
Citation: Jeong, J.; Lee, W.; Kim, Y.-A.;

Lee, Y.-J.; Kim, S.; Shin, J.; Choi, Y.;

Kim, J.; Lee, Y.; Kim, M.S.; et al.

Multi-System-Level Analysis Reveals

Differential Expression of Stress

Response-Associated Genes in

Inflammatory Solar Lentigo. Int. J.

Mol. Sci. 2024, 25, 3973. https://

doi.org/10.3390/ijms25073973

Academic Editors: Philip W. Wertz

and Ji Hyun Lee

Received: 29 February 2024

Revised: 27 March 2024

Accepted: 29 March 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Multi-System-Level Analysis Reveals Differential Expression of
Stress Response-Associated Genes in Inflammatory Solar Lentigo
Jisu Jeong 1,2,†, Wonmin Lee 1,3,†, Ye-Ah Kim 1,2, Yun-Ji Lee 4, Sohyun Kim 1,3, Jaeyeon Shin 1,5, Yueun Choi 1,2,
Jihan Kim 1,3, Yoonsung Lee 1, Man S. Kim 1,* and Soon-Hyo Kwon 4,*

1 Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital
at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
symply501@khu.ac.kr (J.J.); dldnjsals345@khu.ac.kr (W.L.); yeak426@gmail.com (Y.-A.K.);
sori2013@naver.com (S.K.); jyshin24@khu.ac.kr (J.S.); uag43@khu.ac.kr (Y.C.); kknowing@khu.ac.kr (J.K.);
ylee3699@khu.ac.kr (Y.L.)

2 Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453,
Republic of Korea

3 Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
4 Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of

Medicine, Seoul 05278, Republic of Korea; yjlee7799@naver.com
5 Department of Mathematics, Kyung Hee University College of Science, Seoul 02453, Republic of Korea
* Correspondence: manskim@khu.ac.kr (M.S.K.); soonhyo17@hanmail.net (S.-H.K.)
† These authors contributed equally to this work.

Abstract: Although the pathogenesis of solar lentigo (SL) involves chronic ultraviolet (UV) expo-
sure, cellular senescence, and upregulated melanogenesis, underlying molecular-level mechanisms
associated with SL remain unclear. The aim of this study was to investigate the gene regulatory
mechanisms intimately linked to inflammation in SL. Skin samples from patients with SL with or
without histological inflammatory features were obtained. RNA-seq data from the samples were ana-
lyzed via multiple analysis approaches, including exploration of core inflammatory gene alterations,
identifying functional pathways at both transcription and protein levels, comparison of inflammatory
module (gene clusters) activation levels, and analyzing correlations between modules. These analyses
disclosed specific core genes implicated in oxidative stress, especially the upregulation of nuclear
factor kappa B in the inflammatory SLs, while genes associated with protective mechanisms, such as
SLC6A9, were highly expressed in the non-inflammatory SLs. For inflammatory modules, Extracellu-
lar Immunity and Mitochondrial Innate Immunity were exclusively upregulated in the inflammatory
SL. Analysis of protein–protein interactions revealed the significance of CXCR3 upregulation in the
pathogenesis of inflammatory SL. In conclusion, the upregulation of stress response-associated genes
and inflammatory pathways in response to UV-induced oxidative stress implies their involvement in
the pathogenesis of inflammatory SL.

Keywords: solar lentigo; RNA-seq data; inflammation; oxidative stress

1. Introduction

Solar lentigo (senile lentigo, SL) is a commonly acquired pigmentary condition in
the elderly that is considered a hallmark of skin photoaging. It appears as solitary or
multiple well-defined, light to dark brown colored macules or patches on sun-exposed
areas, especially in the face and hand dorsum. The diagnosis of SL is primarily determined
by histopathology, which has been reported as two patterns—a flattened epidermis with
basal melanosis and epidermal hyperplasia with elongated rete ridges [1]. Other non-
invasive diagnostic methods for SL include dermoscopy (moth-eaten border, homogenous
pigmentation, pigment network, pseudonetwork, erythema, and bluish–gray granules) [2],
reflectance confocal microscopy (suprapapillary cobblestone pattern, polycystic papillary
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contours, bulbous projections, and crumbled coarse bright collagen) [3], and line-field
confocal optical coherence tomography [4].

Pathogenesis of SL involves chronic ultraviolet (UV) exposure, cellular senescence,
and upregulated melanogenesis [5]. Chronic exposure to UV induces skin to generate
chemical, hormonal, and neural signals such as cytokines, corticotropin-releasing hor-
mone, urocortins, proopiomelanocortin-peptides, and enkephalins, which could be re-
leased into circulation to exert systemic effects [6]. Chronic UV exposure is a major cause
of pigmentary skin disorder, directly upregulating melanogenesis via the expression of
melanocyte-inducing transcription factor (MITF) and melanogenic enzymes such as ty-
rosinase, tyrosinase-related protein (TRP)-1 in melanocytes [7]. Chronic UV exposure
also causes cellular senescence of the skin, especially keratinocytes and fibroblasts. Ker-
atinocytes in SL show decreased proliferation, impaired differentiation, and hyperplasia,
all of which implicate cellular senescence [8–10]. Immunohistochemical studies revealed
the presence of p16INK4A-positive senescent fibroblasts in the upper dermis of SL [11]. The
senescence of fibroblasts causes the alternation of their secretory proteins, such as the
stromal cell-derived factor (SDF)-1 and the growth/differentiation factor (GDF)-15 [11,12].
In combination with the disrupted basement membrane, senescence-associated secretory
proteins from dermal fibroblasts reach melanocytes to serve as stimuli for melanogene-
sis [13].

Inflammation is also likely to be involved in the development of SL. In response to
UV exposure and stress, neuroendocrine and immune systems are activated via signaling
molecules by resident and immune cells and the release of neurotransmitters, endocrine
factors, neuropeptides, and cytokines from nerve endings [14]. Disturbance in the neu-
rohormonal mediators and cytokines regulating physiological skin functions results in
cutaneous pigmentary disorders [14]. Histologically, inflammatory features such as infil-
tration of inflammatory cells and interface changes were found in SL [2]. Gene expression
profiling showed increased expression of inflammation-related genes in SL [9]. A genome-
wide association study reported the association between HLA genes and the severity of
SL [15]. Monocyte chemoattractant protein (MCP)-1, a proinflammatory chemokine related
to tissue aging, might be involved in the development of SL by inducing senescence of
keratinocytes and proliferation of melanocytes [16]. Increased expression of interferon
(IFN)-γ and upregulated IFN- γ-stimulated proinflammatory chemokine genes were found
in delayed pigmented spots in a mouse model [17]. Higher expression of tumor necrosis
factor (TNF)-α and lower expression of interleukin (IL)-1α were found in SL compared to
perilesional skin [18]. Although chronic ultraviolet exposure and cellular senescence in
combination might cause the inflammatory process during the development of SL, what
inflammatory pathway is involved in the development of SL remains highly uncertain.

Several studies have reported the association of “erythematous SL” or “inflammatory
SL” with the infiltration of inflammatory cells and interface changes in histology and
high susceptibility to post-inflammatory hyperpigmentation after laser treatment [2,19,20].
Morgan et al. demonstrated that the inflammatory SL could be a clinicopathologic spectrum
of lichen planus-like keratosis, representing the inflammatory stage of involuting SL [21].

The aim of this study is to provide a considerable understanding of the UV-induced
inflammatory processes associated with the development of SL via the identification of
their corresponding inflammatory-gene regulatory mechanisms. To investigate the specific
underlying gene regulations, we obtained transcription profiles from skin samples of SL
via mRNA sequencing and implemented multiple comparative analysis approaches by
comparing the following: (i) significantly differentially expressed genes; (ii) collectively
associated functional pathways linked to inflammatory gene groups; (iii) relative gene
expression profiles of the custom-made core inflammatory genes; (iv) estimated activation
levels of inflammatory modules with the core genes; (v) functionally associated clusters
based on protein–protein interaction network; (vi) correlations of inflammatory modules
with the core genes. Using the various approaches, we examined potential regulatory
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mechanisms of functionally associated genes or modules via common or different patterns
based on the comparison between the inflammatory and non-inflammatory SL.

2. Results
2.1. Histopathologic Characteristics of SL Samples

To investigate underlying inflammation-associated gene regulation for SL, we ana-
lyzed the histopathologic characteristics of SL samples from six patients. Among them, five
(83.3%) were female and one (16.7%) was male. The mean age was 80.8 ± 10.6 years (range,
67–96 years). The samples were obtained from the cheek (83.3%) and temple (16.7%).

Table 1 describes the histopathologic characteristics of SL analyzed in this study. All
samples had basal hyperpigmentation and solar elastosis, which was consistent with the
diagnostic feature of SL. Dermal melanophages were observed in 83.3% of the samples.
Epidermal hyperplasia with rete ridge elongation was shown in 33.3% of the samples,
while 66.7% showed epidermal flattening. Infiltration of inflammatory cells was observed
in five samples (83.3%). Among them, infiltration of inflammatory cells was found to be
a moderate-to-severe grade in the three samples, while the other two samples showed a
mild grade.

Table 1. Histopathological characteristics of the solar lentigo samples.

Histologic
Features (n,%)

Basal Cell
Hyperpigmentation

Dermal
Melanophages Solar Elastosis Rete Ridge

Elongation
Infiltration of

Inflammatory Cells

Present 6 (100%) 5 (83.3%) 6 (100%) 2 (33.3%) 5 (83.3%)
Absent 0 (0%) 1 (16.7%) 0 (0%) 4 (66.7%) 1 (16.7%)

Based on the result of the histopathologic study, SL samples were divided into two
categories for downstream analyses: the inflammatory SLs showing moderate-to-severe
infiltration of inflammatory cells; and the non-inflammatory SLs showing none or mild
infiltration of inflammatory cells (Figure 1) [20].
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2.2. Inflammation-Associated Genes Upregulated in the Inflammatory SL

To search for condition-specific and differential characteristics SLs at the transcrip-
tion level, we implemented typical differential analyses, including GO analysis using
inflammation-associated genes. As depicted in Figure 2A, we identified a sufficient number
of differentially expressed genes (DEGs) from both inflammatory and non-inflammatory
SLs when compared to adjacent normal skin, where the DEGs displayed distinct variations
across samples of the two groups. The comparison between the inflammatory SLs and
adjacent normal skin highlighted potential links with inflammatory responses.
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the DEGs of inflammation-associated genes selectively obtained from MSigDB (Figure 
2B). While the significance of upregulation in the non-inflammatory SL was relatively in-
considerable, upregulation of the inflammatory SL indicated interconnections with 

Figure 2. Differentially expressed genes (DEGs)and enriched pathways. (A) Volcano plot of DEGs
between the inflammatory and non-inflammatory solar lentigines (SLs). The genes were collected
using the keyword “inflammation” within the Human Gene Sets of MsigDB. The X-axis represents
log2 fold change, and the Y-axis represents the log10 of Wald test p-value by DESeq2 (p-value < 0.05,
log2 fold-change > 0.8). (B) Dot plot of gene ontology (GO) analysis of Biological Processes. The
analysis utilized genes associated with inflammation (p-value < 0.05, absolute log2 fold-change < 0.5).
The Y-axis represents GO terms, and the X-axis represents upregulation or downregulation in solar
lentigo. The dot sizes correspond to the size of the gene set associated with each pathway. The color
gradient is proportional to the adjusted p-value (Benjamini–Hochberg). BP, Biological Processes; GO,
gene ontology; SL, solar lentigo.
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In addition, we explored inflammatory-associated pathways via GO analysis using
the DEGs of inflammation-associated genes selectively obtained from MSigDB (Figure 2B).
While the significance of upregulation in the non-inflammatory SL was relatively incon-
siderable, upregulation of the inflammatory SL indicated interconnections with several
inflammation-associated activation regulations, such as the regulation of leukocyte acti-
vation, regulation of lymphocyte activation, and regulation of T-cell activation. On the
other hand, downregulation of the inflammatory SL was associated with several different
metabolic processes, including the monocarboxylic acid metabolic process.

2.3. Core Inflammatory Genes Revealed Significant Alterations on the Inflammatory Responses to
Oxidative Stress in the Inflammatory SL

To identify a potential gene list of SL-specific inflammatory responses, we explored
specific gene expression alterations between the inflammatory and non-inflammatory SLs.
In this analysis (Figure 3), we specifically referenced the custom-made core-inflammatory-
response gene list from Guarnieri et al. [22]. Several genes from the core list were upreg-
ulated in the inflammatory SL. Specifically, within Extracellular Immunity, we detected
the highest upregulation of genes, including IL21R, CCR7, CD3E, IL15RA, CD7, CXCL10,
IL12RB2, CD4, ICOS, CSF1R, CD86, and CXCR3, while genes in Innate Immunity exhibited
upregulation, including SAMD9L, TNFRSF1B, ZBP1, IL1A, and XAF1. Additionally, genes
such as GSDMC, TGFB1, ZBP1, and HYAL1 in RAAS were identified, while we noted genes
in Integrated Stress Response (ISR), such as IL23A, NFkB2, and SLC6A9. Lastly, genes in
Mitochondrial Innate Immunity encompassed TLR9, HAS1, NFkB2, and ZBP1.
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Figure 3. Heatmap of the custom-made core inflammatory genes with Wald-test statistics comparing
the inflammatory and non-inflammatory solar lentigines (SLs). The core gene list was curated by
Guarnieri et al. [22]. Upregulated genes are indicated in red, and downregulated genes are indicated
in blue. ISR, integrated stress response; SL, solar lentigo.

From another perspective, we looked into whether certain genes are intimately associ-
ated with UV-induced damage or oxidative stress responses. In particular, the upregulation
of nuclear factor kappa B (NF-κB) is linked to prolonged UV exposure within the in-
flammatory SL. Additionally, upregulation of genes (i.e., CXCR3, XAF1, and ZBP1) was
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also detected in the inflammatory SL. Conversely, highly expressed genes in the non-
inflammatory SL appeared to be implicated in protective mechanisms against UV-induced
damage, including SLC6A9 and HYAL.

2.4. Inflammatory Systems Revealed Different Alteration Patterns between the Inflammatory and
Non-Inflammatory SLs

To evaluate how activation levels of inflammatory systems differ dynamically between
the inflammatory and non-inflammatory SLs, we compared their enrichment scores for
each inflammatory module (i.e., gene clusters) by computing the corresponding NES via
fGSEA [23]. Overall, as depicted in Figure 4, differential activation patterns of inflamma-
tory modules were uncovered between the inflammatory and non-inflammatory SLs in
the following systems: Innate Immunity; Extracellular Immunity; Mitochondrial Innate
Immunity; and RAAS. However, no significant differences were shown in the ISR and Un-
folded Protein Response (UPR). In other words, while the gene expression profile patterns
associated with the core inflammatory responses differed between the inflammatory and
non-inflammatory SLs, the patterns associated with cellular stresses, including oxidative
stress, appeared to be similar across both patient groups.
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Figure 4. Lollipop plot of pathway enrichment analysis by fast Gene Set Enrichment Analysis (fGSEA)
where the pathways were customized by Guarnieri et al. [22]. The length of the stick is the degree of
nominal enrichment score (NES). Grey means that it is not significantly enriched (p-value > 0.3), while
red indicates upregulation, and blue indicates downregulation in solar lentigo (SL). ISR, integrated
stress response; RAAS, Renin–Angiotensin–Aldosterone System; SL, solar lentigo.
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Different activation patterns of inflammatory modules distinguished the inflammatory
SL from the non-inflammatory SL in the four systems. Specifically, within Innate Immunity
(both canonical and non-canonical pathways), upregulations were observed in the inflam-
matory SL, while downregulation occurred in the non-inflammatory SL. Considering the
two modules, which comprise a majority of IFN-stimulated genes (ISGs), the initial phases
of innate immune responses against invading pathogens via the utilization of reactive
oxygen species (ROS) can be considered [24]. All four modules in Extracellular Immunity
(Surface marker/Receptor signaling, Interleukins, Cytokines, and Antigen Presentation)
unveiled opposite patterns, where upregulations in the inflammatory SL and downreg-
ulations in the non-inflammatory SL were shown. While PANoptosis and Complement
activation/Fibrin deposition in the Renin–Angiotensin–Aldosterone System (RAAS) were
upregulated in the inflammatory SL and downregulated in the non-inflammatory SL,
Hyaluronan Accumulation was upregulated in both groups, reflecting chronic UV-induced
degradation of dermal hyaluronic acid [25]. For Mitochondrial Innate Immunity, all the
modules, such as mtdsRNA, mtDNA/dsRNA, and mtDNA, exhibited opposite patterns—
upregulations in the inflammatory SL and downregulations in the non-inflammatory SL.
The alterations in the Mitochondrial Innate Immunity could be significant for antibacterial
immunity by generating ROS or activating innate immune responses leading to cellular
damage and stress [26].

For ISR, dynamics can depend on responses to a range of physiological changes
and various pathological conditions (i.e., hypoxia, amino acid deprivation, glucose de-
privation, and viral infection) [27]. Three ISR modules, such as Sensor/Initiator, Cy-
tokines/Chemokines, and Antioxidant, were downregulated in both the inflammatory and
non-inflammatory SLs. This may suggest that cellular damages via oxidative stress and
their corresponding repair/rebuilding systems could be relatively deactivated for both
the inflammatory and non-inflammatory SLs. Along with ISR, UPR, which is associated
with immune cell functions, innate immune signaling, and managing oxidative stress
within the endoplasmic reticulum, was also downregulated in both the inflammatory and
non-inflammatory SL [28].

2.5. Protein–Protein Interaction-Based Clusters Disclosed Alterations Regarding
Inflammatory Responses

To search for potential functional clusters at the protein level, we explored potential as-
sociations between corresponding proteins of the DEGs via the protein–protein interaction
(PPI) network based on STRING [29]. As depicted in Figure 5, four functional clusters that
were common to both the inflammatory SL and the non-inflammatory SL were detected:
Chemokine Signaling Pathway; Autoimmune Disease; Regulation of TNFR1 Signaling; and
Activation of the AP-1 Family of Transcription Factor. While the two clusters—Regulation
of TNFR1 Signaling and Activation of the AP-1 Family of Transcription Factor—were
nearly the same between the two groups, the other two clusters—Chemokine Signaling
Pathway and Autoimmune Disease—demonstrated bigger clusters in the inflammatory SL
compared with non-inflammatory SL.

Considering the identification of potential PPI clusters shedding light on underlying
mechanisms of SL-specific inflammatory responses, we consistently observed suppres-
sion of JUN, FOS, and ATF3 in both the inflammatory and non-inflammatory SLs. This
underscores the potential role of the AP-1 complex in the pathogenesis of SL. We also
detected that clusters involved in the CXC chemokine and chemokine signaling pathways
were upregulated in the inflammatory SL but downregulated in the non-inflammatory SL.
This finding emphasizes the significance of CXCR3 upregulation in the pathogenesis of
inflammatory SL. Additionally, we identified a similar pattern in the JAK-STAT signaling
pathway, which appears to be influenced by these chemokines. The chemokine activity
may drive the activation of JAK-STAT signaling in the inflammatory SL while suppressed
in the non-inflammatory SL.
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Figure 5. Cluster visualization based on protein–protein interaction (PPI) networks, utilizing differ-
entially expressed genes (DEGs) in solar lentigo (SL) using STRING database. DEGs were selected
32 high-ranked genes for the inflammatory SL and 36 genes for the non-inflammatory SL. Interactions
with protein association confidence scores above 0.4 included setting the number to 10 in the first
shell and 5 in the second shell. The color of the nodes represents pathways that have been function-
ally enriched; the border in red indicates downregulated genes, and the border in blue indicates
upregulated genes. SL, solar lentigo.

2.6. Different Correlation Patterns of Inflammatory Systems between the Inflammatory and
Non-Inflammatory SLs

While recognizing inflammatory modules differentially activated between the in-
flammatory and non-inflammatory SLs, we searched for correlation patterns between
the modules or with their corresponding systems, where correlation coefficients were
computed utilizing QLattice [30] (Figure 6). The comparative analysis revealed high
correlation patterns (i.e., higher than 0.8) between modules from the inflammatory and
non-inflammatory SLs, including (i) Innate Immunity and its corresponding two modules
such as Inflammation and Canonical, (ii) Extracellular Immunity and all its corresponding
modules, (iii) Mitochondrial Innate Immunity and its module, mtDNA, (iv) ISR and one of
its modules such as Anti-Oxidant, (v) RAAS and its module such as Syndecans, (vi) UPR
and its modules such as Mitochondrial module. Interestingly, Extracellular Immunity and
UPR displayed higher correlations with their corresponding modules, suggesting that these
modules were coordinately regulated in SLs compared to adjacent normal skin.

On the other hand, modules with higher correlations of the inflammatory SL and lower
correlations of the non-inflammatory SL (with differences > 0.6) include (i) mtDNA/dsRNA
in Mitochondrial Innate Immunity, (ii) Survival factors, Sensor/initiator, and Death factors
in ISR, and (iii) PANoptosis and AGT regulator axis in RAAS. Conversely, modules with
higher correlations in the non-inflammatory SL and lower correlations in the inflammatory
SL encompass (i) Antigen Presentation in Innate Immunity, (ii) mtdsRNA in Mitochondrial
Innate Immunity, (iii) NADPH Oxidase in RAAS, and (iv) ISR Inhibitor in ISR. This suggests
a potential for more coordinated module regulations on the corresponding inflammatory
systems in the inflammatory SL than the non-inflammatory SL, while there are fewer
coordinated modules between the inflammatory and non-inflammatory SLs in ISR and
RAAS.
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3. Discussion

This study investigated the underlying genes that regulate cellular processes intimately
associated with SL-specific inflammatory responses. To capture the dynamics of gene ex-
pressions specific to SL, we analyzed RNA-seq data from SL samples with or without the
inflammatory characteristics in histopathology. Different analysis approaches considering
multi-system levels (i.e., transcription and protein levels) encompassed detecting functional
pathways linked to GO-associated database, discovering gene expression alterations of the
core inflammatory gene list, evaluating activation levels of the core inflammatory mod-
ules, identifying PPI-based inflammatory-associated clusters, and computing correlation
coefficients of the core inflammatory modules.

Since alterations of inflammatory-specific gene expressions were the primary inter-
est, we focused on gene expression profile changes between the inflammatory and non-
inflammatory SLs from the custom-made core inflammatory gene list [22], along with
the inflammatory-associated gene list from MSigDB. Several genes exhibiting height-
ened expression in the inflammatory SL, including IL15RA in Extracellular Immunity,
might indicate impaired regulation of SL-associated skin inflammation by suppressing
key inflammation-associated pathways and modulating T-cell proliferation [31]. Other
genes, such as IL-21R, GSDMC, CCR7, TLR9, HAS1/3, IL-17A, IL-22, and CXCL10, have
been previously identified as genes associated with various inflammatory skin disorders.
IL-21R in Extracellular Immunity, playing a pivotal role in atopic dermatitis by enhanc-
ing allergic immune responses with the promotion of migration of dendritic cells toward
draining lymph nodes, displayed elevated expressions in various acute skin lesions [32].
In psoriatic lesions, the remarkable upregulation of GSDMC in RAAS suggested its direct
involvement in the local disease pathology, potentially via mechanisms associated with
inflammatory cell death [33]. CCR7 in Extracellular Immunity was reported to facilitate
dendritic cell migration to lymphoid organs [34] and was found to be instrumental in the
formation of inducible skin-associated lymphoid tissue within psoriatic lesions [35]. TLR9
in Mitochondrial Innate Immunity, activated in several autoimmune diseases, including
psoriasis, is currently under investigation as a potential therapeutic target, where TLR
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antagonists are being developed for the treatment of these conditions [36]. Hyaluronan
synthase subtypes HAS1 and HAS3 in RAAS exhibited distinct roles in skin biology, where
HAS1 was associated with regular differentiation and repair processes, while HAS3 was
linked to inflammatory responses, particularly in disorders like atopic dermatitis [37]. Both
dendritic cells and keratinocytes in psoriasis revealed an overproduction of IL-23 in Extra-
cellular Immunity, subsequently activating Th17 cells in the dermis to generate IL-17A and
IL-22 [38]. Previous studies emphasized that CXCL10 in Extracellular Immunity disclosed
a critical role in disease development, as it facilitated the recruitment and activation of skin
natural killer cells within psoriatic lesions [39].

Considering the activation of inflammatory modules (i.e., gene clusters), Extracellular
Immunity revealed the most outstanding differences between the inflammatory and non-
inflammatory SLs. Mitochondrial Innate Immunity with upregulation in the inflammatory
SL also demonstrated opposing patterns compared with the non-inflammatory SL, imply-
ing their potential roles in managing ROS and mitigating cellular damages and stresses.
Moreover, in Innate Immunity, a substantial portion of both canonical and non-canonical
pathways experienced upregulation in the inflammatory SL, suggesting their involvement
in the initial immune response mediated by ROS. Moreover, in terms of associations at the
protein level based on PPIs, the upregulation of chemokines emerged as key players in the
inflammatory SL, while Cytokine in Extracellular Immunity and Cytokines/Chemokines
in ISR disclosed stronger correlations for the inflammatory SL. This finding may imply that
chemokines are considerably involved in inflammatory processes and cellular stresses are
involved in inflammatory SL cases.

From another perspective, with the inflammatory-associated gene list from MSigDB,
GO analysis divulged multiple functional pathways associated with T-cell response, indicat-
ing a substantial involvement of these cells in the inflammatory SL. The non-inflammatory
SL unveiled an increase in embryonic morphogenesis and skeletal system development,
with a general suppression of metabolic processes, contrasting with the inflammatory SL. In
spite of the overall decrease in metabolic processes, the elevation of inflammation response
in the inflammatory SL suggests that the modulation of inflammation could be critical in
the pathogenesis and progression of SL.

GO and other analysis approaches in this study also demonstrated the role of T cells
and other immune-associated cells in the pathogenesis of SL. Using changes in gene expres-
sion profiling, we identified key players associated with strong inflammation, including
CD7, IL23A, CXCL10, CD4, and CSF1R, predominantly implicated in T-cell activation and
migration. Additionally, we discovered elevated expressions of NLRP3, CD80, and IL2RA,
which are vital for T-cell function. This observation turned out to be in line with the module-
correlation analysis by detecting a robust correlation between Surface marker/Receptor
signaling, Interleukins, Cytokines, and Antigen Presentation in Extracellular Immunity of
the inflammatory SL, providing strong evidence for the involvement of T cells.

Furthermore, the multiple analysis approaches revealed the involvement of the regu-
latory mechanism of UV-induced oxidative stress and tissue damage in the pathogenesis
of SL. Chronic UV exposure is a key environmental risk factor for the development of
pigmentary skin disorders. Specifically, in melasma, an imbalance between oxidants and
antioxidants necessitates heightened oxidative stress [40]. Some of the genes were impli-
cated in the oxidative response as master regulators within the inflammatory pathway,
including NF-κB [41]. Oxidative stress necessitated by UVA radiation could trigger the
activation of NF-κB in human skin fibroblasts [42]. It is possible that melanin production
is initiated by the upregulation of CXCR3-mediated signaling in Extracellular Immunity,
which can also be activated by UVB exposure [43]. Activation of XAF1 in Innate Immunity
in SL patients may contribute to the dysfunctional apoptosis process in response to cellular
stress [44]. Additionally, while ZBP1 in Innate Immunity is known to be associated with
antiviral immunity in regulating oxidative stress in the retina, it is, however, unclear in the
context of skin inflammation [45].
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Conversely, highly expressed genes in the non-inflammatory SL appeared to be in-
volved in protective mechanisms against UV-induced damage. SLC6A9 encoding a glycine
transporter could play a crucial role in keratinocyte responses to UVB exposure since
overexpression of SLC6A9 was reported to protect against UVB-induced senescence [46].
HYAL in RAAS, known for promoting wound healing, may offer advantages in wound
treatment [47]. Downregulation of these genes in the inflammatory SL might indicate a
disruption in cellular regulatory mechanisms against oxidative stress. This suggests that
heightened inflammation appears to render SL patients more susceptible to UV-induced
oxidative stress, and the sensitivity may trigger downstream pathway signaling. Therefore,
the disruption of protective mechanisms could either lead to uncontrolled inflammatory
responses or produce an opposing effect, necessitating further investigation.

Considering activation levels of specific inflammatory modules, it appeared that
ISR and UPR for both the inflammatory and non-inflammatory SLs had similar patterns
with regard to cellular stresses, such as oxidative stress. This observation implies that
perturbations in the regulatory mechanisms controlling ROS may significantly contribute
to the initial stage of SL development, potentially leading to reduced activation of cellular
damage and subsequent repair systems in affected skin [27]. Moreover, additional genes
potentially involved in oxidative stress-associated regulatory mechanisms were found in
the inflammatory SL.

The limitation of this study includes the small number of skin samples.

4. Materials and Methods
4.1. Sample Collection

Skin samples (diameter, 5 mm) were obtained from lesional and adjacent normal areas
from six patients diagnosed with facial SL. Hematoxylin and eosin stains were performed
using part of lesional skin samples (usually diameter, 2 mm) for histopathologic study. The
histologic was reviewed by two dermatologists (Y.-J.L. and S.-H.K.) and confirmed by one
dermatopathologist. The remaining lesional and adjacent normal skin samples were used
for mRNA sequencing. This study was conducted in accordance with the Declaration of
Helsinki and the International Conference on Harmonization and Good Clinical Practice
Guidelines and was reviewed and approved by the Institutional Review Board of Kyung
Hee University Hospital at Gangdong (KHNMC 2022-04-014). Written informed consent
was obtained from all participants before enrollment in this study.

4.2. Library Construction

Total RNA concentration was determined using Quant-IT RiboGreen assay, where
DV200 (% of RNA fragments >200 bp) value was considered for RNA sample quality. For
library construction, 100 ng of total RNA was initially fragmented into smaller pieces and
reverse-transcribed into first-strand cDNA, followed by second-strand cDNA synthesis,
whose products were purified and enriched using PCR to create the cDNA library. To
capture the human exonic regions, the standard Agilent SureSelect Target Enrichment
protocol was applied. A total of 250 ng of cDNA library, mixed with hybridization buffers,
blocking mixes, RNase block, and 5 µL of the SureSelect all exon capture library, underwent
washing and a second round of PCR amplification. The purified product was quantified
using KAPA Library Quantification kits for Illumina sequencing platforms whose library
quality was assessed using the TapeStation D1000 ScreenTape, and Indexed libraries were
subsequently submitted for paired-end (2 × 100 bp) sequencing on an Illumina NovaSeq
(Illumina, Inc., San Diego, CA, USA).

4.3. RNA-Seq Preprocessing

We acquired gene expression profiles from fourteen independent libraries of seven pa-
tients with SL, where each patient provided two distinct samples (i.e., SL and control). The
paired-end sequencing reads, generated from the Illumina sequencing NovaSeq platform,
quality control was processed using Trimmomatic v0.38 by removing adapter sequences
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and trimming bases with poor base quality. We performed the alignment step with STAR
(v2.7.3a) [48] and HTSeq-count (v0.12.4) [49], where RNA-seq reads of the fourteen libraries
were mapped to the reference genome, GRCh38, along with its annotation. Having gene ex-
pression levels as counts, we applied the normalization step using the DESeq2 package [50]
with VST (Variance Stabilizing Transformation).

4.4. Analysis of Inflammatory Regulation

After all the preprocessing, we proceeded with typical differential analysis and gene
ontology (GO) analysis by applying R packages such as EnhancedVolcano [51] and clus-
terProfiler [52] using inflammation-associated genes from the GO database. In order to
selectively explore inflammatory-specific gene expression patterns, we also adopted the
custom-made gene list of inflammatory responses from [22], where Wald-test statistics were
applied. To estimate activity levels of modules/systems, a pathway enrichment method, a
fast Gene Set Enrichment Analysis (fGSEA) [23], with its Nominal Enrichment Score (NES),
was implemented. To search for interactions at the protein level, protein–protein interaction
(PPI) networks were generated by STRING [24] using the inflammation-associated DEGs.

4.5. Analysis of Module Correlation

We employed QLattice [25], a machine learning-based regression and classification
tool, to perform correlation analysis between inflammatory systems and their associated
modules. The analysis revealed regression models, with an implicit consideration of Pear-
son’s correlation using NES values for inflammatory systems and their modules with
inflammatory genes filtered by a p-value < 0.5 from TPM (Transcript Per Million) normal-
ized expression levels. The calculation was processed by comparing each SL sample with
all the normal cases, as well as all the SL samples with all the normal cases. Subsequently,
the NES values of inflammatory modules were used as inputs to regression models in
QLattice, with the NES values of their corresponding inflammatory systems as outputs.

5. Conclusions

In conclusion, the comparison between the inflammatory and non-inflammatory SLs
at the multi-system levels (i.e., transcription and protein level) revealed both commonalities
and differences in inflammatory-associated responses. To investigate underlying functional
mechanisms associated with these factors depending on the inflammation, multiple analysis
approaches from different perspectives were extensively executed. Our findings associated
with inflammatory responses from the implementation unveiled important fundamental
roles in the pathogenesis, development, or progression of SL. Furthermore, considering
the cellular stresses induced by the factors, the upregulation of stress response-associated
genes in response to UV and oxidative stress implies their involvement in the progression
of SL.
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