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Abstract: Although the CNS has been considered for a long time an immune-privileged organ, it is
now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular
space, and choroid plexus) are richly populated in resident immune cells. The advent of more
powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and
upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and
infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated
macrophages. Here, we focus our attention on resident innate immune players and their primary
role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key
interconnected aspects of the immunopathology of multiple sclerosis.
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1. Introduction

Multiple sclerosis (MS) is the most prevalent non-resolving chronic inflammatory
disease of the central nervous system (CNS), affecting more than 2 million people world-
wide [1] with hallmarks of demyelination and axonal damage. MS affects mainly young
people between 20 and 40 years old at onset and is characterized by a heterogeneity of
symptoms, disease course, and outcomes [2]. Considering the age at disease onset and
the target organ, MS emerges as a major cause of disability in young adults in Western
countries, posing a significant health and socioeconomic burden [3].

MS has a complex etiology and typically arises in individuals with a genetically
predisposed background, influenced by a myriad of environmental factors, such as Epstein-
Barr virus infection [4], lifestyle-related factors (physical activity, diet, smoking, etc.), gut
microbiota dysbiosis [5], sun exposure, and vitamin D levels [6], as well as hormonal factors
linked to puberty and pregnancy [7].

MS is conventionally classified into the relapsing-remitting (RRMS) and progressive
(PMS) forms [8]. RRMS is characterized by inflammatory flares followed by a recovery
period. It is generally conceived that tissue damage in MS begins early and accumulates
as the disease progresses, resulting from a complex interplay among immune cells, glia
(myelinating oligodendrocytes, their precursors, microglia, and astrocytes), and neurons [9].
In the last 10 years, more than 15 medications have been approved for modifying the course
of MS. Most of them are approved for RRMS but are not effective in the case of PMS.
These disease-modifying therapies (DMTs), including immunomodulatory drugs (e.g.,
interferon-β, dimethyl fumarate), drugs favoring immune reconstitution (e.g., cladribine,
ocrelizumab), and immune blockers (e.g., Fingolimod, Natalizumab) can reduce the de-
velopment of new white-matter lesions, clinical relapses, and thus disability progression
in patients [10]. Unfortunately, there is still no efficacious treatment for PMS, and active
research is still required to address this unmet clinical need [11].

As with many other CNS pathologies, MS is the result of two main pathological
processes: neuroinflammation and neurodegeneration [12]. The prevalent dogma suggests
that the main player in MS pathobiology is the inflammatory arm that contributes to the

Int. J. Mol. Sci. 2024, 25, 4865. https://doi.org/10.3390/ijms25094865 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25094865
https://doi.org/10.3390/ijms25094865
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7664-2515
https://doi.org/10.3390/ijms25094865
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25094865?type=check_update&version=3


Int. J. Mol. Sci. 2024, 25, 4865 2 of 23

disease with auto-reactive T and B lymphocytes. T cells are activated in the periphery, where
they escape tolerance mechanisms. They then undergo clonal expansion and subsequently
enter the CNS by crossing the blood-brain barrier (BBB). These T cells can acquire the
phenotype of T helper (h)-1, Th17, and Th22, and such differentiation is associated with
specific cytokines/chemokines profiles [13]. In the CNS, these T cells receive further
stimulation and activate a classical pro-inflammatory response, featuring the release of
cytokines such as TNFα, IFNγ, interleukin (IL)-2, IL-12, and IL-17 [14], which in turn drive
the activation of CNS resident cells, including microglia and astrocytes.

In this review, we emphasize the significance and intricacy of the landscape of innate
immune cells in both neuroinflammation and neurodegeneration. Both pathological mech-
anisms are also evident in other CNS diseases such as Alzheimer’s, Parkinson’s, or brain
ischemia. Although the focus of this review is on MS, some of these neuroinflammatory
and neurodegenerative processes can be considered common to a growing number of
neurodegenerative disorders.

2. MS: Pathophysiology and Tools of Investigation
2.1. MS Pathophysiology

MS is a chronic immune-mediated disease of the CNS, characterized by two main com-
ponents mutually influencing each other: neuroinflammation and neurodegeneration [12].
The outcoming manifestations are motor, sensory, and cognitive dysfunctions, which make
MS one of the leading causes of neurological disability in young adults. MS represents an
impelling health urgency, with over 2.8 million diagnosed people worldwide and a preva-
lence that is foreseen to increase over time. Disease relapses followed by a remission phase
and the formation of new lesions in the CNS are the classical characteristics of RRMS [15];
namely, the disease form is present in about 85% of patients at diagnosis. In many pa-
tients, after 15–20 years, neurodegeneration and chronic inflammation lead to a pattern of
steady deterioration referred to as secondary progressive MS (SPMS) [16]. Less than 10%
of patients develop a primary progressive form since the beginning (PPMS) [9]. In recent
years, MS classical phenotypic characterization has been revised with a more dynamic and
multifactorial view of the pathogenesis, in which neuroinflammation—classically associ-
ated with RRMS—and neurodegeneration—associated with PMS—coexist. This vision
has been recently illustrated by T. Kuhlmann [17], and it is based on the concept that the
clinical course of MS is a continuum, with contributions from concurrent pathophysiology
varying across individuals and over time. In line with this hypothesis, the shift from RRMS
to SPMS is only an apparent evolution reflecting a partial deviation from localized acute
injury to widespread inflammation and neurodegeneration. Another key component is
the failure of compensatory mechanisms, such as neuroplasticity and remyelination. Alto-
gether, the course of MS is a spectrum given by simultaneous pathological and regenerative
mechanisms [17].

2.2. Preclinical Models of MS

In addition to the use of magnetic resonance imaging technology, the human CNS is
not accessible for investigations. To overcome this limitation, MS research takes advan-
tage of new human in vitro models, as well as established in vivo preclinical models that
preferentially involve rodents.

Although human brain organoids are constantly arising and getting closer to the
human brain, they are still scarcely recapitulating the whole complexity of the human
CNS [18]. Indeed, this “brain-on-a-dish” approach lacks, in most cases, a proper immune
system, a vasculature system, a lymphatic system, and the BBB, which are pivotal compo-
nents of the CNS—not to mention the choroid plexus, the meninges, and the skull bone
marrow [19,20].

Thus, the research community working on MS cannot yet avoid taking advantage
of rodent’ models for proper in vivo relevant preclinical research. Several models are
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available; some of them are inducible, while others are genetic mouse models that can still
help dissect MS pathobiology [21].

The inducible models comprise the experimental autoimmune encephalomyelitis
(EAE) [22] and the cuprizone-induced model for demyelination [23]. MS is an exclusively
human disease that does not occur spontaneously in non-human organisms [24]. How-
ever, the development of the EAE model, as well as of other animal models, substantially
increased the comprehension of MS pathobiology and helped to design new therapeutic
strategies. EAE was first described 90 years ago [25], and it is induced by active immu-
nization with peptides derived from myelin proteins emulsified in complete Freund’s
adjuvant [26] or adoptive transfer of myelin-specific T cells [27,28], together with pertussis
toxin increases the permeability of the BBB [29]. Disease symptoms in the C57BL/6 strain
are macroscopically evident around day 10 post-immunization and gradually worsen up
to the disease peak, which occurs at around day 20 after immunization. Later, symptoms
slightly decrease and eventually stabilize to a lower clinical score compared with the disease
peak (chronic phase) [30]. Antigen processing, presentation, and cytokine-mediated steps
in secondary lymphoid tissue precede the generation of fully encephalitogenic T cells. Once
differentiated, autoimmune Th1 and Th17 enter the CNS and initiate local inflammation.
The most used encephalitogenic peptides are the MOG35-55 for the C57BL/6 background,
while the PLP135-151 is used to induce a similar but not identical disease in the SJL mouse
strain [22]. EAE is a model that well recapitulates multiple MS features, being a complex
condition in which the interaction between immunopathological and neuropathological
mechanisms leads to inflammation, demyelination, axonal loss, and gliosis [31]. EAE is
considered a good proxy for RRMS since it is characterized by an initial inflammatory flare
followed by a chronic phase featuring a slight partial remission. Although EAE does not
arise spontaneously, it is induced pharmacologically; the disease onset and severity are
sensitive to several environmental factors, including gut microbiota dysbiosis [32]. Despite
some limitations that cannot allow the use of the EAE paradigm to reproduce human SPMS
or PPMS, this animal model is considered a valid tool for preclinical studies on MS as well
as for designing therapeutic tools for RRMS.

The cuprizone model is often used as a preclinical proxy of MS, although it is more
appropriate to define it as a tool helping the investigation of demyelination/remyelination
processes [33]. Cuprizone [bis(cyclohexanone) oxaldihidrazone] is a copper chelating
agent that affects oligodendrocytes metabolism [34–38], although the exact mechanism
of myelin degeneration remains unclear. Cuprizone is administered orally with the diet
(0.2% w/w) and leads to oligodendroglia cell death, activation of microglia and astrocytes,
and subsequent demyelination, recapitulating MS neurodegeneration and local inflam-
mation [39,40]. This model is particularly instrumental in studying processes involved in
demyelination/remyelination processes and tissue regeneration phases, given that cupri-
zone has a transient effect and spontaneous remyelination occurs after the withdrawal of
the neurotoxin [20].

Genetic MS preclinical mouse models, such as the EAE-prone 2D2 and T cell Receptor
(TCR)1640 transgenic mice, are also useful for dissecting molecular pathways involved in
MS pathogenesis. These mice express a MOG35–55 specific transgenic TCR on the C57BL/6
background but do not develop MOG-specific B cell response or anti-MOG antibodies [41].
The 2D2 mice were originally ascribed to develop optic neuritis, but they may develop
EAE with an incidence of around 1% of the colony [42]. However, this percentage rises to
50% if they undergo i.v. injections of pertussis toxin at a 2-day interval and up to 100% if
administered with 50 µg of the MOG-specific IgG1 antibody [41].

TCR1640 mice express a TCR recognizing MOG92-106 on an SJL/j background and
spontaneously develop EAE at a rate of around 90%. This TCR was isolated from an
encephalitogenic Th1 cell clone and uses Vα8.3 and Vβ4 genes [43]. This animal model
recapitulates well the clinical sex differences that are seen in patients since 80% of females
develop a spontaneous disease, which is close to RRMS, while in males, the incidence rate
is close to 60%, and the disease form resembles PMS. In addition, contrary to the induced
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EAE model, where the majority of the neuroinflammation is detected in the spinal cord,
in this transgenic mouse model, lesions are present both in the spinal cord and the brain,
getting this model closer to the patient’s reality [43].

3. Innate Immunity of the CNS: Classification and Ontogeny
3.1. CNS Innate Immune Cell Classification

The brain parenchyma innate immune system is composed mainly of myeloid cells be-
longing to the macrophage family, which are called CNS-associated macrophages (CAMs) [44].
CAMs include microglia, located throughout the brain parenchyma, and three types of
border-associated macrophages (BAMs) that are located at the interface between the CNS
and BBB [45]. BAMs consist of perivascular macrophages in the perivascular space between
the endothelial and parenchymal basement membranes, meningeal macrophages that line
the meninges and its vasculature, and macrophages within the choroid plexus. Among
the CAMs family, microglia are the most abundantly studied cells, mainly because until
recently, it was thought that the microglia were quite the only CNS immune component
present within the healthy CNS, working as keepers of physiological conditions.

Apart from CAMs, the brain also harbors resident dendritic cells (DCs) and innate
lymphoid cells (ILCs), as illustrated in Figure 1. Although DCs and ILCs are critical
members of the CNS immune landscape, this review focuses mostly on CAMs, with some
general references to the other cell types.
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Figure 1. The CNS innate immune system during homeostasis. Scheme of the innate immune popu-
lations of the brain under physiological conditions, divided by anatomical areas. Brain parenchyma:
under physiological conditions, microglia are highly abundant in the CNS. Resting microglia cell
morphology features a small cell body with a highly branched ramified morphology. Key phenotypic
markers are TMEM119, SALL1, CX3CR1, P2Y12, MerTK, and Iba1. CNS meninges: The meninges are
membranes surrounding the brain and the spinal cord: the dura mater, the arachnoid mater, and the
pia mater. The arachnoid and pia mater delimit the subarachnoid space and are collectively defined
as leptomeninges. BAMs, dendritic cells, and ILCs populate the meninges of the healthy brain. BAMs
can be distinguished in subdural (MHC-II low, Egfl7+, and Lyve1+) and dural macrophages (both
MHC-II high and low). NKs, ILC1, heterogeneous LTi/LTi-like cells, and NCR+ ILC3s have been
found in all three meningeal layers, while ILC2s populate mainly the dura mater but are absent in
the leptomeninges. Choroid plexus: The primary function of the choroid plexus is the secretion and
modulation of CSF. CpMΦ (ApoE+, Ms4a7+, and Ms4a6c76+) are the largest class of innate immune
cells in the choroid plexus and are predominantly associated with blood vessels. Dendritic cells are
present in the choroid plexus and in the CSF. NKs and ILC1 have been found in the choroid plexus
but in smaller amounts compared with the meninges, while ILC3 is absent and ILC2 abundance
increases in an age-dependent way. Perivascular spaces are populated mainly by dendritic cells and
PvMΦ (CD163+, CD206+, and Lyve1+). PvMΦ is located between the vascular basement membrane
and the glial limitans of the brain parenchyma and is part of the neurovascular unit (NVU), composed
of non-fenestrated endothelial cells, pericytes, and astrocyte endfeet.
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3.2. Microglia

Microglia are a core cell type of the CAM system and keepers of CNS homeostasis.
Microglia patrol the CNS to detect pathogens or tissue injury [33,34] and are deeply in-
volved in synaptic pruning during neurodevelopment [46,47]. Microglia contribute to
synaptic remodeling following tissue damage [48,49] and modulate neuronal survival
and neurogenesis through the secretion of growth factors such as IGF-1 [50], TGFβ [51],
m-CSF [52], ARG-1 [53], and BDNF [54,55]. Other mechanisms through which microglia
influence the neurogenesis of the adult hippocampus involve two phagocytic pathways:
the purinergic receptor P2Y12 and the tyrosine kinases of the TAM family Mer tyrosine
kinase (MerTK)/Axl. The study of Diaz-Aparicio et al. demonstrates that neurogenesis
is transiently increased in mice in which MerTK was conditionally downregulated, while
it is disrupted in mice chronically deficient for the two phagocytic pathways. Interest-
ingly, the authors of this study found that the secretome of phagocytic microglia limits
the production of new neurons both in vivo and in vitro. They suggest that microglia can
operate as a local sensor of cell death, modulating the balance between proliferation and
survival in the neurogenic niche through the phagocytosis secretome and supporting the
long-term maintenance of adult hippocampal neurogenesis [56]. Microglia seem to exert
different functions that appear to be region-specific either in the adult or in the developing
brain [57,58]. Indeed, it has been reported that neonatal microglia, but not healthy adult
microglia, exhibit a unique myelinogenic and neurogenic phenotype [59]. Neonatal CD11c+

microglia cells predominate in primary myelinating areas of the developing brain and
express a transcriptional signature that can sustain neuronal and glial cell survival, migra-
tion, and differentiation. Furthermore, these specific microglia cells are the primary source
of IGF-1, a peptide hormone that is essential for proper neurodevelopment [60]. CD11c+

microglia are also found in adult mice during neuroinflammation, although they do not re-
capitulate what they express in neonatal life [59]. Another key signaling pathway operating
in microglia during brain development is the Triggering receptor expressed in the myeloid
cells 2 (Trem2) pathway, which controls the bioenergetic profile of pyramidal neurons of the
hippocampus [61]. Trem2 is a myeloid cell-specific gene that is only expressed by microglia
in the brain [62] and is essential for microglia-mediated synaptic refinement. In the absence
of Trem2, developing neurons in the hippocampal Cornus Ammonis (CA)1, but not in the
CA3 subfield, display a compromised energetic metabolism and cause a transcriptional
rearrangement of hippocampal pyramidal neurons at birth, which is followed by altered
synapses and circuit maturation [61].

At steady-state, microglia cell morphology features a small cell body with a highly
branched ramified morphology. Key phenotypic markers expressed by resting cells are
TMEM119, SALL1, CX3CR1, P2Y12, MerTK, and Iba1 [63].

During neuroinflammation, tissue injury, or neurodegeneration, microglia undergo
activation through a highly dynamic transition process that involves many intermediate
states [64]. Different activation states are reflected by an altered cellular morphology. In-
deed, soon after their activation, microglial cell bodies increase in size, and the cellular
processes become shorter and thicker [65]. Apart from morphological rearrangements, the
activation of microglia includes a series of functional alterations, such as the downregula-
tion of homeostatic genes [66] and metabolic reprogramming [67]. Among key homeostatic
genes, Trem2 and Apoe are involved, respectively, in phagocytosis and chemotaxis, as well as
lipid metabolism following microglial uptake of myelin lipid debris [68]. Reactive microglia
also upregulate the expression of MHC-II, CD206, CD86, and CD16 [69]. One of the main
pathways of activation of innate immune cells, including microglia, is NF-κB. At homeosta-
sis, NF-kB is sequestered in the cytoplasm through interacting with inhibitors of κB (IκB):
IκBα, IκBβ, and p100 [70]. Upon stimulatory signals, IKKβ phosphorylates IκB and enables
NF-κB to enter the nucleus [71]. Interestingly, NF-kB has been implicated in multiple
phenotypes of both homeostatic and reactive microglia [72]. On the one hand, under physi-
ological conditions, the microglial NF-kB/IKKβ pathway regulates hippocampal synaptic
plasticity [73]. On the other hand, this pathway in the EAE model can exert either protective
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or detrimental functions, which depend on the time frame in which the pathway starts to
be activated. While at the early stage of the disease, microglial activation through NF-kB
may accelerate the onset of the disease, at later time points, NF-kB activation in microglia
and macrophages protects against CNS infiltration by peripheral immune cells [74]. Finally,
depletion of IKKβ in myeloid cells results in enhanced neuronal long-term potentiation
in EAE, suggesting that brain cognitive abilities may also be regulated by the approved
treatments blocking NF-κB activity in MS [75].

3.3. Border-Associated Macrophages (BAMs)

Given their spatial localization, BAMs are also called “non-parenchymal macrophages;”
this definition per se discriminates these cells from parenchymal microglia. Indeed, BAMs
dwell at the interface between the brain and the periphery and are classified mainly by
their regionalization. BAMs are close to CNS borders and include macrophages of the
perivascular space (perivascular macrophages, PvMΦ), the choroid plexus (cpMΦ), and
cells located within the meninges (meningeal macrophages, MnMΦ) [76]. Although BAMs
have been recently deeply characterized and classified [77], very little is known about the
specific functions exerted by these cells in physiological and pathological conditions. The
development of single-cell technologies allowed the identification of specific markers for
each BAM subtype. In general, BAM subsets can be distinguished by the differential ex-
pression of the following genes: CD38, Lyve1, MHC-II, and CCR2. Blood circulating CCR2+

myeloid cells likely represent fresh hematopoietic myeloid progenitors that can replace the
BAMs accumulating in the choroid plexus [78] and dura mater. CD38+ or Lyve1+ BAMs are
normally CX3CR1low/negative, while MHC-II+ BAM subsets are CX3CR1high. Lyve1+MHC-
II+ BAMs are enriched in the pia mater, perivascular spaces, and choroid plexus while
being absent in the dura mater, a region rich in Lyve1 negative MHC-II+ BAMs [77].

CAM and BAM subsets can be clearly phenotypically distinguished in the healthy
brain. However, upon activation (i.e., in the pathological brain), these cells become indistin-
guishable because they express similar molecular markers [77]. Thus, similar to microglia,
BAMs are highly plastic cells that can change their gene expression patterns in the disease
state [45]. In contrast to monocyte-derived cells and DCs, which increase in numbers during
EAE, BAMs decrease, lose their heterogeneity, and almost exclusively co-express CD38 and
MHC-II [77]. CAMs express over a thousand receptors and likely respond to hundreds, if
not thousands, of molecules that can drive changes in their functionality. Being a member
of the innate immunity family, they sense the environment through extra- and intra-cellular
pathogen recognition receptors (PRRs), recognizing damage-associated molecular patterns
released in the CNS in response to cellular injury and death [79]. Reactive microglia and
macrophages also produce inflammatory cytokines such as TNFα, IL-6, IL-1β, and IL-23,
leading to sustained immune activation [80].

MnMΦ: The meninges are composed of three layers of membranes comprising the
dura mater (the outer-most layer), the arachnoid mater, and the pia mater (inner lay-
ers), which surrounds the brain and the spinal cord [81]. The meninges of the healthy
brain are populated by BAMs, which can be distinguished mainly in subdural and du-
ral macrophages. Subdural macrophages are characterized by the following pattern of
expression: MHC-II low, Egfl7+, and Lyve1+, while dural macrophages are either MHC-II
high or low [82,83]. Recent findings demonstrate that the dural sinus is a site of immune
surveillance where antigen-presenting cells (APCs), most likely dural MHC-II high BAMs,
capture brain-derived antigens and interact with T cells [84]. Moreover, the study of
Rebejac et al. [85] demonstrates that meningeal macrophages are crucial in case of viral
infection. BAMs featuring MHC-IIhigh are essential to counteract peripheral lymphocytic
choriomeningitis viruses that lead to a transient infection and activation of the meningeal
cell populations [85].

CpMΦ: The primary function of the choroid plexus is the secretion and modulation of
CSF, as well as waste and metabolite removal [86]. BAMs are the largest class of immune
cells present in the choroid plexus and are predominantly associated with blood vessels [87].
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They express Apoe, Ms4a7, and Ms4a6c [88]. As seen for dural BAMs, cpMΦ can also
express different levels of MHC-II [82,88], but, contrary to dural BAMs, this distinction
does not match with distinct cellular clusters with specific functions; rather, it seems to
be age-dependent, suggesting a maturation-dependent shift from cells with low levels of
MHC-II to cells with high levels of MHC-II [88]. Although additional studies are needed to
clarify the function of these cells, the transcriptional profile of CpMΦ strongly suggests that
they are involved in lipid metabolism, phagocytosis, antigen presentation, and immune
responses [82]. They are most probably involved also in regulating CSF homeostasis since
mice lacking CpMΦ display enlarged ventricles and hydrocephaly [89]. Further evidence
comes from a recent study using CellChat analysis [90], reporting that CpMΦ induces
pathogenic CSF production in a hydrocephalus mouse model [91].

PvMΦ: they reside in the perivascular space, between the vascular basement mem-
brane and the glial limitans of the brain parenchyma. Together with non-fenestrated
endothelial cells, mural cells, and astrocytic end feet, they compose the neurovascular
unit (NVU), the minimal functional unit of the BBB, which has the important role of re-
stricting the entry of neurotoxic components, pathogens, or peripheral immune cells into
the brain [92]. CD163, CD206, and Lyve1 [93] are hallmarks of PvMΦ. PvMΦ is reported
to have a region-specific distribution, with the highest abundance in the olfactory bulb
and hippocampus [92]. PvMΦ is likely to play key functions in the maintenance of the
BBB integrity, patrolling the entry of macromolecules into the brain [93,94]. Indeed, sev-
eral results obtained from their experimental ablation using pharmacological or genetic
tools indicate that these BAMs can contribute to the fine-tuning of cerebral blood flow
and regulation of hypercapnia-induced vasodilation [95]. Moreover, PvMΦ can establish
purinergic contacts with cells in the NVU in both mice and humans [84,85,96,97] and
maintain vascular integrity by engulfing foreign macromolecules, as shown with the 10 to
70 kDa dextran [98]. They also regulate BBB permeability by regulating the expression of
tight junctions through pigment epithelium-derived factors, both in vitro and in vivo [99].
PvMΦ is also implicated in pathological conditions, such as cerebral malaria [100] and diet-
induced hypothalamic inflammation [101,102]. Furthermore, PvMΦ is an important player
in CNS glucose metabolism and hypothalamic–pituitary–adrenal axis regulation [103].
The PvMΦ population was found to contribute also to vascular leakage and granulocyte
recruitment in the acute phase of stroke [104], as well as to neurovascular alterations in
Alzheimer’s disease [105]. Lastly, PvMΦs are linked to hypertension that occurs following
systemic inflammation and brain ischemia. Indeed, the PvMΦ cell population is modulated
by circulating inflammatory cytokines such as IL-1β and contributes to the development
of hypertension through sympathoexcitation [103]. By releasing soluble signals, such as
cytokines, these cells may also be involved in angiogenesis and vascular remodeling in
both physiological and pathological conditions [106].

3.4. Dendritic Cells

DCs are highly specialized professional APCs expressing MHC-II along with cos-
timulatory molecules. Since DCs activate T and B cells, they represent a bridge between
innate and adaptive immune cells [107]. At the same time, DCs express a plethora of
PRRs, such as Toll-like receptors (TLRs), which lead these cells to a massive secretion of
pro-inflammatory cytokines and type I interferon [108]. Plasmacytoid DCs (pDCs) are
unconventional DCs that do not present antigens but produce large amounts of type I
interferon in response to pathogen detection [109]. DCs represent 1% of total immune
cells in the brain and are also detectable in the CSF [110–112]. Brain DCs contribute to
tissue patrolling and neuroinflammation [113]. In physiological conditions, DCs localize
at the level of the choroid plexus, meninges, and perivascular spaces while they invade
the parenchyma in response to inflammatory conditions [114]. Therefore, CNS-resident
DCs are in an optimal position to interact with infiltrating T cells as they are close to CNS
entry points. We want to underscore the presence of conventional DCs (cDCs) in dural
sinuses, allowing the presentation of antigens coming from the CSF [84,115]. CNS-DCs
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are divided into three main subsets, corresponding to cDCs1, cDC2, and pDCs, which can
be distinguished by the differential expression of several markers, such as CD11b, CD172,
and CD24. The cDC1 cluster is a homogenous cell population identified as CD11blow

CD172low CD24+ CD135high CD117+. The cDC2 subset is slightly more abundant than the
cDC1 subset [66]. These cells express high levels of CD11b and CD172 and can be further
distinguished into CD24+CD206+ cDC2, CD24neg CD64+/low CD206−/low cDC2, CD135high

cDC2, and PDL1+ cDC2. pDCs are defined as Ly6C+ B220+ Siglec-H+ [66].

3.5. Innate Lymphoid Cells

Even if it is out of the scope of this article, we mention the ILCs that are part of the
CNS resident innate immune populations below. ILCs are the innate counterparts of T cells,
but they lack antigen receptor rearrangement. The ILC family comprises natural killer (NK)
cells, Lymphoid Tissue Inducer (LTi) cells, ILC1, ILC2, and ILC3. NK cells are considered
the innate counterpart of CD8+ T lymphocytes, while the other subsets share characteristics
of helper CD4+ T cells. More in detail, Th1, 2, and 17 correspond to ILC1, 2, and 3. In
homeostatic conditions, the CNS parenchyma is almost devoid of ILCs, but they are found
in regions belonging to the non-parenchymal CNS [116].

NK cells and ILC1 are both defined by the expression of NK1.1+ NKp46+, while they
are differentially expressing CD49b+ (ILC1) versus CD49a (NK), the transcription factors
Eomes and T-bet (NKs) versus T-bet exclusively (ILC1) [117]. Both NKs and ILC1 produce
mainly IFNγ. While NKs are cytotoxic, ILC1s are generally non-cytotoxic due to the lower
expression of perforin and granzyme B [118]. NKs and ILC1 have been found in the
meninges and, in smaller amounts, in the choroid plexus.

The ILC2 population protects the brain against helminth parasites that may infect the
CNS [119]. ILC2s communicate with neuronal populations through the transmembrane
receptor RET (REarranged during Transfection), a tyrosine kinase that is activated by the
neuronal glial-derived neurotrophic factor (GDNF) and leads to the secretion of IL-5 and
IL-13 [120]. In the healthy brain, ILC2 cells populate mainly the dural meninges while they
are absent in the leptomeninges (arachnoid mater and pia mater) [121].

In the choroid plexus, the abundance of ILC2s seems to be age-dependent: few ILC2s
are present in a healthy young brain, while this number increases with aging, most probably
because once they have infiltrated the plexus do not re-enter into the blood circulation
and accumulate locally [121]. Another working hypothesis explaining the accumulation of
ILC2s over time involves their transcriptional plasticity, enabling the differentiation of NKs
and ILC1s into ILC2s [122].

ILC3 cells depend on the transcription factor RORγt and are generally divided into
two main cell subsets, NCR− and NCR+ ILC3s. The NCR− cell population includes LTi
cells generated before birth and LTi-like cells generated after birth [123]. Heterogeneous
LTi/LTi-like cells and NCR+ ILC3s have been found in the meninges [124].

3.6. Ontogeny of the CNS Resident Myeloid Compartment

Microglia and BAMs are long-lived and self-renewing cells that mostly originate from
embryonic progenitors in the prenatal yolk sac that colonize the brain during develop-
ment upon migration [125]. Microglia, MnMΦ, and PvMΦ do not rely on circulating bone
marrow-derived hematopoietic progenitors to refill their population, while CpMΦ are
partially replenished by circulating monocytes [82]. Although meningeal macrophages
were supposed to be independent of circulating precursors [78], dural macrophages are
gradually refilled by monocytes over time, probably due to a more permissive barrier state
compared with the leptomeninges [82]. Indeed, skull bone marrow monocytes can enter
the dura via specialized channels and enrich the local immune landscape in case of neu-
roinflammation [126]. Interestingly, the study of Bennett et al. [127] shows that microglial
identity is shaped by both ontogeny and environmental signals and that the surrounding
nervous tissue is pivotal to sustaining homeostatic gene expression in microglia [127].
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DCs arise in the bone marrow from a common DC precursor called pre-DC cells and
expand in response to the FMS-like receptor tyrosine kinase 3 (FLT3) ligand [128,129]. Im-
portantly, resident DCs are clearly distinguished from peripheral inflammatory monocyte-
derived DCs [130].

4. CNS Innate Immunity Contribution to Neuroinflammation

As introduced in Chapter 1, neuroinflammation is one of the driving features of MS,
modeling disease pathogenesis. In the earlier MS phase, neuroinflammation is character-
ized by peripheral inflammatory cell waves that infiltrate the CNS, given the increased
BBB permeability [131]. Although the initial inflammatory phase is composed mainly of
activated autoreactive T lymphocytes, Th1 and Th17, CNS innate immune cells are required
for the initiation of the disease. As illustrated in Figure 2, they can both boost and fight
against neuroinflammation. Indeed, on the one hand, microglia can phagocytose and
kill CNS-infiltrating Th17 cells [132], while on the other hand, it has been reported that
microglia and meningeal macrophages are essential in the EAE onset since depleting them
with an inhibitor of colony-stimulating factor 1 receptor provoked around five days of
delay in EAE onset and a decrease in inflammatory cells into the CNS [133,134]. BAMs also
contribute to neuroinflammation by recruiting immune cells to the sites of inflammation
and scavenging debris [135,136].
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Figure 2. Involvement of CNS resident innate immune cells in neuroinflammation. CNS resident
innate immune cells can both boost and fight against neuroinflammation. The left side of the
image represents their pro-inflammatory potential (1–5), while on the right side, it is depicted as
their anti-inflammatory role (6–8). Left side: (1) Microglia and meningeal macrophages recruit
peripheral inflammatory cells into the CNS. (2) ILC1s in the choroid plexus favor the entry of
peripheral inflammatory cells through the expression of IFN-γ and TNF-α. (3) Microglia, BAMs,
and resident cDCs foster T-cell activation through overexpression of MHC-II and co-stimulatory
molecules. (4) ILC3s act as APCs to autoimmune T cells in focal lesions of the CNS parenchyma.
Furthermore, accumulated ILC3s release pro-inflammatory cytokines such as IFN-γ, IL-17, and
GM-CSF, which boost chronic inflammation. (5) NK and ILC1 favor the recruitment of inflammatory
Th17. Right side: (6) Microglia can phagocytose and kill CNS-infiltrating Th17 cells, counteracting
inflammation. (7) After the disease onset, cDCs prime the development of regulatory T cells instead
of Th17. (8) ILC2 switch the differentiation of CD4+ T cells into Th2, at the expense of Th17 activation.

Upon activation, BAMs upregulate the expression of key molecules for antigen pre-
sentation, such as MHC-II and CD44 [137]; such activation has been associated with their
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ability to foster T cell activation after the initial inflammatory phase [77]. Accordingly, the
work of Montilla et al. demonstrates the role of microglia and BAMs in antigen presentation
during EAE onset [134]. However, other published results support the hypothesis that
such a role is mainly played by cDCs and not by BAMs [138,139]. In the study published
by Mundt et al., the authors used a combination of high-dimensional single-cell mapping
and conditional MHC-II ablation across all CNS APCs to identify DCs as responsible for
the reactivation of encephalitogenic T cells in vivo [138]. Along the same lines, the study
of Giles et al. demonstrates that cDCs residing in the meninges, brain, and spinal cord
undergo a clear expansion inside the parenchyma during neuroinflammation, and the
selective depletion of these cDCs leads to a decrease in the number of myelin-primed
donor T cells in the CNS, therefore greatly reducing the incidence of clinical EAE [139].
It is still unclear which APC population is predominant in antigen presentation during
the onset of EAE, but certainly, innate immune cells are a pivotal driving force for the
initial phase of neuroinflammation. The precise mechanisms by which CNS-associated
APCs facilitate autoimmune T-cell reactivation are still largely unknown, but one possible
explanation is the autophagic pathway. Indeed, transgenic mice bearing the conditional
deletion of ATG5 (which belongs to the E3-like complex that catalyzes the lipidation of
ATG8 proteins such as LC3B) [140] in DCs are EAE resistant [141,142]. Furthermore, a
study by Keller et al. demonstrates that DC-mediated antigen processing is dependent on
LC3-associated phagocytosis [143].

During inflammation, CSF-resident DCs infiltrate the inflamed brain and reach the
cervical lymph nodes, where they enhance the systemic humoral response against immuno-
genic myelin antigen [144]. Both resident DCs and peripheral inflammatory monocyte-
derived DCs are found at the site of inflammation [139,145], but only CNS resident cDCs
are capable of processing immunogenic peptides from larger myelin fragments and activat-
ing myelin-specific naive, as well as effector, CD4+ T cells [139]. After the disease onset,
DCs decrease their antigen processing potential and prime regulatory T cells [146,147],
switching toward an immune-modulatory profile. Indeed, selective depletion of resident
DCs can give rise to different phenotypes depending on the disease phase at which the
depletion has been performed. In summary, DC depletion can reduce the pathogenicity of
EAE [139], but it can also alter the immune tolerance, leading to an excessive inflammatory
response [148,149].

Concerning the ILC populations, it has been shown that these cells have subset-specific
functions in the frame of neuroinflammation. Depletion of NK and ILC1 through anti-
NK1.1 antibody or using Tbx21−/− (encoding T-Bet) or using Tbx21f/f NKp46Cre+ mice
suppress Th17-mediated neuroinflammation in EAE [150,151]. In addition, ILC1s of the
choroid plexus act most probably as gatekeepers for the entry of peripheral inflammatory
cells, mainly by the secretion of IFN-γ and TNFα. Both cytokines upregulate the expression
of a plethora of trafficking molecules in epithelial cells, such as VCAM1and ICAM1, as well
as chemokines, such as CCL2, CCL5, CXCL9, CXCL10, and CX3CL1 [152].

Interestingly, ILC2s have been implicated in gender bias effects observed in MS pa-
tients: female patients display a disease onset at a younger age and exhibit a more severe
disease course than males. How can ILC2 be linked to this phenotype? A possible an-
swer to this question involves the testosterone that increases IL-33 expression, a cytokine
that activates ILC2, which, in turn, increases Th2 responses and limits Th17-dependent
demyelination [153].

ILC3s act as APCs to autoimmune T cells in focal lesions of the CNS parenchyma [150,154].
Along the same lines, the deletion of MHC-II+ ILC3s substantially ameliorates EAE. On
the other hand, the accumulation of ILC3s produces pro-inflammatory cytokines such as
IFN-γ, IL-17, and GM-CSF, which are responsible for chronic inflammation [124].

In conclusion, as seen for myeloid cells, ILCs can also have either a beneficial or a
detrimental role during neuroinflammation.
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5. CNS Innate Immunity Contribution to Neurodegeneration

A characteristic feature of MS is the presence of inflammatory T and B lymphocytes,
plasma cells, and macrophages in the meninges and the perivascular spaces [155]. Often,
these immune cells are organized in large lymphoid-like aggregates and are detectable in
patients with short disease duration as well as in patients with PMS [156–158]. Lymphoid
follicles are associated with severe microglia activation and cortical demyelination. No-
tably, 40–70% of people with SPMS display these lymphoid structures, which are absent
in patients with PPMS. Nonetheless, patients with PPMS display increased meningeal
inflammation associated with extensive cortical demyelination and neurite loss, even in
the absence of lymphoid follicles [159]. Meningeal inflammation is thought to be one
of the leading causes of meningeal-associated cortical lesions and subpial lesions, both
prominent in PMS [160]. These lesions are the site of active demyelination, the first cause
of neurodegenerative progression.

The only way to stop, or perhaps to reverse disease progression, would be to stimulate
active remyelination within the damaged tissue. The broad CAMs family is necessary for
remyelination and may have several other neuroprotective roles. Since, following activation,
microglia, and macrophages share most of their phenotypical markers, it is difficult to
identify the contribution of a specific subset versus another one. Thus, they are mostly
considered to behave as a single functional entity. As described for neuroinflammatory
mechanisms, in the case of neurodegeneration, both microglia and macrophages can have
either pro-inflammatory or anti-inflammatory functions, which depend on the disease
stage. On the one hand, they help recruit oligodendrocyte progenitor cells (OPCs) and
secrete neurotrophic factors such as IGF-1, which exert pivotal functions for OPC survival
and their differentiation into mature myelinating oligodendrocytes [161]. On the other
hand, CAMs in early CNS lesions of both MS and preclinical mouse models have a clear
pro-inflammatory role and contribute to secreting inflammatory factors such as nitric oxide,
TNFα, and IL-1β [162].

CAMs actively phagocyte and clear myelin debris, which is rich in cholesterol. The
cholesterol intake is the reason why, along with the process, they acquire a lipid-laden,
foamy cellular shape. This cholesterol-driven phenotype causes a switch towards a repara-
tive anti-inflammatory [163,164] identity, which is molecularly explained as follows: myelin
breakdown generates lipid and cholesterol metabolites that are internalized by phagocy-
tosis and activate nuclear liver X receptors (LXR), which reverse cholesterol transport
and modulate inflammation [165]. At the same time, LXR-mediated cholesterol efflux
increases the release of immunomodulatory factors such as IL-10 [166]. Unfortunately, this
is not the end of the story. The resulting cholesterol build-up forms crystals that disrupt
the lysosomes and activate the inflammasome pathway, restoring the pro-inflammatory
phenotype [167,168]. Microglial cholesterol metabolism is regulated by TREM-2. Indeed, it
has been shown that lipid droplet formation upon myelin uptake is necessary for triggering
a regenerative response, and it is dependent on TREM-2. CAMs deriving from TREM-
2-deficient mice are unable to adapt to excess cholesterol exposure and form fewer lipid
droplets, thus being more susceptible to cellular stress [169]. Furthermore, Cignarella and
colleagues demonstrated that TREM2 is highly expressed on myelin-laden CAMs observed
in actively demyelinating lesions in the CNS of subjects with MS. In parallel, subjects with
a genetic deficiency of TREM2 display a defect in phagocytic pathways [170].

The importance of CAMs within the MS lesions is underlined by the fact that the
newest definition and classification of MS lesions takes into consideration also the number
and phenotype of infiltrating CAMs in addition to the demyelination/remyelination state of
the lesion [171]. The current guidelines distinguish between active, mixed active–inactive,
or inactive lesions [162].

Active lesions, present both in the white and the grey matter, are chronologically the
first appearing lesions and are the most frequent lesions found in MS patients with a short
disease duration or a diagnosis of RRMS. Along with disease progression, they decrease
in frequency. Active lesions are hypercellular and characterized by loss of myelin and
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a dense infiltration with foamy CAMs, as well as by astrogliosis with increased GFAP
expression [172,173]. T cells are also present, but their number is lower than myeloid
cells [162,174]. Active lesions contain neurons that are subjected to several stress factors
and high levels of oxidative damage that most probably depend on the release of nitric oxide
by CAMs in response to the inflammatory environment [175]. Active lesions can be further
distinguished into active demyelinating and active post-demyelinating lesions based on
the demyelination state. Active and demyelinating lesions include areas with ongoing
demyelination. These lesions are characterized by phagocytic macrophage/microglia.
Active and post-demyelinating lesions are densely infiltrated by foamy, lipid-containing
macrophages/microglia and lack myelin degradation products [162].

Mixed active/inactive lesions are featured by demyelination and by the presence of
a hypocellular center almost entirely depleted of CAMs. The center is bordered by a rim
of activated CAMs. Moderate T-cell infiltrates are present perivascularly or throughout
the lesion center. Hypertrophic astrocytes are also detectable [171]. This type of lesion
is observed mostly in patients with PMS or subjects with a disease history of more than
10 years [176]. In these lesions, the thickness of the myeloid rim is highly variable and
seems to reflect the speed of lesion evolution. The CAMs can be either foamy or still actively
phagocytic [176].

Inactive lesions are the most common lesions observed in PMS; they are extensively
demyelinated, have clear borders, and have no ongoing myelin loss. The CAM density is
lower or similar to normal white, grey, and deep grey matter of healthy controls. CAMs
present in these lesions show a predominantly surveillant ramified morphology; they
contain much less degraded myelin products, and some express homeostatic microglia
markers such as P2RY12 [15,176,177].

Even though lesions are considered the principal site of neurodegeneration, MS pa-
tients also present alterations in the normal-appearing white and grey matter. The density
of CAMs is similar to the density that is observed in age-related healthy controls; however,
cell reactivity is increased, as shown by a reduced expression of homeostatic markers such
as P2RY12 [162].

5.1. Dendritic Cells

DCs secrete pro-inflammatory cytokines, which are critical in recruiting immune
components to demyelinating sites [178,179]. Mature DCs are found in postmortem brains
and spinal cords of MS patients. They are localized in meningeal infiltrates and are often
close to proliferating lymphocytes [180], suggesting that meningeal DCs might promote
the formation of demyelinating lesions. Another evidence supporting the implication of
DCs in neuroinflammation comes from clinical trials with some DMTs. For example, the
decrease in relapses observed in MS patients treated with Natalizumab, a recombinant
humanized IgG4κ monoclonal antibody that binds to α4-integrin, was associated with a
reduction in the DC number in lesions [181].

5.2. ILCs

CNS resident ILCs have been implicated in neuroinflammation and demyelination
processes. We already described in Chapter 3 that IL-33 orchestrates a beneficial effect
through the activation of ILC2 cells [153]. In addition, IL-33 upregulates oligodendrocyte
gene expression and myelination through p38/MAPK phosphorylation, promoting re-
myelination of damaged neurons [182,183], thus creating a functional link that connects
ILC2 with reparative processes. Furthermore, meningeal ILC2s exhibit neuroprotective
properties by upregulating the expression of CGRP (Calcitonin gene-related peptide I) and
other neuroprotective molecules in a mouse model of spinal cord contusion [184,185].

6. Conclusions and Therapeutic Perspective

This review aims to discuss the role exerted by tissue-resident innate immune cells in
MS pathobiology, considering classical degenerative processes, namely neuroinflamma-
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tion and the subsequent degeneration process. The cellular and molecular features here
described in the frame of MS can also be easily translated to other CNS pathologies in
which CAMs are emerging to be active players, such as Alzheimer’s, Parkinson’s, and
brain ischemia.

The picture emerging from the recent literature indicates that the interplay between
CAMs and the other cell types involved in MS is quite complex. Processes such as in-
flammation, tissue damage, demyelination, and axonal loss, as well as remyelination and
regeneration, can only be accomplished when all the actors involved play their active roles.

MS has been considered for many years a disease mainly driven by T and B lympho-
cytes, but recent discoveries pointed out a primary role of innate immune cells not only in
priming the adaptive responses but also in leading and maintaining local inflammation,
demyelination, and associated neurodegeneration.

Whether neuroinflammation or neurodegeneration comes first, to prevent disease
progression and promote tissue repair, MS therapies should be active on both processes and
consider the role of innate mediators, including microglia, macrophages, DCs, and ILCs.

Although therapeutics solely targeting BAMs are still missing, studies have found that
conventional DMTs might exert their neuroprotective effects by acting through activated
microglia [186]. Furthermore, several new compounds that are currently at the pre-clinical
stage could target CAMs, such as ethyl pyruvate. This compound reduces the expression
of high-mobility group box 1 (HMGB1) in activated myeloid cells, inhibiting their pro-
inflammatory potential and protecting against EAE [187].

To highlight the importance of innate immune cells as a central functional hub in MS
pathogenesis, one of the most promising lines of research is focused on pharmacological
inhibitors of Bruton’s tyrosine kinase (BTK), an enzyme expressed in B lymphocytes and
myeloid cells, including microglia. Several phase 2 clinical trials on BTK inhibitors resulted
in a reduction in acute inflammation, combined with CNS immune modulation [188–190].
As CAMs subset can phagocytose myelin, lipid profiles could be a cost-effective predictor
of disease progression in MS patients [191]. Similarly, it has been shown that there is a
functional association between dyslipidemia and brain atrophy in MS. Therefore, lipids and
lipoprotein could be future targets for therapeutic intervention in MS. Moreover, given the
importance of cholesterol efflux after myelin-debris accumulation in CNS resident myeloid
cells, it has also been demonstrated in the cuprizone preclinical model that treatment with a
new TREM2 agonistic antibody promotes the clearance of myelin debris, increased density
of oligodendrocyte precursors in the demyelinated areas, as well as the formation of mature
oligodendrocytes, enhancing remyelination and axonal integrity [170].

Moreover, specific drugs acting on the innate system components may alleviate
some side effects that are associated with classical DMTs and help regain proper CNS
immunomodulation. For instance, Natalizumab prevents the infiltration of leukocytes into
the CNS [192]. However, the strong immunosuppression declined the surveillance ability
of the local immune system, potentially increasing the risk of progressive multifocal en-
cephalopathy. The combined use of agonists for the innate receptor TLR3 could re-establish
CNS immune surveillance in the EAE, restoring a proper immune balance and reducing
the risk of encephalopathy [193].

To sum up, therapeutic interventions blocking the pro-inflammatory effects of CAMs
during disease progression while preserving their anti-inflammatory functions have achieved
great success [186]. However, as infiltrating inflammatory monocytes and resident mi-
croglia contribute differentially to the disease pathophysiology, it is necessary to develop
finely targeted strategies able to discriminate among the different myeloid cells and their
activation state, which is dynamic over time and space.

Concerning resident ILCs, it has been shown that some drugs developed against
Th1 and Th17 can also be effective on innate lymphoid populations [194]. As an exam-
ple, immunosuppressant DMTs such as dimethyl fumarate (DMF), Natalizumab, Fin-
golimod (FTY720—acting on S1P receptors1), and Daclizumab (monoclonal antibody
against CD25) target also NK cells [195]. Furthermore, Daclizumab and Fingolimod show
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an additional effect on other members of the ILC family: Daclizumab expands immunoreg-
ulatory CD56bright NK cells in peripheral blood, and CSF [196,197], decreases circulating
RORγt+ ILCs (normally increased in MS patients versus healthy controls [198]) and shifts
the LTi phenotype towards CD56bright NKs [199]. Fingolimod targets NK cells through
their expression of S1PR1 and S1PR5; consequently, NK cells’ egress from the lymph nodes
is compromised [200]. However, the overall effect of Fingolimod on NK cells is still unclear,
given that independent studies reported a phenotypic alteration in the long-term treatment,
with increased frequency of circulating CD56dim mature NK cells and decreased amount
of CD56bright and CD127+ ILCs [201,202]. A study investigating whether ILC subsets also
express S1PR1 found that ILC2 expresses S1PR1 upon activation [203]. In line with this
finding, a comparison between untreated MS patients and patients under Fingolimod treat-
ment showed that the total number of ILCs in peripheral blood was reduced [200], most
probably because Fingolimod blocks ILC2 migration from the gut during an inflammatory
state, as seen in mice [203]. Cladribine, too, seems to modulate circulating ILCs. Cladribine
acts as a nucleoside analog of deoxyadenosine, inhibiting DNA synthesis and repair and
resulting in cell apoptosis [204]. Cladribine has an immunomodulatory role [205]. The
study by Aglas-Leitner et colleagues analyzes the effect of Cladribine on blood circulating
ILCs in MS patients over time and reported that Cladribine reduces the majority of ILC, but
not MS-inhibitory CD56bright NK cells, ILC2, and CD38+ NK cells [206]. Although our focus
is to underline potential therapeutic mechanisms of action rather than giving an overview
of the state-of-art therapeutic approaches, we should remind the reader that some of the
DMTs just cited showed some safety issues in the patients. Daclizumab was suspended
and withdrawn in 2018 after causing serious inflammatory brain disorders in 12 patients
worldwide [207]. Independent reports also underlined cases of tumefactive demyelination
in patients after Fingolimod withdrawal or during Fingolimod treatment [208–211].

In conclusion, when characterizing conventional and new DMTs, it is pivotal to take
into account also their potential effect on systemic and CNS resident innate immune cell
populations. Lastly, we underline here that the same immune cell subset can have both
a beneficial and a detrimental role in the frame of lifelong disease as MS is, and such
differences may depend mostly on the disease phase.

7. Highlights

- The CNS immune landscape is plastic and multifaceted. Apart from brain parenchyma,
it is crucial to consider also immune cell populations residing at the borders: meninges,
perivascular space, and choroid plexus.

- The resident CNS innate immune cells are involved in multiple aspects of CNS home-
ostasis and pathology. Here, we focus on neuroinflammation and neurodegeneration,
two interdependent facets of multiple sclerosis, as well as other neurological disorders.

- The same cellular subset can have either a beneficial or detrimental role in the frame
of MS, according to the disease phase.

- When analyzing the effect driven by DMTs, it is pivotal to consider both adaptive
immunity and innate immunity since they mutually influence each other.
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APC: Antigen-presenting cells; BAMs: Border-associated macrophages; BBB: Blood-brain barrier;
BDNF: Brain-derived neurotrophic factor; CAMs: CNS-associated macrophages; cDCs: conventional
dendritic cells; CNS: Central nervous system; CpMΦ: choroid plexus macrophages; CSF:
Cerebrospinal fluid; DCs: Dendritic cells; DMTs: Disease-modifying therapies; EAE: Exper-
imental autoimmune encephalomyelitis; GDNF: glial-derived neurotrophic factor;; IFN:
Interferon; IGF-1: Insulin-like growth factor 1; ILCs: Innate lymphoid cells; LTi: Lym-
phoid tissue inducer; LXR: Liver X receptor; M-CSF: Macrophage colony-stimulating factor;
MHC-II: Major histocompatibility complex II; MS: Multiple sclerosis; NK: Natural killer;
NVU: Neuro-vascular unit; OPCs: Oligodendrocyte progenitor cells; pDCs: plasmacytoid
dendritic cells; PMS: Progressive multiple sclerosis; PPMS: Primary-progressive multiple
sclerosis; PvMΦ: Perivascular macrophages; RRMS: Relapsing–remitting multiple sclerosis;
SPMS: Secondary progressive multiple sclerosis; Th: T helper; TCR: T cell receptor; TGF-β:
Transforming growth factor beta; TLR: Toll-like receptor; TNF-α: Tumor necrosis factor
alpha. Trem2: Triggering receptor expressed on myeloid cells 2.
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are reflected in the central nervous system and the gut. Biomed. Pharmacother. 2017, 96, 78–85. [CrossRef] [PubMed]

188. Krämer, J.; Bar-Or, A.; Turner, T.J.; Wiendl, H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat. Rev. Neurol. 2023, 19,
289–304. [CrossRef]

189. Vermersch, P.; Arnold, D.L.; Wolinsky, J.; Havrdova, E.K.; Kinkolykh, A.; Hyvert, Y.; Tomic, D.; Montalban, X. MRI and Clinical
Outcomes of Evobrutinib, a Bruton’s Tyrosine Kinase Inhibitor, in Relapsing Multiple Sclerosis Over 2.5 Years of the Open-Label
Extension to a Phase 2 Trial. Mult. Scler. Relat. Disord. 2023, 71, 104360. [CrossRef]

190. Reich, D.S.; Arnold, D.L.; Vermersch, P.; Bar-Or, A.; Fox, R.J.; Matta, A.; Turner, T.; Wallström, E.; Zhang, X.; Mareš, M.; et al.
Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised,
double-blind, placebo-controlled trial. Lancet Neurol. 2021, 20, 729–738. [CrossRef]

191. Zoubi, S.A.; Esam, H.; Elzawi, E. Impact of Dyslipidemia on Progression of Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023,
71, 104367. [CrossRef]

192. Rudick, R.; Polman, C.; Clifford, D.; Miller, D.; Steinman, L. Natalizumab. JAMA Neurol. 2013, 70, 172–182. [CrossRef] [PubMed]

https://doi.org/10.1038/s41593-020-00757-6
https://doi.org/10.1038/s41586-019-1769-z
https://doi.org/10.1126/science.aan4183
https://doi.org/10.1084/jem.20210227
https://doi.org/10.1007/s00401-020-02193-z
https://doi.org/10.1007/s00401-016-1653-y
https://doi.org/10.1016/j.tins.2009.08.002
https://doi.org/10.1016/j.jneuroim.2008.12.010
https://doi.org/10.1007/s00401-020-02189-9
https://doi.org/10.1093/brain/awr128
https://doi.org/10.1002/ana.24497
https://doi.org/10.1093/brain/awx113
https://doi.org/10.1084/jem.20190460
https://doi.org/10.1093/brain/awr182
https://doi.org/10.1111/bpa.12969
https://www.ncbi.nlm.nih.gov/pubmed/33955606
https://doi.org/10.1038/s12276-021-00660-5
https://www.ncbi.nlm.nih.gov/pubmed/34489558
https://doi.org/10.1371/journal.pone.0152163
https://www.ncbi.nlm.nih.gov/pubmed/27022724
https://doi.org/10.1016/j.nbd.2023.106061
https://www.ncbi.nlm.nih.gov/pubmed/36870457
https://doi.org/10.1084/jem.20161982
https://www.ncbi.nlm.nih.gov/pubmed/27994070
https://doi.org/10.3389/fphar.2019.00286
https://www.ncbi.nlm.nih.gov/pubmed/30967783
https://doi.org/10.1016/j.biopha.2017.09.110
https://www.ncbi.nlm.nih.gov/pubmed/28965011
https://doi.org/10.1038/s41582-023-00800-7
https://doi.org/10.1016/j.msard.2022.104360
https://doi.org/10.1016/s1474-4422(21)00237-4
https://doi.org/10.1016/j.msard.2022.104367
https://doi.org/10.1001/jamaneurol.2013.598
https://www.ncbi.nlm.nih.gov/pubmed/23128399


Int. J. Mol. Sci. 2024, 25, 4865 23 of 23

193. Hussain, R.Z.; Cravens, P.C.; Doelger, R.; Dentel, B.; Herndon, E.; Loof, N.; Tsai, P.; Okuda, D.T.; Racke, M.K.; Stüve, O. TLR3
agonism re-establishes CNS immune competence during α4-integrin deficiency. Ann. Clin. Transl. Neurol. 2018, 5, 1543–1561.
[CrossRef]
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