: 80%
ACN in 0.1% FA).

For the mass spectrometry analysis, a data-dependent top-20 method was used for
data acquisition in full scan positive mode, scanning 375 to 1200 m/z. Parameters were
set as follows: survey scans resolution, 60,000 at m/z 200; normalized automatic gain
control (AGC) target (%), 300; maximum injection time (IT), AUTO; fragmentation, top
20 most intense ions from each MS1 scan via higher-energy collisional dissociation (HCD);
resolution for HCD spectra, 45,000 at m/z 100; AGC target, 50; maximum ion injection time,
AUTO; isolation window of precursors, 0.7 m/z; exclusion duration, 45 s; HCD collision
energy, 30. Precursor ions with single, unassigned, or six and higher charge states from
fragmentation selection were excluded.

3.3. Data Analysis: Proteomics Searches, Statistical and Functional Analysis

Thermo raw files were processed using Proteome Discoverer (PD) version 2.5 (Thermo
Fisher Scientific). A workflow combining four search engines was used for PSM: Mascot
(v2.7.0), MsAmanda (v2.0), MsFragger (v3.1.1), and Sequest HT (2.0.0.24). The database
used was the human proteome available at Uniprot database (February 2021); a tar-
get/decoy database built from sequences in the human proteome at Uniprot Knowledge-
base (9606rev_20210219) was used for the searches. Posttranslational modifications for the
searches were set as follows: dynamic modifications for pyrrolidone from Q (−17.027 Da)
and oxidation of methionine residues (+15.9949 Da) and static modification for TMT
reagents (+229.163 Da) on lysine and N-term of the peptide, as well as carbamidomethyl
(+57.021 Da) on cysteine. Trypsin cleavage was configured as 2 missed cleavages max-
imum. The peptide precursor mass tolerance was 10 ppm, and MS/MS tolerance was
0.02 Da. The false discovery rate (FDR) for proteins, peptides, and peptide spectral matches
(PSMs) peptides was set at 1%. The quantification values for proteins were calculated
using the abundance of total peptide based on the reporter ions. Protein abundances were
normalized using the internal standard of each experiment, and the statistical significance
of the differential abundances across conditions was determined according to adjusted
p-values of a t-test/ANOVA. A list of differentially expressed proteins between control and
cholestasis conditions was used for the functional analysis using KOBAS KEGG pathway
enrichment [38].

3.4. Machine Learning Analysis

All calculations performed to generate machine learning models were conducted
using R version 4.1.3. From the original dataset consisting of 7161 proteins, contaminants
and proteins with missing values were removed, resulting in a final set of 5484 proteins.
The original protein abundance data were first transformed using the base 2 logarithm.
Then, batch effects were eliminated by standardizing abundance values with the corre-
sponding internal standard reference sample. Lastly, data were normalized using median
normalization with the “proBatch” [39] package version 1.10.0 in R.

The following libraries were used for the various calculations: “randomForest” [40]
library version 4.7-1.1; the “caret” [41] library version 6.0-93 to create the machine learning
models; the “xgboost” [42] library version 1.6.0.1 to build extreme gradient boosting models;
the “class” [43] package version 7.3-20 to generate the k-nearest neighbors (KNN) model;
the “klaR” [44] library version 1.7–1 to create the naive Bayes models; the “MASS” library
version 7.3-58.1 to generate linear discriminant analysis (LDA) model; the “glmnet” library
version 4.1-6 to create the logistic regression classifiers [45]; the “e1071” library version
1.7-13 to build the support vector machine classifiers [46]; and the “verification” [47]
package version 1.42 to generate receiver operating characteristic (ROC) curves. The ROC
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curves were based on the probability values assigned to each class in the form of a vector,
which were then input into the “roc.plot” function.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25073684/s1.
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PFIC Progressive familial intrahepatic cholestasis
RF Random Forest
SVM Support Vector Machines
XGB Extreme Gradient Boosting

References
1. Onofrio, F.Q.; Hirschfield, G.M. The Pathophysiology of Cholestasis and Its Relevance to Clinical Practice. Clin. Liver Dis. 2020,

15, 110–114. [CrossRef] [PubMed]
2. Li, M.K.; Crawford, J.M. The Pathology of Cholestasis. Semin. Liver Dis. 2004, 24, 21–42. [CrossRef] [PubMed]
3. Baker, A.; Kerkar, N.; Todorova, L.; Kamath, B.M.; Houwen, R.H. Systematic review of progressive familial intrahepatic cholestasis.

Clin. Res. Hepatol. Gastroenterol. 2018, 43, 20–36. [CrossRef] [PubMed]
4. Bull, L.N.; Thompson, R.J. Progressive Familial Intrahepatic Cholestasis. Clin. Liver Dis. 2018, 22, 657–669. [CrossRef] [PubMed]
5. Amirneni, S.; Haep, N.; Gad, A.M.; Soto-Gutierrez, A.; Squires, E.J.; Florentino, R.M. Molecular overview of progressive familial

intrahepatic cholestasis. World J. Gastroenterol. 2020, 26, 7470–7484. [CrossRef]
6. Fischler, B.; Lamireau, T. Cholestasis in the newborn and infant. Clin. Res. Hepatol. Gastroenterol. 2014, 38, 263–267. [CrossRef]

[PubMed]
7. Turnpenny, P.D.; Ellard, S. Alagille syndrome: Pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 2012, 20, 251–257.

[CrossRef]

https://www.mdpi.com/article/10.3390/ijms25073684/s1
https://www.mdpi.com/article/10.3390/ijms25073684/s1
https://doi.org/10.1002/cld.894
https://www.ncbi.nlm.nih.gov/pubmed/32257122
https://doi.org/10.1055/s-2004-823099
https://www.ncbi.nlm.nih.gov/pubmed/15085484
https://doi.org/10.1016/j.clinre.2018.07.010
https://www.ncbi.nlm.nih.gov/pubmed/30236549
https://doi.org/10.1016/j.cld.2018.06.003
https://www.ncbi.nlm.nih.gov/pubmed/30266155
https://doi.org/10.3748/wjg.v26.i47.7470
https://doi.org/10.1016/j.clinre.2014.03.010
https://www.ncbi.nlm.nih.gov/pubmed/24746684
https://doi.org/10.1038/ejhg.2011.181


Int. J. Mol. Sci. 2024, 25, 3684 14 of 15

8. Mehl, A.; Bohorquez, H.; Serrano, M.-S.; Galliano, G.; Reichman, T.W. Liver transplantation and the management of progressive
familial intrahepatic cholestasis in children. World J. Transplant. 2016, 6, 278–290. [CrossRef] [PubMed]

9. Hirschfield, G.M.; Beuers, U.; Corpechot, C.; Invernizzi, P.; Jones, D.; Marzioni, M.; Schramm, C. EASL Clinical Practice Guidelines:
The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 2017, 67, 145–172. [CrossRef] [PubMed]

10. Schubert, O.T.; Röst, H.L.; Collins, B.C.; Rosenberger, G.; Aebersold, R. Quantitative proteomics: Challenges and opportunities in
basic and applied research. Nat. Protoc. 2017, 12, 1289–1294. [CrossRef]

11. Sandberg, A.; Branca, R.M.; Lehtiö, J.; Forshed, J. Quantitative accuracy in mass spectrometry based proteomics of complex
samples: The impact of labeling and precursor interference. J. Proteom. 2014, 96, 133–144. [CrossRef] [PubMed]

12. Mischak, H.; Allmaier, G.; Apweiler, R.; Attwood, T.; Baumann, M.; Benigni, A.; Bennett, S.E.; Bischoff, R.; Bongcam-Rudloff, E.;
Capasso, G.; et al. Recommendations for Biomarker Identification and Qualification in Clinical Proteomics. Sci. Transl. Med. 2010,
2, 46ps42. [CrossRef] [PubMed]

13. Swan, A.L.; Mobasheri, A.; Allaway, D.; Liddell, S.; Bacardit, J. Application of Machine Learning to Proteomics Data: Classification
and Biomarker Identification in Postgenomics Biology. OMICS A J. Integr. Biol. 2013, 17, 595–610. [CrossRef] [PubMed]

14. Desaire, H.; Go, E.P.; Hua, D. Advances, obstacles, and opportunities for machine learning in proteomics. Cell Rep. Phys. Sci. 2022,
3, 101069. [CrossRef] [PubMed]

15. Bauer, Y.; de Bernard, S.; Hickey, P.; Ballard, K.; Cruz, J.; Cornelisse, P.; Chadha-Boreham, H.; Distler, O.; Rosenberg, D.; Doelberg,
M.; et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: Machine learning on proteomics
from the DETECT cohort. Eur. Respir. J. 2020, 57, 2002591. [CrossRef] [PubMed]

16. Guerrero, L.; Carmona-Rodríguez, L.; Santos, F.M.; Ciordia, S.; Stark, L.; Hierro, L.; Pérez-Montero, P.; Vicent, D.; Corrales, F.J.
Molecular basis of progressive familial intrahepatic cholestasis 3. A proteomics study. BioFactors 2024. [CrossRef] [PubMed]

17. Abeel, T.; Helleputte, T.; Van de Peer, Y.; Dupont, P.; Saeys, Y. Robust biomarker identification for cancer diagnosis with ensemble
feature selection methods. Bioinformatics 2009, 26, 392–398. [CrossRef] [PubMed]

18. Saeys, Y.; Abeel, T.; Van De Peer, Y. Robust Feature Selection Using Ensemble Feature Selection Techniques. In Proceedings of
the Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2008), Antwerp, Belgium, 15–19 September 2008;
Part II 19. pp. 313–325.

19. Kursa, M.B.; Rudnicki, W.R. Feature Selection with theBorutaPackage. J. Stat. Softw. 2010, 36, 1–13. [CrossRef]
20. Díaz-Uriarte, R.; Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. BMC Bioinform.

2006, 7, 3. [CrossRef]
21. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
22. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2011, 39, 261–283. [CrossRef]
23. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
24. Singhi, S.K.; Liu, H. Feature subset selection bias for classification learning. In Proceedings of the 23rd International Conference

on Machine learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 849–856.
25. Ambroise, C.; McLachlan, G.J. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad.

Sci. USA 2002, 99, 6562–6566. [CrossRef] [PubMed]
26. Tsukada, N.; Ackerley, C.A.; Phillips, M.J. The structure and organization of the bile canalicular cytoskeleton with special reference

to actin and actin-binding proteins. Hepatology 1995, 21, 1106–1113. [PubMed]
27. Gissen, P.; Arias, I.M. Structural and functional hepatocyte polarity and liver disease. J. Hepatol. 2015, 63, 1023–1037. [CrossRef]

[PubMed]
28. Carmona-Rodríguez, L.; Gajadhar, A.S.; Blázquez-García, I.; Guerrero, L.; Fernández-Rojo, M.A.; Uriarte, I.; Mamani-Huanca, M.;

López-Gonzálvez, Á.; Ciordia, S.; Ramos, A.; et al. Mapping early serum proteome signatures of liver regeneration in living
donor liver transplant cases. BioFactors 2023, 49, 912–927. [CrossRef] [PubMed]

29. Grattagliano, I.; Russmann, S.; Diogo, C.; Bonfrate, L.; Oliveira, P.J.; Wang, D.Q.-H.; Portincasa, P. Mitochondria in Chronic Liver
Disease. Curr. Drug Targets 2011, 12, 879–893. [CrossRef]

30. Fordel, E.; Thijs, L.; Martinet, W.; Lenjou, M.; Laufs, T.; Van Bockstaele, D.; Moens, L.; Dewilde, S. Neuroglobin and cytoglobin
overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci. Lett. 2006,
410, 146–151. [CrossRef]

31. Panzitt, K.; Jungwirth, E.; Krones, E.; Lee, J.M.; Pollheimer, M.; Thallinger, G.G.; Kolb-Lenz, D.; Xiao, R.; Thorell, A.; Trauner,
M.; et al. FXR-dependent Rubicon induction impairs autophagy in models of human cholestasis. J. Hepatol. 2020, 72, 1122–1131.
[CrossRef]

32. Wang, L.; Dong, H.; Soroka, C.J.; Wei, N.; Boyer, J.L.; Hochstrasser, M. Degradation of the bile salt export pump at endoplasmic
reticulum in progressive familial intrahepatic cholestasis type II. J. Hepatol. 2008, 48, 1558–1569. [CrossRef]

33. Capelluto, D.G. Tollip: A multitasking protein in innate immunity and protein trafficking. Microbes Infect. 2012, 14, 140–147.
[CrossRef] [PubMed]

34. Guerrero, L.; Paradela, A.; Corrales, F.J. Targeted Proteomics for Monitoring One-Carbon Metabolism in Liver Diseases. Metabolites
2022, 12, 779. [CrossRef]

35. Guerrero, L.; Sangro, B.; Ambao, V.; Granero, J.I.; Ramos-Fernández, A.; Paradela, A.; Corrales, F.J. Monitoring one-carbon
metabolism by mass spectrometry to assess liver function and disease. J. Physiol. Biochem. 2021, 78, 229–243. [CrossRef] [PubMed]

https://doi.org/10.5500/wjt.v6.i2.278
https://www.ncbi.nlm.nih.gov/pubmed/27358773
https://doi.org/10.1016/j.jhep.2017.03.022
https://www.ncbi.nlm.nih.gov/pubmed/28427765
https://doi.org/10.1038/nprot.2017.040
https://doi.org/10.1016/j.jprot.2013.10.035
https://www.ncbi.nlm.nih.gov/pubmed/24211767
https://doi.org/10.1126/scitranslmed.3001249
https://www.ncbi.nlm.nih.gov/pubmed/20739680
https://doi.org/10.1089/omi.2013.0017
https://www.ncbi.nlm.nih.gov/pubmed/24116388
https://doi.org/10.1016/j.xcrp.2022.101069
https://www.ncbi.nlm.nih.gov/pubmed/36381226
https://doi.org/10.1183/13993003.02591-2020
https://www.ncbi.nlm.nih.gov/pubmed/33334933
https://doi.org/10.1002/biof.2041
https://www.ncbi.nlm.nih.gov/pubmed/38284625
https://doi.org/10.1093/bioinformatics/btp630
https://www.ncbi.nlm.nih.gov/pubmed/19942583
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/BF00058655
https://doi.org/10.1073/pnas.102102699
https://www.ncbi.nlm.nih.gov/pubmed/11983868
https://www.ncbi.nlm.nih.gov/pubmed/7705786
https://doi.org/10.1016/j.jhep.2015.06.015
https://www.ncbi.nlm.nih.gov/pubmed/26116792
https://doi.org/10.1002/biof.1954
https://www.ncbi.nlm.nih.gov/pubmed/37171157
https://doi.org/10.2174/138945011795528877
https://doi.org/10.1016/j.neulet.2006.09.027
https://doi.org/10.1016/j.jhep.2020.01.014
https://doi.org/10.1002/hep.22499
https://doi.org/10.1016/j.micinf.2011.08.018
https://www.ncbi.nlm.nih.gov/pubmed/21930231
https://doi.org/10.3390/metabo12090779
https://doi.org/10.1007/s13105-021-00856-3
https://www.ncbi.nlm.nih.gov/pubmed/34897580


Int. J. Mol. Sci. 2024, 25, 3684 15 of 15

36. Hai, N.T.T.; Thuy, L.T.T.; Shiota, A.; Kadono, C.; Daikoku, A.; Hoang, D.V.; Dat, N.Q.; Sato-Matsubara, M.; Yoshizato, K.; Kawada,
N. Selective overexpression of cytoglobin in stellate cells attenuates thioacetamide-induced liver fibrosis in mice. Sci. Rep. 2018, 8,
17860. [CrossRef]

37. Huang, Q.; Szklarczyk, D.; Wang, M.; Simonovic, M.; von Mering, C. PaxDb 5.0: Curated Protein Quantification Data Suggests
Adaptive Proteome Changes in Yeasts. Mol. Cell. Proteom. 2023, 22, 100640. [CrossRef] [PubMed]

38. Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization
and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325.
[CrossRef] [PubMed]

39. Uklina, J. Computational Challenges in Biomarker Discovery from High-Throughput Proteomic Data. Ph.D. Thesis, ETH Zürich,
Zürich, Switzerland, 2018. [CrossRef]

40. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
41. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
42. Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (ACM, 2016), Las Vegas, NV, USA, 13–17 August 2016; Volumes 13–17, pp. 785–794.
43. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013.
44. Weihs, M.C. klaR Analyzing German Business Cycles. In Data Analysis and Decision Support; Studies in Classification, Data

Analysis, and Knowledge Organization; Springer: Berlin/Heidelberg, Germany, 2005; pp. 335–343.
45. Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat.

Softw. 2010, 33, 1–22. [CrossRef]
46. Meyer, D. Support Vector Machines. The Interface to libsvm in package e1071. R News 2001, 1, 23–26.
47. NCAR—Research Applications Laboratory. Weather Forecast Verification Utilities, version 1.42; The Comprehensive R Archive

Network (CRAN): Vienna, Austria, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-018-36215-4
https://doi.org/10.1016/j.mcpro.2023.100640
https://www.ncbi.nlm.nih.gov/pubmed/37659604
https://doi.org/10.1093/nar/gkab447
https://www.ncbi.nlm.nih.gov/pubmed/34086934
https://doi.org/10.3929/ethz-b-000307772
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v033.i01

	Introduction 
	Results and Discussion 
	Proteomics Analysis 
	Machine Learning Analysis 

	Materials and Methods 
	Biological Samples 
	Proteomics Analysis: Sample Preparation and LC-MS/MS Conditions 
	Data Analysis: Proteomics Searches, Statistical and Functional Analysis 
	Machine Learning Analysis 

	References

