
Citation: Abrignani, V.; Salvo, A.;

Pacinella, G.; Tuttolomondo, A. The

Mediterranean Diet, Its Microbiome

Connections, and Cardiovascular

Health: A Narrative Review. Int. J.

Mol. Sci. 2024, 25, 4942. https://

doi.org/10.3390/ijms25094942

Academic Editor: Antonio

González-Sarrías

Received: 24 February 2024

Revised: 25 April 2024

Accepted: 28 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Mediterranean Diet, Its Microbiome Connections,
and Cardiovascular Health: A Narrative Review
Vincenzo Abrignani 1,2, Andrea Salvo 1,2, Gaetano Pacinella 1,2 and Antonino Tuttolomondo 1,2,*

1 Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy;
vincenzabri@gmail.com (V.A.); andrea.salvo996@gmail.com (A.S.); gaspare.parrinello@unipa.it (G.P.)

2 Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties,
University of Palermo, 90127 Palermo, Italy

* Correspondence: bruno.tuttolomondo@unipa.it

Abstract: The Mediterranean diet (MD), rich in minimally processed plant foods and in monounsatu-
rated fats but low in saturated fats, meat, and dairy products, represents one of the most studied diets
for cardiovascular health. It has been shown, from both observational and randomized controlled
trials, that MD reduces body weight, improves cardiovascular disease surrogates such as waist-to-hip
ratios, lipids, and inflammation markers, and even prevents the development of fatal and nonfatal
cardiovascular disease, diabetes, obesity, and other diseases. However, it is unclear whether it offers
cardiovascular benefits from its individual components or as a whole. Furthermore, limitations in
the methodology of studies and meta-analyses have raised some concerns over its potential car-
diovascular benefits. MD is also associated with characteristic changes in the intestinal microbiota,
mediated through its constituents. These include increased growth of species producing short-chain
fatty acids, such as Clostridium leptum and Eubacterium rectale, increased growth of Bifidobacteria,
Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia
species. Such changes are known to be favorably associated with inflammation, oxidative status,
and overall metabolic health. This review will focus on the effects of MD on cardiovascular health
through its action on gut microbiota.

Keywords: Western-type diet; Mediterranean-type diet; gut microbiota; short-chain fatty acid;
trimethylamine N-oxide; bile acids; cardiovascular disease; atherosclerosis; nutrients

1. Introduction

Numerous studies spanning several decades have demonstrated that adherence to the
Mediterranean diet (MD) is associated with a reduced risk of cardiovascular disease [1],
cancer [2], and enhanced cognitive health [3]. Broadly speaking, the MD represents the
customary dietary pattern of populations residing along the Mediterranean Sea coast.
Nevertheless, variations exist among the diets of the Mediterranean coastal countries, with
the consistent element being the consumption of virgin olive oil.

Ancel Keys initially characterized the MD during the 1960s as a diet low in satu-
rated fat and rich in vegetable oils, predominantly observed in regions like Greece and
southern Italy [4].

The definitions encompass specific guidelines emphasizing a high consumption of
extra virgin (cold-pressed) olive oil, vegetables, including leafy greens, fruits, cereals,
nuts [5], and legumes, along with moderate intakes of fish, meats, dairy products, and
red wine. Conversely, the MD encourages limited consumption of eggs and sweets. Each
description provides recommendations regarding the frequency of consumption, such
as “often”, “daily”, or “biweekly”, and offers subjective terms like “abundance”, “high”,
“moderate”, “low”, “some”, and “vast” to indicate the quantities of these foods within the
diet. Most descriptions do not provide specific numerical servings or serving sizes and
do not specify the quantities of dietary additives, such as sauces, condiments, tea, coffee,
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salt, sugar, or honey. Some definitions do emphasize the consumption of predominantly
wholegrain cereals [6,7].

Various types of diets, such as the Mediterranean, dietary approaches to stop hy-
pertension (DASH), Western, vegetarian, ketogenic, and Paleolithic diets, have been sub-
ject to comparative studies regarding their impact on cardiovascular risk. For instance,
plant-based diets have been associated with favorable outcomes such as reduced blood pres-
sure, lower blood lipid levels, and decreased platelet aggregation compared to non-vegetarian
diets. Additionally, they have demonstrated benefits in weight management, as well as
a decreased risk of developing metabolic syndrome and type-2 diabetes [8]; however,
strict adherence to such diets may entail potential risks, including hyperhomocysteinemia,
protein deficiency, anemia, and decreased creatinine content in muscles [9]. Also, the
ketogenic diet has been noted for inducing rapid and significant weight loss, alongside
positive biomarker changes, such as reduced serum hemoglobin A1c levels in individuals
with type-2 diabetes. Nonetheless, it is accompanied by a notable elevation in low-density
lipoprotein cholesterol levels, leading many healthcare practitioners to exercise caution in
endorsing it [10]. Also, the consumption of Western-style diets, characterized by high calo-
rie intake, processed foods, and low nutritional quality, coupled with sedentary lifestyles,
has led to a significant health concern termed metaflammation. This state of chronic
metabolic inflammation is associated with the development of various non-communicable
diseases (NCDs). Metaflammation plays a crucial role in the pathogenesis of several
prevalent NCDs, including obesity, type-2 diabetes, cardiovascular diseases, certain can-
cers, and neurodegenerative disorders. Chronic low-grade inflammation is a hallmark of
metaflammation, which arises from the continuous activation of the innate immune system
due to excessive nutrient intake, particularly of fats and sugars, along with inadequate
physical activity [11].

Surprisingly, the exact mechanisms of action are not yet fully understood and various
hypotheses have been proposed to explain the potential beneficial effects of the MD. Among
these, a presumed link between the MD and the intestinal microbiota was put forward no
more than a few years ago; this idea is therefore considered relatively new [12].

Two human studies have now made progress toward better understanding the role of
the gut microbiota and the MD in disease risk factors. The first one analyzed the effects on a
population of healthy overweight or obese subjects with sedentary lifestyles who habitually
consumed small amounts of fruits and vegetables during an 8-week follow-up [13]. The
second, on the other hand, examined a population of elderly subjects considered non-frail
or pre-frail [14]. Among the different food products offered to the MD group, there were
less meat and refined grain products and more fish, fruit, vegetables, legumes and whole
grains, as well as a daily portion of nuts. Therefore, this diet doubled the total amount
of fiber, increased the ratio of plant to animal protein by 2.5 times, and included fewer
saturated fatty acids and more polyunsaturated fatty acids [15]. In the second previously
mentioned study, metabolomic analyses of stool, urine, and blood revealed a clear change
after MD implementation, and this change was characterized by significant changes in
several metabolomic biomarkers (e.g., higher urolithins, tryptophan betaine, and oxindole
acid and lower 3-acetic and carnitine, p-cresol, and indoxyl sulphate) considered presumed
signs of adherence to the MD. In addition to the metabolome, the authors found specific
changes in the composition of the gut microbiota, such as a higher abundance of Faecal-
ibacterium prausnitzii and Roseburia and a lower abundance of Ruminococcus gnavus and R.
torques. Interestingly, the change in insulin resistance was linked to specific bacteria, and
subjects who reduced their index of insulin resistance had higher baseline levels of Bac-
teroides uniformis and B. vulgatus and lower levels of Prevotella covers [14]. According to the
authors, this is mainly due to the intake of fiber, some vitamins (C, B6, and B9), and various
minerals. In contrast, in the control group, the changes were mostly related to a greater
increase in total fat intake. Although, at baseline, there were already some differences in the
composition of the gut microbiota between countries (mainly related to local dietary habits),
the diversity was similar, and adherence to the MD was associated with an attenuated
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loss of microbiome diversity. Seventy-five operational taxonomic units (OTUs) provided
high predictive performance for identifying microbiome response to the MD. Furthermore,
44 OTUs showed a positive association with diet adherence, i.e., they had a higher abun-
dance when the MD was strictly observed, while 45 OTUs were negatively associated with
diet adherence. The authors called these OTUs “diet positive” or “diet negative”. Diet-
positive OTUs included F. prausnitzii, Eubacterium rectale, Roseburia, Bacteroides thetaiotaomi-
cron, P. copri, and Anaerostipes hadrus. Diet-negative OTUs included R. torques, Collinsella
aerofaciens, Coprococcus came, Dorea formicigenerans, Clostridium ramosum, Veillonella dispar,
Flavonifractor plautii, and Actinomyces lingnae. It is important to note that these different
taxa were shared between countries, reinforcing the fact that, despite different baselines
and specific dietary habits between countries, MD drives the composition of the gut
microbiota consistently [16].

From our research, it is evident that the Mediterranean diet, rich in fruits, veg-
etables, olive oil, and fish, reduces cardiovascular risk by promoting heart health. Its
anti-inflammatory and antioxidant properties, combined with low saturated fat intake, con-
tribute to lower incidences of cardiovascular diseases and improved overall cardiovascular
well-being. This effect is also mediated by the positive alterations the diet induces in the
gut microbiota, further enhancing its impact on cardiovascular risk reduction.

In this narrative review, the authors provide their expert insight; in addition, a litera-
ture search was undertaken on this topic in PubMed, Google Scholar, and clinicaltrials.gov
to ensure relevant trials were discussed. Selection criteria of this manuscript included
English language articles dealing with experimental and epidemiological and clinical as-
pects linking MD, microbiome, and CVD. This article, in addition, is based on previously
conducted studies and does not contain novel data of animal and human study origin.

2. The Mediterranean Diet Components

The MD can be conceptually simplified through a pyramid representation. At the base
of the pyramid, one finds the essential food items that should constitute the foundation of
the diet, contributing the highest energy intake. As you ascend the pyramid, you encounter
foods that should be consumed in moderate quantities, including those of animal origin
and items rich in sugars and fats, which warrant moderation and are reserved for rare
consumption for special events [7].

The most important foods of the MD are as follows [17]:

2.1. Extra-Virgin Olive Oil (EVOO)

EVOO serves as the primary source of unsaturated fatty acids and various con-
stituents, including fat-soluble vitamins, polyphenols, chlorophylls, and phytosterols.
The polyphenols found within olive oil exhibit a spectrum of beneficial properties, en-
compassing anti-inflammatory, antioxidant, neuroprotective, cardioprotective, anticancer,
anti-obesity, anti-diabetic, antimicrobial, and antisteatotic effects. These effects are pre-
dominantly attributed to the presence of secoiridoid derivatives, notably oleuropein,
oleacein, and oleocanthal, as well as simple phenolic compounds such as tyrosol and
hydroxytyrosol [18]. Polyphenols may play a pivotal role in the acknowledged phar-
macological attributes of olive oil, which encompass anti-atherogenic, antihepatotoxic,
hypoglycemic, anti-inflammatory, antitumoral, antiviral, analgesic, purgative, and im-
munomodulatory activities. Furthermore, these polyphenols contribute to safeguarding
against age-related neurodegenerative conditions [19]. Hence, the quality of EVOO is
contingent not only upon the levels of free fatty acids stemming from triacylglycerol degra-
dation (acidity) but also on its polyphenol content, the compounds accountable for its flavor
profile, and a multitude of its health-promoting attributes [20]. Studies have indicated
that hydroxytyrosol diminishes mitochondrial oxidative stress and neuroinflammation in
Alzheimer’s disease (AD)-prone transgenic mice by triggering nuclear factor erythroid
2-related factor 2 (nrf2)-dependent gene expression [21], and EVOO polyphenols addi-
tionally boost Nrf-2 activation within the liver, resulting in the release of antioxidant
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enzymes [22]. Nrf2 is considered the principal regulator of redox homeostasis, and its
activation inhibits pro-inflammatory mediators like a cytokines, cyclooxygenase-2 (COX-2),
and nitric oxide synthase inducible (iNOS) [23]. Polyphenols present in EVOO mitigate
inflammation by decreasing the expression and activity of transcription factors nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1).
This effect is attributed to their capability to scavenge free radicals, break radical chains,
and minimize the generation of reactive oxygen species (ROS) and reactive nitrogen species
(RNS) [24]. Research findings have indicated that hydroxytyrosol demonstrates in vitro an-
timicrobial activity against several infectious agents in the gastrointestinal and respiratory
tracts, including Vibrio cholerae, Vibrio parahaemolyticus, Haemophilus influenzae, Salmonella
typhi, Moraxella catarrhalis, and Staphylococcus aureus. This antimicrobial effect is observed at
relatively low inhibitory concentrations. Additionally, hydroxytyrosol exhibits antimicro-
bial properties against foodborne pathogens like Listeria monocytogenes, Yersinia enterocolitica,
and Salmonella enterica [25].

2.2. Legumes, Cereals, and Nuts

The Mediterranean diet commonly incorporates legumes such as beans, lentils, and
chickpeas [26]. These legumes are frequently combined with various cereals, fish, meats,
and vegetables. Similarly, seeds and nuts like hazelnuts, almonds, tree nuts, and pistachios
have been integral to the diet for millennia and are consumed on a daily basis. Nuts and
legumes have been traditional dietary staples in the Mediterranean region, as well as in
Asia and the Americas. The primary constituents of pulses and beans are flavanols [27],
a category of polyphenols characterized by a ketone group in their chemical structure.
These flavanols are associated with the reduction in endothelial dysfunction, the lowering
of cholesterol and blood pressure, and the regulation of energy metabolism [28]. On a
molecular level, a substantial portion of these effects is facilitated through interactions with
nitric oxide metabolism in the endothelial cells lining the blood vessels. This interaction
results in the amelioration of endothelial dysfunction, leading to enhanced vasodilation and
reduced blood pressure. These biomarkers collectively serve as indicators of cardiovascular
disease risk, thereby substantiating the protective influence of flavanols in the prevention
of chronic cardiovascular conditions [29]. The germ of whole grains harbors a polyamine
known as spermidine, which has demonstrated the capacity to extend the chronological
lifespan in various organisms, including flies, nematodes, rodents, and human cells. Sper-
midine is recognized for its inhibition of histone acetyltransferases, thereby conferring
greater resistance to oxidative stress, augmenting autophagy, and significantly diminishing
subclinical inflammation and the occurrence of cell necrosis during the aging process [30].

2.3. Fruits and Vegetables

The Mediterranean climate provides an ideal environment for the cultivation of numer-
ous vegetables and fruits that constitute a significant portion of the MD [31]. Indigenous
Mediterranean vegetables encompass turnips, artichokes, lettuce, and radishes. Interactions
with external regions have led to the introduction of novel varieties of fruits and vegeta-
bles. For instance, citrus fruits and eggplant were introduced from North Asia and India,
while zucchini, tomatoes, potatoes, peppers, corn, and green beans were introduced to the
Mediterranean region from the Americas. Epidemiological evidence demonstrates that
dietary supplementation with fruits and vegetables rich in polyphenols offers benefits in
both preventing and ameliorating the adverse effects of aging on neuronal communication
and behavior [32].

Another prominent characteristic of the Mediterranean diet is its exceptionally ele-
vated content of fiber, particularly insoluble fiber, with notable bioavailability. It has been
demonstrated that the consumption of a high-fiber diet induces substantial alterations
in the gut microbiota composition, both in rodents and humans, resulting in a reduction
in Firmicutes and an increase in Bacteroidetes, notably Bacteroides acidifaciens [33]. This
shift in microbiota composition yields heightened production of short-chain fatty acids,
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including acetate, propionate, and butyrate. Accumulating evidence from experimental
animal studies suggests that the microbial generation of these short-chain fatty acids from
dietary fiber exerts suppressive effects on the development of numerous inflammatory,
autoimmune, and allergic diseases [34]. In accordance with the World Cancer Research
Fund (WCRF), the consumption of vegetables has been associated with a decreased risk
of developing cancers affecting the oral cavity, pharynx, larynx, esophagus, and stomach.
However, the available evidence regarding the impact of vegetable consumption on the
risk of cancers affecting the colorectum, endometrium, ovary, lung, and nasopharynx is lim-
ited [35]. The vegetables featured in the MD are abundant in various chemical compounds
that exhibit potential benefits in the context of diverse cancer types. These compounds
include lycopene in tomatoes, organosulfur compounds in onions and garlic, capsaicin in
hot peppers, indol-3-carbinol, isothiocyanates, and sulforaphane in cruciferous vegetables,
monoterpenes in oranges and lemons, polyacetylenes in pumpkin and carrots, spermi-
dine and ferulic acid in whole grains, and ginkgetin in capers. Furthermore, the presence
of estrogenic molecules with low potency, such as biochanin A, formononetin, daidzein,
coumestans, and genistein in beans, enables them to compete with endogenous estrogens
for binding to estrogen receptors, thereby obstructing their mitogenic effects [36].

2.4. Dairy Products

Traditionally, Mediterranean countries have exhibited low consumption of milk and
dairy products, yet the ample availability of land dedicated to raising goats and sheep
for their meat, milk, and wool has facilitated the production of yogurt, cheese, and other
fermented dairy products. Milk serves as a rich source of lacto-fermented foods, including
yogurt and cheese [37]. Lactose in milk undergoes fermentation to lactic acid through the
action of lactic acid bacteria (LAB), specifically Lactobacillus delbrueckii subsp. Bulgaricus and
Streptococcus thermophilus. This fermentation process results in a reduction in milk pH, thus
thwarting the proliferation of pathogenic microorganisms [38]. The presence of bacteria
in yogurt contributes to the transient microbiota and thereby enhances the gut environ-
ment. Several studies have indicated potential benefits of yogurt in the management of
type-2 diabetes. For example, a meta-analysis of randomized controlled trials evaluating
the use of yogurt in type-2 diabetes management reported a reduction in complications
associated with regular consumption [39]. Another well-known fermented dairy product
in the Mediterranean region is cheese, including varieties such as pecorino, halloumi, brie,
chevre, manchego, feta, Parmigiano Reggiano, and ricotta. Consumption of cheese in
modest amounts is recommended within the MD. During the initial stages of fermentation,
LAB utilize milk carbohydrates, resulting in the production of indigestible oligosaccharides.
The consumption of these oligosaccharides exerts prebiotic effects and enhances the benefi-
cial gut microbiota [40]. Furthermore, the short-chain fatty acids generated through the
metabolism of oligosaccharides and resistant starch, both prevalent in the Mediterranean
diet, by the gut microbiota have the capacity to induce satiety by delaying gastric emptying.
This process leads to an increase in the production of gut hormones, such as glucagon-like
peptide-1 and peptide-YY. Importantly, the MD, in addition to promoting weight loss, has
been associated with a significant reduction in fasting glucose, C-peptide levels, and free
and total testosterone levels [41].

2.5. Fish

The Mediterranean region boasts a robust fishing tradition, resulting in substantial
fish consumption. Polyunsaturated fatty acids (PUFAs) encompass long-chainω-3 PUFAs,
notably eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3),
primarily obtained from fish and seafood, as well as alpha-linolenic acid, derived from
various plant sources. Among PUFAs,ω-3 free fatty acids elicit anti-inflammatory effects
via the generation of specialized pro-resolving mediators, known as oxylipins, through
oxygenated metabolites [42]. A recent report from the American Heart Association has sug-
gested thatω-3 PUFA supplements may decrease the risk of death resulting from coronary
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heart disease in patients with a history of coronary heart disease. This potential benefit
may be attributed to a reduction in ischemia-induced sudden cardiac death. However,
the treatment did not demonstrate a reduction in the occurrence of recurrent nonfatal
myocardial infarction. Furthermore, the American Heart Association recommends a daily
ω-3 supplement of 1 g for patients with cardiovascular disease. This supplementation is
advocated for its potential advantages, including lowering triglyceride (TG) levels and
the prevention of arrhythmias and atherosclerosis [43]. Nevertheless, environmental con-
taminants have hindered the potential benefits of omega-3 fatty acids. For example the
presence of nanoplastics (NPs) have demonstrated the capacity to induce intestinal and
neural toxicity in fish, with a particular focus on elucidating the role of neurotransmitter
and intestinal microbiota interactions in the underlying mechanisms of toxicity. Alterations
in 14 metabolites have been identified as correlated with changes in three major micro-
bial groups: Proteobacteria, Firmicutes, and Bacteroidetes. These findings indicate that
polystyrene nanoparticles (PS-NPs) elicit intestinal inflammation, growth inhibition, and
hindered development in zebrafish, phenomena strongly associated with dysregulated
regulation within the brain-intestine-microbiota axis [44]. Research has demonstrated
that exposure to polystyrene nanoparticles (PS-NPs) induces oxidative stress, leading to
inflammation and apoptosis in the heart of carp. Furthermore, the extent of damage was
found to be inversely correlated with the particle size of PS-NPs [45].

2.6. Wine

In European Mediterranean countries, the MD is notably associated with the moderate
consumption of wine during meals. Some studies have sought to identify biomarkers of
polyphenol intake and specifically polyphenols derived from certain food groups, including
those originating from red wine [46]. Researchers have observed that polyphenols present
in the MD exert a direct influence on the process of autophagy; for instance, resveratrol,
a polyphenol found in nuts, wine, and grapes, functions as an autophagy inducer [47].
The impact of resveratrol on autophagy may be elucidated by its capacity to enhance the
activity of the deacetylase sirtuin 1, which subsequently regulates the activity of numerous
autophagy-related proteins. Similarly, polyphenols found in virgin olive oil, such as oleo-
canthal and oleuropein, have been documented to promote autophagy [48]. Moreover, the
connection between autophagy and atherosclerosis and cardiovascular diseases has been
delineated [49]; for example, autophagy plays a pivotal role in the effective development
and functioning of cardiomyocytes [50]. Furthermore, autophagy plays a fundamental
role in regulating the inflammatory response of macrophages, potentially by constrain-
ing the activity of the inflammasome and the formation of foam cells, likely through the
modulation of lipid turnover [51].

3. MD and Cardiovascular Outcomes: Clinical, Epidemiological, and Intervention Studies

The concept that higher adherence to the MD was associated with a lower cardio-
vascular disease (CVD) incidence and mortality was first proposed in the 1950s. From
then, epidemiological studies in Italy [52,53], Greece [54–57], and Spain [58,59] and even in
non-Mediterranean populations [60–68] showed benefits from long-term adhesion to the
MD. In addition, randomized controlled intervention trials, like the secondary prevention
trial, the Lyon diet heart study [69], the PREDIMED (PREvención con DIeta MEDiterránea)
trial in a low-risk population [70], and others [71], reported associations with lower CVD.
A recent Cochrane review update on 30 randomized controlled trials (12,461 participants)
showed, in primary prevention, little or no effect of the PREDIMED intervention (advice to
follow an MD plus supplemental extra-virgin olive oil or tree nuts) compared to a low-fat
diet on CVD mortality (hazard ratio (HR) 0.81, 95% confidence interval (CI) 0.50–1.32)
or total mortality (HR 1.0, 95% CI 0.81–1.24) over 4.8 years. There was, however, a re-
duction in the number of strokes (HR 0.60, 95% CI 0.45–0.80). For secondary prevention,
in the Lyon diet heart study, there was low-quality evidence of a reduction in adjusted
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estimates for CVD mortality (HR 0.35, 95% CI 0.15–0.82) and total mortality (HR 0.44,
95% CI 0.21–0.92) [72].

Systematic reviews [73–76], meta-analyses [77–80], and umbrella reviews [81] con-
firmed the beneficial effects of the traditional MD on cardiovascular health, albeit with a
moderate–high degree of inconsistency. This inverse association includes coronary heart
disease (CHD), peripheral artery disease, chronic heart failure, sudden cardiac death, and
ischemic stroke but apparently not hemorrhagic stroke [57,79,81].

The main findings of some of the most noticeable studies [52–57,59–63,65–71,73–76,78–81]
evaluating the effects of adherence to MD on the prevention of cardiovascular diseases are
summarized in the following Table 1.

Table 1. MD and cardiovascular outcomes: main studies.

Author, Year Study Setting Findings

De Lorgeril et al., 1999 [69] Secondary prevention, intervention

Three composite outcomes (COs) combining either cardiac death and
nonfatal myocardial infarction (CO 1), or the preceding plus major
secondary end points (unstable angina, stroke, heart failure, and
pulmonary or peripheral embolism) (CO 2), or the preceding plus
minor events requiring hospital admission (CO 3) were studied. In the
Mediterranean diet group, CO 1 was reduced (14 events versus 44 in the
prudent Western-type diet group, p = 0.0001), as were CO 2 (27 events
versus 90, p = 0.0001) and CO 3 (95 events versus 180, p = 0. 0002).

Martinez-Gonzalez et al., 2002 [77] Observational case-control
For each additional point in the a priori Mediterranean pattern (observed
range: 9–38) the odds ratio (95% CI) was 0.92 (0.86–0.98). This estimate
was 0.55 (0.42–0.73) when using the post hoc pattern (range: 0–8).

Panagiotakos et al., 2002 [54] Observational case-control

MeDiet reduces the risk of developing acute coronary syndromes by
17% (odds ratio = 0.83, 95% CI 0.73–0.88, p < 0.01) in controlled
hypertensive subjects, and by 20% (odds ratio = 0.80, 95% CI 0.71–0.89,
p < 0.01) in normotensive subjects.

Pitsavos et al., 2002 [56] Observational case-control

The combination of a MeDiet and statin medical therapy is associated
with an additional reduction in the coronary risk (odds ratio = 0.57,
p < 0.01), independently from cholesterol levels and the other
cardiovascular factors.

Panagiotakos et al., 2006 [55] Observational

In acute coronary syndrome, an increment in the diet score was
associated with a significant decrease in troponin I and creatine
phosphokinase-MB levels (p < 0.01) after adjusting for various potential
confounders. Moreover, diet score was associated with lower risk of
recurrent events (odds ratio = 0.81, 95% CI 0.61–0.98).

Fung et al., 2009 [65] Observational

Women in the top aMed quintile were at lower risk for both CHD and
stroke compared with the bottom quintile (RR = 0.71 (95% CI = 0.62–0.82;
p trend < 0.0001) for CHD; RR = 0.87 (95% CI = 0.73–1.02; p trend = 0.03)
for stroke). CVD mortality was significantly lower among women in the
top quintile of the aMed (RR = 0.61, 95% CI = 0.49–0.76, p trend < 0.0001).

Levitan et al., 2013 [61] Observational, longitudinal
Multivariable-adjusted HRs were 1 (reference), 1.05 (95% CI 0.89–1.24),
0.97 (95% CI 0.81–1.17), and 0.85 (95% CI 0.70–1.02) across quartiles of
the Mediterranean diet score (p-trend = 0.08)

Tektonidis et al., 2015 [57] Observational, longitudinal

A high adherence to the mMED score (6–8), compared to low, was
associated with a lower risk of MI (RR: 0.74, 95% CI: 0.61–0.90, p = 0.003),
HF (RR: 0.79, 95% CI: 0.68–0.93, p = 0.004) and ischemic stroke (RR: 0.78,
95% CI: 0.65–0.93, p = 0.007) but not hemorrhagic stroke (RR: 0.88, 95%
CI: 0.61–1.29, p = 0.53).

Tong et al., 2016 [67] Observational

The Mediterranean diet score (MDS) was significantly associated with
lower incidence of the cardiovascular outcomes, with hazard ratios
(95% confidence intervals) of 0.95 (0.92–0.97) per one standard deviation
for incident CVD and 0.91 (0.87–0.96) for CVD mortality. Associations
were similar for composite incident ischaemic heart disease and
all-cause mortality.

Liyanage et al., 2016 [76] Meta-analysis

Evidence of protection against major vascular events (RR 0.63, 95%
confidence interval 0.53–0.75), coronary events (0.65, 0.50–0.85), stroke
(0.65, 0.48–0.88), and heart failure (0.30, 0.17–0.56) but not for all-cause
mortality (1.00, 0.86–1.15) or cardiovascular mortality (0.90, 0.72–1.11).
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Table 1. Cont.

Author, Year Study Setting Findings

Grosso et al., 2017 [78] Meta-analysis

Individuals in the highest quantile of adherence to the diet had lower
incidence [relative risk (RR): 0.76, 95% CI: 0.68, 0.83] and mortality
(RR: 0.76, 95% CI: 0.68, 0.83) from CVD compared to those least adherent.
A significant reduction in risk was found also for coronary heart disease
(CHD) (RR: 0.72, 95% CI: 0.60, 0.86), myocardial infarction (MI) (RR: 0.67;
95% CI: 0.54, 0.83), and stroke (RR: 0.76; 95% CI: 0.60, 0.96) incidence.

Stefler et al., 2017 [68] Observational

One standard deviation (SD) increase in the MDS (equivalent to a
2.2-point increase in the score) was found to be inversely associated
with death from all causes (HR, 95% CI 0.93, 0.88–0.98) and CVD (0.90,
0.81–0.99) even after multivariable adjustment. An inverse but
statistically not significant link was found for CHD (0.90, 0.78–1.03) and
stroke (0.87, 0.71–1.07).

Bonaccio et al., 2017 [53] Observational

A retrospective analysis of 18,991 men and women aged ≥35 years from
the general population of the Moli-sani cohort (Italy). Overall, a
two-point increase in MDS was associated with a 15% reduced CVD
risk (95% confidence interval: 1% to 27%). Such association was evident
in highly (HR = 0.43; 0.25–0.72) but not in less (HR = 0.94; 0.78–1.14)
educated subjects (p for interaction = 0.042). Similarly, CVD advantages
associated with the MD were confined to the high household income
group (HR = 0.39; 0.23–0.66 and HR = 1.01; 0.79–1.29 for high- and
low-income groups, respectively); p for interaction = 0.0098.

Dinu et al., 2018 [81]
Umbrella review of 13 meta-analyses

of observational studies and
16 meta-analyses of RCTs

Robust evidence, supported by a p-value < 0.001, a large simple size,
and a not considerable heterogeneity between studies, for a greater
adherence to the Mediterranean diet and a reduced risk of overall
mortality, cardiovascular diseases, coronary heart disease, myocardial
infarction, overall cancer incidence, neurodegenerative diseases, and
diabetes was found.

Waldeyer et al., 2018 [60] Observational study

In patients undergoing coronary angiography, adherence to MD
represented by a higher MDS was significantly associated with a
reduced probability for a medium/high risk SYNTAX score of ≥23 with
an odds ratio (OR) of 0.923 per point increase in MDS (95% confidence
interval 0.869–0.979; p = 0.0079).

Shikany et al., 2018 [62] Observational, longitudinal

In multivariable-adjusted models, the Mediterranean diet score was
inversely associated with the hazard of recurrent CHD events (hazard
ratio for highest score versus lowest score, 0.78; 95% confidence interval,
0.62–0.98; PTrend = 0.036).

Hodge et al., 2018 [63] Observational, longitudinal The hazard ratio for the total was 0.86 (95% CI: 0.80–0.93) comparing
the highest and lowest three categories of MDS.

Mirò et al., 2018 [59] Observational, longitudinal

In patients diagnosed with AHF after a mean follow-up period of
2 years, no differences were observed in survival between adherent
and nonadherent patients (HR of adherents 0.86; 95% CI: 0.73 to 1.02).
Adherence to the MD was associated with decreased rates of
rehospitalization during the next year.

Rosato et al., 2019 [79] Meta-analysis

The RR for the highest versus the lowest category of the MDS was
0.81 (95% CI: 0.74–0.88) for the 11 studies that considered unspecified
CVD. The corresponding pooled RR for CHD/AMI risk was
0.70 (95% CI: 0.62–0.80). The overall RR for the six studies that
considered unspecified stroke was 0.73 (95% CI: 0.59–0.91) for the
highest versus the lowest category of the MDS. The corresponding
values were 0.82 (95% CI: 0.73–0.92) for ischemic (five studies) and
1.01 (95% CI: 0.74–1.37) for hemorrhagic stroke.

Saulle et al., 2019 [75] Systematic review

The Mediterranean diet may be a useful means of preventing stroke; the
6 meta-analyses especially highlighted that high adherence to the
Mediterranean diet was protective against stroke, with a relative risk
ranging from 0.64 (95% CI: 0.48–0.88) to 0.90 (95% CI: 0.87–0.93).

Delgado-Lista et al., 2022 [71] Secondary prevention, intervention
Multivariable-adjusted hazard ratios (HRs) of the different models
ranged from 0.719 (95% CI: 0.541–0.957) to 0.753 (0.568–0.998) in favor
of the Mediterranean diet.

Chang et al., 2022 [64] observational

The alternate Mediterranean diet index aMED 3 (vs. <3) was not associated
with a lower risk of all-cause (adjusted HR 0.797, 95% CI: 0.599–1.059,
p = 0.116) and cardiovascular (adjusted HR 0.911, 95% CI: 0.539–1.538,
p = 0.724) mortality in participants with a history of heart failure.
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Table 1. Cont.

Author, Year Study Setting Findings

Liang et al., 2022 [66] Observational

In Cox regression analysis, a higher absolute aMED score (HR 0.798,
p = 0.0079) or an above-median aMED score (score 4–9) (HR 0.646,
p = 0.0013) was negatively associated with all-cause mortality. In
contrast, a higher aMEDscore was not associated with less
cardiovascular mortality.

Gupta et al., 2023 [73] Systematic review Consumption of an MD associated with longer life and lower
incidence of heart disease.

Laffond et al., 2023 [74] Systematic review

Higher adherence to the MD is associated with a reduced risk of overall
mortality, both in the general population and in patients with previous
CVDs. Moreover, evidence suggests that following this dietary pattern
likely decreases the risk of CVDs such as heart attacks, various types of
coronary artery disease, stroke, and cardiovascular mortality.

Cangemi et al., 2023 [52] Observational
In multivariate Cox regression analysis, a greater adherence remained
inversely associated with major adverse cardiovascular events (HR: 0.49;
95% CI: 0.29–0.82; p = 0.006) after adjusting for confounding factors.

Pant et al., 2023 [80] Meta-analysis

In women, higher adherence to a Mediterranean diet was associated
with a lower CVD incidence (HR 0.76, 95% CI: 0.72 to 0.81; I2 = 39%,
p test for heterogeneity = 0.07), total mortality (HR 0.77, 95% CI: 0.74 to
0.80; I2 = 21%, p test for heterogeneity = 0.28), and coronary heart disease
(HR 0.75, 95% CI: 0.65 to 0.87; I2 = 21%, p test for heterogeneity = 0.28).
Stroke incidence was lower in women with higher Mediterranean diet
adherence (HR 0.87, 95% CI: 0.76 to 1.01; I2 = 0%, p test for
heterogeneity = 0.89), but this result was not statistically significant.

Despite the relatively large number of studies, there is still some uncertainty regarding
the effects of a Mediterranean-style diet on clinical endpoints and cardiovascular disease
(CVD) risk factors for both primary and secondary prevention. These different effects might
depend on the definition of MD, with a wide variety of dietary (i.e., MedDietScore) and
adherence (i.e., PREDIMED test) indices. There are also challenges with isolating the MD
from the typical Mediterranean lifestyle and culture (including prolonged ‘social’ meals
and siestas).

As regards the effects of Mediterranean diet’s role in cardiovascular disease preven-
tion in the developmental age, it is well known that nutrition can influence the body’s
metabolic programming from early infancy [82]. Interest in the healthy-heart effects of
MD in pediatric patients is increasingly growing, yet evidence is not as strong as that in
adult subjects. Children’s increasing adherence to MD reduces incidence of metabolic
syndrome, overweight, and obesity [83]. In addition, an obesogenic dietary pattern in
childhood (7–10 years) is related to increased arterial stiffness, while Mediterranean-style
and anti-inflammatory diets are related to decreased arterial stiffness and reduced cIMT in
adolescence and in adulthood [84].

4. Favorable Mechanisms of MD on Cardiovascular Health

The exact biologic mechanism by which an increased adherence to the traditional MD
exerts its beneficial effects on cardiovascular health is not known. However, accumulat-
ing evidence indicates that the most important adaptations induced by the MD pattern,
high in antioxidants, micronutrients, flavonoids, nitrate, calcium, proteins, polyphenols,
carotenoids, vitamins, and fiber but low in saturated/trans-fat and sodium, are as follows:

(a) Favorable effects on multiple specific cardiovascular risk factors [85,86] through a
specific plasma metabolomic profile (mainly triglycerides and medium/long-chain
acylcarnitines, amino acids, and steroids). MD improves insulin resistance, increases
adiponectin concentrations [87], and decreases the hepatic fat content [88] with ben-
eficial effects on diabetes mellitus and metabolic syndrome [89,90]. The lipid pro-
file improves, too, with a decrease in plasma cholesterol [91], oxidized low-density
lipoprotein [87,92], LDL-cholesterol, ApoB, and the ApoB/ApoA-I ratio and an in-
crease in ApoA-I [93,94]. There are also putative favorable changes in the blood fatty
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acid profile, with increased levels of eicosapentaenoic and docosahexaenoic acid [95].
Then, both systolic and diastolic blood pressure decrease [94]. Finally, the MD-style diet
may influence the potential negative relationship between elevated plasma ceramide
concentrations and CVD [96];

(b) Modulating actions on sympathetic nervous system, reducing average heart rate [97]
and heart rate variability, a measure of cardiac autonomic dysfunction [98];

(c) Protection against oxidative stress and inflammation. MD is associated with lower con-
centrations of inflammatory mediators, like C-reactive protein, interleukin-6, sICAM,
P-selectin, and tumor necrosis factor-α [94], hallmarks of inflammaging, the pecu-
liar low-grade, chronic, and “sterile” inflammatory state characterizing old age that
represents a background pathogenetic mechanism linking metabolic risk factors to
increased risk of chronic degenerative diseases [96,99,100]. The MD modulates the
immune system, induces induction of detoxification enzymes [101], and has a low
dietary inflammatory index [102] and is associated with lower intracellular reactive
oxygen species production [103], an increase in serum markers of atheroma plaque
stability, and a reduction in CD40 expression on monocyte surface [94]. Flavonoids, in
particular, provide a variety of nutraceutical functions including antioxidant, antimi-
crobial, anti-inflammatory, antiangiogenic, antitumor, and improved pharmacokinetic
properties [104]. The MD was also significantly associated with lower levels of subclin-
ical gut inflammation, defined by fecal calprotectin [105] and higher concentrations of
fecal short-chain acids (FSCAs) (propionate and butyrate) [106];

(d) Anti-atherosclerotic effects. Increase in endothelial progenitor cells [103,107]
and endothelial-mediated nitric oxide (NO) synthesis leads to higher NO
bioavailability [100,108] and consequent significant improvements in endothelial
function [86], flow-mediated microvascular vasodilation [103,109], and arterial
stiffness [110,111], as well as carotid intima-media thickness [112];

(e) Decrease in platelet aggregation and blood coagulation [87];
(f) Inhibition of nutrient sensing pathways by specific amino acid restriction [113];
(g) And, last but not least, gut microbiota-mediated production of beneficial metabolites [114].

5. Microbiota: Definitions and Functions

The surfaces of the human body are heavily populated by a highly diverse collection
of bacteria, fungi, archaea, viruses, and protozoa, termed the microbiota. The largest and
richest site is the gut (small and, mainly, large intestine), which harbors > 100 trillion
microbial cells [115]. The microbiota and their genes, called the microbiome, have been
studied intensely through the past years using novel metagenomic, metatranscriptomic, and
metabolomic approaches [96]. Fecal microbiota composition and diversity may be evaluated
by three methods: living organisms are determined using bacterial cultures, total DNA
taxonomic composition is estimated by next-generation sequencing of the rRNA gene, and
quantitative assessment of several taxa is performed using specific quantitative polymerase
chain reaction (qPCR) [116]. Landmark microbiome–host genome-wide association studies
have identified many SNPs associated with gut microbiota [117]. We distinguish α-diversity
(e.g., number of microbes) and β-diversity (e.g., type and abundance of microbes) [118].
The bacterial DNA sequence found in healthy blood belongs mainly to the Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria phyla [119].

This microbial ecosystem, co-evolved with humans across the millennia, is for the
most part interactively co-dependent, both on one another and on their host, and capa-
ble of contributing and reacting to circulating signaling molecules [120]. Microbes in
the gut produce a wealth of low-molecular-weight metabolites (metabolome), including
trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), secondary bile acid, and
indoxyl sulfate, from exogenous dietary substances or endogenous metabolic compounds.
These microbial-derived metabolites are the major factors in the host–microbiota cross-talk
by activation of numerous complex signaling pathways [121], such as the nuclear factor
kappa-light-chain-enhancer of activated B cells, Bcl-2 interacting protein 3, NLR family
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pyrin domain containing inflammasome, and protein kinase RNA-like endoplasmic retic-
ulum kinase [122], linked also to numerous types of programmed cell death, including
apoptosis, autophagy, pyroptosis, ferroptosis, and clockophagy [123].

The view of humans as holobionts consisting of eukaryotic host cells and associated
prokaryotic organisms has opened up a new perspective on cardiovascular pathophysiology
leading to the Human Microbiome Project commencement [124]. The number of bacterial
genes encoded within the human gut vastly outnumber the total complement of genes
in Homo sapiens, endowing the gut microbiome with enormous potential for production
of functionally active metabolites [125]. Microbiota-derived metabolites, such as SCFAs,
primary and secondary bile acids (Bas), TMAO, lipopolysaccharides (LPS), uremic toxins,
phenylacetylglutamine (PAGln), branched-chain aminoacids (BCAA), intestinal fatty-acid-
binding protein (I-FABP), zonulin, and sphingomyelins, which are adsorbed in the intestine
and distributed via the circulation, can exert beneficial or detrimental effects on various
extraintestinal organs, including the brain, liver, and heart [23,126–129].

This virtually endocrine ‘organ’ plays an important role in the function of the gas-
trointestinal tract and in the human physiology, protecting from pathogen colonization
through maintenance of the gut barrier function and participating in digestion, energy
harvest from food sources indigestible by humans, vitamin synthesis, functions of the
immune system, facilitation of biotransformation of drugs such as statins and antihyper-
tensives, and regulation of brain function and behavior, as well as endocrine and glucose
homeostasis and lipid and bile acid metabolism [96,121,130–133]. The importance of the
gut–brain axis in regulating stress-related responses and anxiety disorders by influencing,
in particular, tryptophan metabolism through the kynurenine pathway and consequently
the serotoninergic system, has long been appreciated [134].

Many studies [91,112,116,117,119,129,135–142] have demonstrated that some microbial
agents are positively and negatively associated with the presence of cardiovascular risk
factors and various cardiovascular diseases, as well as with cardiovascular mortality;
Table 2 summarizes the main results of these studies.

Table 2. Main components of microbiome in cardiovascular diseases (from [91,112,116,117,119,129,135–142]).

Disease/Condition Main Microbial Agents

Cardiovascular risk factors Prevotella 2, Prevotella 7, Tyzzerella and Tyzzerella 4 genera, Bacteroides uniformis and B. vulgatus
(low prevalence of Alloprevotella Prevotella copri and Catenibacterium)

Arterial hypertension
Catabacter, Robinsoleilla, Serratia, Enterobacteriaceae, Ruminococcus torques, Parasutterella,
Escherichia, Shigella, and Klebsiella (decreased abundance of Sporobacter, Roseburia hominis,
Romboutsia spp., and Roseburia)

Atrial fibrillation Enorma and Bifidobacterium genera

Diabetes mellitus Order Rhizobiales, family Desulfovibrionaceae, genus Romboutsia

Coronary heart disease
Proteobacteria and Actinobacteria phyla, Bacteroides, Prevotella, Firmicutes, Veillonella, Clostridium,
Lactobacillaceae (Lactobacillus plantarum) and Streptococcus (decreased prevalence of
Caulobacterales order and Caulobacteraceae family, aminococcaceae and Odoribacteraceae)

Cerebrovascular disease Firmicutes, Proteobacteria, and Actinobacteria phyla

Heart failure
Ruminococcus gnavus, Escherichia Shigella, Streptococcus sp. (sanguinus and parasanguinis),
Veillonella sp., and Actinobacteria (relative depletion of Eubacterium, Prevotella, Faecalibacterium,
SMB53, aminococcaceae, Odoribacteraceae and Megamonas)

Cardiovascular mortality Genera Kocuria and Enhydrobacter (genera Paracoccus was inversely related)

6. Western Diet, Microbiome, and Cardiovascular Diseases

The gut microbiota function as an endocrine organ that participates in the maintenance
of cardiovascular homeostasis, and their dysfunction can directly influence the progression
of cardiovascular disease [135] via abnormally activating signaling pathways, more swiftly
when the gut barrier integrity is broken down (theory of “gut–heart axis”) [136].
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Some microbial components are more represented in in the blood, fecal, and plaque
samples of patients with cardiovascular risk factors or disease [91,116,117,119,137–142].

Host diet is one of the most significant modulators of the gut microbial community in
humans, as well as in experimental animal models [96]. Bacterial metabolites are produced
from food components, which in turn emphasizes the importance of nutrition. Evidence
demonstrates that dietary habits such as the ‘Western diet’ model are related to perturbations
in gut microbiome composition and function (called dysbiosis), with a significant decrease in
Bacteroidetes and an increase in Firmicutes, Escherichia, Shigella, and Enterococcus, strongly
associated with a wide range of human diseases, including celiac disease, inflammatory
bowel disease, colorectal cancer, depression, anxiety, neurological disorders, rheumatoid
arthritis, systemic lupus erythematous, asthma, allergies, insulin resistance, non-alcoholic
fatty liver disease, chronic kidney disease, obesity, metabolic syndrome, arterial hypertension,
type-2 diabetes and CVD [121,134,143–153]. A Western diet can lead to increased perme-
ability of the gut mucosa, known as “leaky gut”, resulting in endotoxemia and bacterial
translocation [12]. In turn, gut dysbiosis and impaired intestinal permeability can alter the
gut bacterial metabolite signaling profile from the gut to the brain and heart [126,134].

Apart from diet, other conditions are associated with dysbiosis, e.g., antibiotics abuse [144].
In older age groups, there is an increase in microorganisms secreting endotoxins, LPS, and
TMAO. Also, several pathological conditions in the gastrointestinal tract may impair the intesti-
nal barrier, allowing translocation of bacteria and their metabolites [14].

The mechanisms linking gut microbiota to CVD are multifaceted and not yet fully
understood and may include direct effects of microbial metabolites on atherosclerosis
and thrombosis development, as well as immune dysregulation and disturbance of
neuro-enteroendocrine hormones by bacteria and their products [125,144,147]. Borton et al.
assigned an atherosclerotic profile to the 6341 microbial genomes that encoded metabolisms
associated with heart disease, creating the open-access resource, the Methylated Amine
Gene Inventory of Catabolism database (MAGICdb) [154].

One of the most-cited examples of the gut-microbiome-modulating human disease is
the microbial metabolism of quaternary amines from protein-rich foods. Some species of
the microbiota influence the metabolism of specific food components abundant in high-fat
diets (such as carnitine, choline, betaine, and phosphatidyl-choline), synthesizing through
lyase enzymes (catalytic protein cutC), trimethylamine (TMA) (humans lack this ability),
which enters the liver through the portal vein circulation and is oxidized by the hepatic
flavin-containing mono-oxygenase family to TMAO, a molecule with documented
harmful activity on atherosclerosis and thrombosis in vitro and in vivo (it damages vas-
cular endothelium and promotes activation of macrophages and platelets and thrombus
formation) [96,124,126,132,155–161]. There was no direct association of plasma TMAO and
the extent of atherosclerosis, both in mice and humans. However, TMAO plasma levels are
associated with atherosclerotic plaque instability [162]. Associations with diabetes mellitus
and obesity suggest that TMAO might have a functional role in metabolic syndrome [163].
In a community-based cohort of older US adults, after multivariable adjustment, higher
levels of TMAO were associated with a higher risk of incident atherosclerotic cardiovascular
disease (ASCVD) (HR 1.21 (95% CI: 1.02–1.42; p-trend = 0.029)) [164]. In the PEGASUS-TIMI
54 trial, higher TMAO quartiles were associated with risk of major adverse cardiovascular
events (MACE) (OR 1.43, 95% CI: 1.06–1.93, p = 0.015) [165]. In patients with chronic
heart failure after myocardial infarction, TMAO was a significant, independent predic-
tor of MACE (HR 2.31, 95% CI: 1.42–3.59, p < 0.01) and all-cause mortality (HR 2.15,
95% CI: 1.37–3.24, p < 0.01) [166]. In a meta-analysis, a higher plasma TMAO level
was associated with greater risks of MACEs (TMAO tertile 3 vs. tertile 1: HR, 1.68;
95% CI: 1.44–1.96) and of all-cause mortality (TMAO tertile 3 vs. tertile 1: HR, 1.67;
95% CI: 1.17–2.38) [167]. In another meta-analysis, high TMAO was positively associated
with all-cause mortality (HR 1.38, 95% CI: 1.306–1.460), as well as adverse cardiovascular
events (HR: 1.032, 95% CI: 1.014–1.051) [168].
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There are obviously many other candidate mechanisms. Immune cells such as T cells, B
cells, and macrophages are extensively infiltrated in the gut and heart tissues and play a cru-
cial role in the crosstalk between the heart and gut microbiota [127,169]. Studies of germ-free
mice have provided evidence that microbiota diversity and the presence of a specific microbe
in the gut can affect immune cells in hosts [170]. Lower cholesterol-degrading bacteria were
considerably reduced in myocardial infarct ion [119]. Dysbiosis with decreased abundance
of microbes with capacity for producing butyrate, like chronic stress, decreases SCFAs and
bile acids, raising intestinal permeability [118,157,171]. In diets high in saturated fat and
low in fiber, enhanced absorption of bacterial fragments and bacterial fermentation end
products, such as LPS, promotes the onset of “metabolic endotoxemia,” defined as a two- to
threefold increase in circulating levels of bacterial endotoxin, which could activate toll-like
receptors, mediating a chronic, low grade inflammatory response [119,153,172]. In atrial
fibrillation, gut-derived LPS may contribute to MACE incidence by increasing platelet
activation [173]. Additionally, gut microbiota may influence drug- and food-derived bioac-
tive compounds metabolism. In periodontal disease, the oral microbiota is translocated
through the bloodstream to the liver and intestine, generating intestinal dysbiosis [174].
Transfer of microbiota from obese animals induces metabolic disease and obesity in
germ-free animals. Conversely, transfer of pathogen-free microbiota from lean healthy
human donors to patients with metabolic disease can increase insulin sensitivity [150].

In heart failure (HF), current evidence has found links with alterations in microbial compo-
sition and function associated with impaired intestinal barrier function, generation of uremic
toxins, and bacterial translocation leading to inflammatory and immune responses [175,176].
Intestinal leakage, caused by hemodynamic changes in heart failure (congestion in the portal
vein, drop in cardiac output, and reduction in intestinal perfusion) induce, in turn, an alteration
in gut microbiota composition and systemic inflammation through microbial or endotoxin
translocation into systemic circulation (“gut hypothesis” of HF) [115,132,157,161,177]. Circu-
lating TMAO levels are associated with adverse outcomes in HF [124,178]. Another effect of
alteration in microbiota composition is reflected in the up-regulation of cotransporters (NHE3)
with consequent salt and fluid overload [179]. Some hypothesized pathways connecting Western
diet, microbiome, and CVD are summarized in Figure 1.
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Figure 1. A tentative, synthetic description of the pathways related to Western diet, microbiome
dysbiosis, and cardiovascular diseases. Abbreviations: CKD: chronic kidney disease; FMO3: flavin
monooxygenase-3; LPS: lipopolysaccharide; NFκβ: nuclear factor κβ; NO: nitric oxide; TLR4: toll-like
receptor-4; TMA: trimethylamine; TMAO: trimethylamine-N-oxide; TNFα: tumor necrosis factor α.
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7. Effects of Mediterranean Diet on Microbiome

Although RCTs and observational studies provided no clear evidence of a consis-
tent effect of an MD on the composition or metabolism of the gut microbiota [180], the
consumption of a Mediterranean-type diet is associated with a specific microbiota char-
acterized by a greater biodiversity (i.e., by a greater number of bacterial species identi-
fied and an increase in gene richness) and by fiber-degrading and butyrate-producing
bacteria [13,90,91,96,105,114,148,155,181–187]. Table 3 shows the effects of MD on gut
microbiota [90,91,96,105,114,148,155,181,187].

Table 3. Effects of MD on gut microbiota (from [90,91,96,105,114,148,155,181,187]).

Increase Decrease

Akkermansia muciniphila,
Anaerostipes hadrus,

Bacteroides thetaiotaomicron,
Bifidobacteria animalis,

Candida albicans,
Catenibacterium,

Christensenellaceae,
Clostridium (cluster XIVa, leptum)

Enterorhabdus,
Eubacterium rectale,

Faecalibacterium (Lactococcus, prausnitzii)
Lachnoclostridium,

Lachnospiraceae,
Oscillospira (Flavonifractor),

Parabacteroides,
Phascolarctobacterium,

Prevotellaceae,
Prevotellae,

Proteobacteria,
Roseburia faecis,

Ruminococcaceae bromii and plautii,
Sphingobacteriaceae

Actinomyces lignae,
Butyricicoccus,

Catenibacterium,
Clostridium ramosum,
Collinsella aerofaciens,

Coprococcus Anaerostipes and comes,
Dorea formicigenerans,

Escherichia coli,
Eubacterium hallii,

Firmicutes,
Flavonifractor plautii,

Haemophilus,
Lachnospiraceae

Megamonas,
Ruminiclostridium,

Ruminococcus gnavus and torques
Veillonella dispar

In summary, MD adherence is associated to an increase in the abundance of sev-
eral Bacteroidetes taxa and a depletion of many Firmicutes taxa, with a lower Firmi-
cutes/Bacteroidetes ratio and a higher bifidobacterial/E. coli ratio and Prevotella/Bacteroides
ratio [183,185,188]. Cereal consumption is associated, for example, with the presence of
Bifidobacterium and Faecalibacterium, olive oil consumption with Tenericutes and Dorea, red
wine consumption with Faecalibacterium, vegetable consumption with Rikenellaceae, Dorea,
Alistipes, and Ruminococcus, and legume consumption with Coprococcus [114].

Another interesting point is the food matrix effect of the Mediterranean diet and its
actions on microbiota. The concept of a “food matrix”, in a simple manner, states that
the different compounds located in the food, rather than the single nutrients, interact in
a coordinated way in the human body, determining the benefits or dangers derived from
food consumption [189]. In other words, the “food matrix” is a physical form constitut-
ing a certain food in which specific nutrients provide functionalities that are different
from those exhibited by the same compounds when considered in isolation or a free
state. The poor matrix of the Western-like diet generates an unfavorable environment
in the gut and the microbiome, therefore leading to dysbiosis; in contrast, the Mediter-
ranean diet, rich in plant-based aliments, presents a complex of elements that, in an ade-
quate and complete food matrix, determines their beneficial properties in maintaining gut
microbiota eubiosis [189].
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8. MD, Microbiome, and Cardiovascular Health

The relationship between the gut microbiome, diet, and cardiovascular diseases is
complex and still not fully understood. The microbiome could represent, however, a possi-
ble intermediate of the effects of the MD on modulation of cardiovascular risk factors [96].
An interesting hypothesis suggests a bidirectional relationship between the MD and the gut
microbiome, where gut microbiota assembly and biosynthetic capacity are responsive to
the diet; in return, the microbiome-reachable nutrients shape and modulate the microbiome
toward a characteristic probiotic state. It can be speculated that the primary health benefits
of the MD are mediated by the bioactive compounds transformed by the microbiome [190].

First, adherence to an MD led to a higher abundance of different taxa that are neg-
atively correlated with markers of inflammation. This diet pattern positively affects the
diversity and activity of various gut bacteria with saccharolytic activity (e.g., Bacteroides
acidifaciens, Firmicutes, Faecalibacterium prausnitzii, Prevotella, clostridium cluster XIVa, Akker-
mansia, Roseburia and Ruminococcus genera, and Parabacteroides distasonis) that increases the
SCFAs produced during microbial fermentation of complex carbohydrates and dietary fiber,
hence improving host metabolism [13,91,96,148,155,185,191,192]. SCFAs, especially butyric
acid but also acetate and propionate, possess immunomodulatory and anti-inflammatory
properties (reducing some cytokines such as VEGF, MCP-1, IL-17, IP-10, and IL-12) and
improve host metabolism [96,125,129,182,184,193]. Receptors binding these metabolites,
such as G-protein-coupled receptors GPR41,GPR43, GPR109a, and OLF78, placed on en-
teroendocrine and immune cells have been shown in animal studies to have inverse roles
in blood pressure regulation and favorably impact cardiac function [96,194].

Apart from SCFAs, the MD has some other interesting cardioprotective properties.
The MD, and in particular fruit and legumes, is inversely related to LPS levels, linked with
baseline urinary excretion of TxB2 [173]. An MD increases urinary urolithins, fecal bile acid
degradation, and insulin sensitivity [91]. The MD is rich in polyphenols that are extensively
metabolized by the gut microbiota. Among the five microbial phenolic metabolites identi-
fied, urolithin B glucuronide was inversely associated with LDL-cholesterol [195]. Some
genera related to the MD seem to affect the bile acid metabolism. Bile acids represent a class
of cholesterol derivatives that is essential for intestinal absorption of lipids and fat-soluble
vitamins, playing an important modulator role in cholesterol turnover, in improvement
in insulin levels, and in the control of immunity and heart function [90,196]. Some strains,
on the other hand, produce secondary metabolites originating from molecules present in
food (such as enterodiol, which derives from lignin), characterized by a vascular protection
activity [155]. Finally, the Mediterranean diet pattern, rich in unsaturated fats and fiber,
may be one dietary strategy to reduce metabolic endotoxemia-microbiome derived [197].

Preclinical studies have demonstrated the differential effects of MD on the microbiota
and metabolic health [197]. A systematic review of animal studies shows that MD-like diets
rich in polyphenol fiber modified the gut microbiota composition and increased microbial
metabolites’ activities, leading to an improvement in HF outcomes, such as a reduction in
systolic blood pressure, cardiac hypertrophy, and left ventricular thickness [160].

However, human studies are lacking. MD adherence results in a better glycemic
control in subjects with T2D. Bacterial richness was negatively correlated with fasting
glucose levels and the homeostatic model assessment for insulin resistance (HOMA-IR).
Fecal alkaline phosphatase activity, positively correlated with bacterial diversity, was
negatively correlated with HbA1c [188].

Some hypothesized pathways connecting MD, microbiome, and cardiovascular health
are summarized in Figure 2.
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regulatory T cells.

9. Conclusions

The integration of microbiome analysis within nutrition science research will be
fundamental to ensuring our full understanding of the complex and synergistic effects that
foods or dietary patterns can have on human health. Intestinal microbiota are rising as
a new element in the physiopathology of cardiovascular diseases. A healthy microbiota
includes a balanced representation of bacteria with health promotion functions (symbiotes).
It is rational to speculate that a positive modulation of the gut microbiome diversity,
composition, and function is one of the main factors intermediating the health effects of
MD on the host.

Further research is needed to explore the specific mechanisms underlying the pro-
tective effects of this dietary pattern and to better understand the long-term effects of the
MD on atherosclerosis and its associated risk factors in diverse populations, as well as the
therapeutic potential of the gut–metabolite–heart axis as a novel target for the treatment of
CVD. As a consequence, more high-quality prospective cohorts and randomized clinical
trials are warranted.

Nevertheless, promoting the adoption of the MD could be an effective strategy for
mitigating the burden of CVDs globally [74]. We hope this article will draw the attention of
society and the medical community to emphasize promoting healthy eating and proper
eating habits in children and adults.
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