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Abstract: With robotic-assisted minimally invasive surgery (RAMIS), patients and surgeons benefit
from a reduced incision size and dexterous instruments. However, current robotic surgery platforms
lack haptic feedback, which is an essential element of safe operation. Moreover, teleportation control
challenges make complex surgical tasks like suturing more time-consuming than those that use
manual tools. This paper presents a new force-sensing instrument that semi-automates the suturing
task and facilitates teleoperated robotic manipulation. In order to generate the ideal needle insertion
trajectory and pass the needle through its curvature, the end-effector mechanism has a rotating
degree of freedom. Impedance control was used to provide sensory information about needle–tissue
interaction forces to the operator using an indirect force estimation approach based on data-based
models. The operator’s motion commands were then regulated using a hyperplanar virtual fixture
(VF) designed to maintain the desired distance between the end-effector and tissue surface while
avoiding unwanted contact. To construct the geometry of the VF, an optoelectronic sensor-based
approach was developed. Based on the experimental investigation of the hyperplane VF methodology,
improved needle–tissue interaction force, manipulation accuracy, and task completion times were
demonstrated. Finally, experimental validation of the trained force estimation models and the
perceived interaction forces by the user was conducted using online data, demonstrating the potential
of the developed approach in improving task performance.

Keywords: robotic assisted minimally invasive surgery; haptic feedback; force sensing; robotic needle
driver; optoelectronic sensor; virtual fixture

1. Introduction

In the past 20 years, minimally invasive surgery (MIS) techniques have been developed
to minimize the size of incisions needed to access target organs. This technique is an
alternative to open surgery, in which the surgeon has to cut open the patient’s body in
order to gain adequate sight and workspace to utilize conventional instruments. In the MIS
approach, the surgeon makes a few small incisions instead of one large one, making the
process less invasive. As a result of the MIS approach, patients can recover more quickly,
suffer less trauma, have less postoperative pain, and stay in the hospital for a shorter period
of time. This results in reduced costs and burden on the healthcare system [1].

MIS is performed with manual handheld instruments or robotic systems [2,3]. The ad-
vantages of robot-assisted surgical systems over manual MIS instruments include higher
dexterity and active degrees of freedom (DOF), enabling the surgeon to perform a wider
range of maneuvers with enhanced precision [4–6]. While robotic systems can provide
many benefits to surgeons and patients, they also pose significant challenges. As compared
to manual instruments, the main drawback of robotic surgical systems is the degradation
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of force feedback, also known as haptic feedback [7,8]. A mechanically designed device
in manual MIS provides the surgeon with a clear sense of force during the tool–tissue
interaction. It is essential that the surgeon be aware of this information, which is left out
in robotic systems where the surgeon only relies on visual cues of the interaction between
tool and tissue. Additionally, due to the complexity of operation of robotic instruments,
high dexterity comes at the cost of longer operation times [9]. Consequently, new robotic
suturing methodologies are needed that improve task completion times while ensuring
high force-sensing accuracy.

Suturing is an important surgical task that requires special attention due to its inherent
complexity and requires effective approaches to overcome it. The high level of concentration
and coordination required to perform the task in a confined space contributes to fatigue
and reduces the quality of the suture. It requires highly skilled surgeons experienced with
telesurgery and multi-DOF slave robots in order to complete this task because of the limited
space and complex tool paths. There has been considerable interest in the development
of approaches and new features for robotic systems that tackle issues associated with
teleoperation [10–12]. They provide surgeons with tools for improving the surgical site’s
perception or making surgical tasks more efficient [13]. Researchers have investigated
several approaches to improve teleoperated suturing. Among these approaches are adding
haptic feedback and utilizing active constraints to assist the surgeon when suturing.

The remainder of this paper is organized as follows: first, an overview of haptic feed-
back control methodologies is provided, including force sensing approaches and existing
virtual fixture algorithms for suturing task being reviewed. The next section discusses
the proposed force sensing instrument, focusing on indirect force estimation using data-
based models, and haptic feedback impedance controller design. Next, a VF algorithm is
developed utilizing geometry construction and hyperplanar architecture. The geometry
construction process includes calibrating reflective optoelectronic sensors, generating point
clouds, and estimating tissue planes. A description of the experimental research facility and
the hardware setup follows. The Results section describes the details of the experiments
conducted and the results obtained to validate force models and characterize the effective-
ness of the VF algorithm. Finally, the conclusion and discussion of the results conclude
the paper.

2. Overview of the Robotic Teleoperation Surgery Approaches

To minimize damage to the tissue during suturing, it is necessary to perceive the force
exerted by the tool on the tissue. The lack of force feedback to surgeons has been reported
as the main limitation of current RAMIS systems [14], contributing to increased injuries
during operations [15], suture breakage, and tissue damage [16]. Furthermore, regulating
the operator’s input motion commands has also been shown to be an effective method for
assisting the surgeon during complicated robotic surgery procedures. In a similar way to
mechanical fixtures that limit surgical tool motion, virtual fixtures achieve this goal in a
more flexible and adaptive manner.

2.1. Haptic Feedback and Force Sensing

Through a bilateral control architecture, haptic feedback transmits force data from the
robot–patient interactions to the surgeon side to provide a real-time interactive environment
between the surgeon and the surgical field [17–19]. A number of studies examined the effect
of haptic feedback on suturing accuracy and performance. Tavakoli et al. [20] showed that
providing haptic feedback for the stitching task is a trade-off between the task completion
time and the magnitude of the applied forces to the tissue. In contrast, a more recent
study by Talasaz et al. [21] demonstrated that force feedback improved both maximum
applied force on the tissue and completion time for the stitching task. A study conducted
by Currie et al. [9] compared the efficiency of visual feedback and direct force feedback on
reducing maximal forces through customized Quanser haptic wands, concluding that direct
force feedback reduces maximum forces more effectively than visual feedback. A haptic
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interface customized to the suturing task was used by Carreras et al. [22] to investigate the
influence of direct force and torque feedback on the accuracy of suturing tasks in a virtual
reality environment.

Developing direct force feedback requires supplying force data from the tool–tissue
interaction to the surgeon. An in-depth overview of force sensing methods and state of the
art of haptic feedback for MIS applications were presented in recent review papers [23,24].
Various approaches to force sensing have been proposed in the literature, including sensor-
based and sensor-less force measurements [25,26].

Sensor-based force measurement techniques include using capacitive, piezoelectric,
piezoresistive, optical sensors, etc. [27]. It is ideal to locate the force sensor near the tip
of the instrument [26]. Kuebler et al. [28] proposed an integrated sensing unit inside the
end-effector, capable of 6-DOF force and torque measurement. Using shape deposition
manufacturing, Dollar et al. [29] proposed embedding a strain gauge in the end-effector.
The development of capacitive transducers and fiber optic force sensors has also been
reported [30,31]. However, the sterilization process is still a challenge for this approach
that uses a harsh procedure to kill bacteria with heated steam or chemical sterilization.
It is therefore necessary for the sensors to be biocompatible and sterilizable. Moreover,
the sensing unit adds significant cost to disposable instruments and instruments measuring
force in multiple DOF. Although recent advancements have been made, force sensing with
this approach requires further downsizing due to the fact that many surgical instruments
have millimeter-scale end-effectors.

Several approaches have been proposed in the literature to avoid such issues. Contact-
less methods use sources such as image data, lasers, and optical coherence tomography
for force-sensing [32,33]. Marban et al. [34] developed a vision-based approach to force
estimation using a convolutional neural network and a long-short term memory network.
There are, however, limitations to this method due to factors such as lighting conditions.
Another solution is force estimation, which utilizes information such as known robot
dynamics, motor current, and encoder data to eliminate dealing with force sensors [35].
However, this approach needs to be improved in terms of accuracy when compared to
sensor-based approaches. Installing the force sensing unit away from the instrument tip is
another alternative solution to overcome the challenges of placing the sensors at the tip [36].
An instrument capable of measuring interaction forces with force sensors proximally located
at the top of the tool has been developed in [37]. However, the force-sensing methodologies
still require further improvement in terms of measurement accuracy, sterilization, and cost.
There are also many studies on force-sensing technology development which lack accuracy
estimation and bench-marking for future comparison, among other approaches [24].

2.2. Virtual Fixture

Virtual fixtures (VF), also known as active constraints, are software-imposed enforce-
ments that regulate the user’s motion and provide abstract sensory information in addition
to the other sensory feedback from the remote environment [38]. When VF is implemented,
a collaborative control strategy is used, in which the tool movement is monitored by the
robot controller while the human user controls the robotic arm. The controller detects any
deviation from the planned trajectory or entering a restricted region. Then, the controller
imposes an active force on the user through the master device to guide the user back to the
planned trajectory or nullifies the user command to enter a restricted region.

There are several classifications for VFs based on their properties. According to one
classification, the constraints are divided into two groups: regional constraint and guidance
constraint [39,40]. Regional constraints, also referred to as forbidden region VFs, restrict
slave manipulators’ movement to the desired region specified by the surgeon during the
intraoperative planning process. A haptic system utilizing forbidden region virtual fixtures
will increase stiffness felt by the user when entering the undesired zone to prevent damage
to the tissue [41]. Several benefits can be gained from using this type of VF, such as avoiding
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damage to the protected organs and regions [42], preventing kinematic singularities [43],
and simplifying tasks [44].

There have been several studies that have investigated the use of virtual fixtures for
suturing. An impedance active constraint was proposed by Chen et al. [45] to develop
virtual fixtures that assist with stitching and knot tying. Experiments showed that VF im-
proved needle exit point accuracy, task completion time, and overall user workload. Using
a telemanipulation system, Fontanelli et al. [46] compare a number of control strategies
to assist the operator during stitching tasks. A guidance virtual fixture was implemented
to constrain the tool’s position along the desired trajectory as part of the shared control
strategy. Selvaggio et al. [47] investigated the issue of needle re-grasping during suture
task. A new haptic-guided control method was developed to enable the user to grasp the
needle more effectively while avoiding the limitations and singularities of robot joints.
An online optimization trajectory generation approach was developed by Colan et al. [48]
for implementing active constraints during endonasal surgery stitching. In order to prevent
damaging surrounding nasal tissues, they used sequential convex optimization for online
needle trajectory generation. In spite of advances in virtual fixture methods to facilitate
suturing task development, performance enhancement has remained limited and requires
further progress. It is mainly due to the inherent complexity of telerobotic suturing, such
as the high cognitive demands placed on the surgeon when controlling all of the required
DOFs when performing suturing.

In this paper, a new force-sensing and semi-automated robotic needle driver concept
design is presented for facilitating teleoperated MIS suturing tasks. Through haptic feed-
back control architecture, the proposed methodology provides the surgeon with two sets of
force information: virtual fixture force and needle–tissue interaction force. The VF algo-
rithm prevents needle–tissue accidental contacts and maintains ideal end-effector-tissue
distance. Additionally, the proposed end-effector mechanism at the tip of the force sensing
tool generates the desired trajectory using a rotating DOF that limits needle movement
along its curvature. The authors believe that this research is one of the first attempts to study
a semi-automated needle driver with virtual fixture assistance to simplify the suturing task.
Furthermore, to enhance sensory perception and improve task safety, a data-based and
indirect force estimation model was utilized to establish a direct force feedback architecture.
To the best of our knowledge, this is the first study to investigate the estimation accuracy of
a hybrid approach combining proximal sensing with force estimation techniques. The main
contributions of this research are as follows:

• Development and characterization of a force-sensing needle driver with a proof-of-
concept end-effector;

• Investigating data-driven models for indirect needle–tissue interaction force estimation
using the proposed force sensing tool and validating the model with experimental
results;

• Establishing a hyperplanar virtual fixture to facilitate teleoperated suturing using a
new reflective optoelectronic sensor-based approach.

3. Force Sensing Semi-Automated Robotic Needle Driver

The investigated teleoperated robotic system consists of two main subsystems, the user
interface and Phantom master device at the surgeon’s side and the slave robot at the
patient’s side. The developed MIS robotic needle driver comprises a cable-driven end-
effector for semi-automated suturing with a force sensing instrument for measuring force
during needle–tissue contact. In order to approximate the needle–tissue interaction forces,
the force sensing instrument employs an indirect force measurement approach. A data-
driven force model was developed using the measured forces from the tool’s force sensor
and the needle insertion motor’s rotational position. This force model created a mapping
between robot sensor data and needle–tissue interaction forces. Finally, the interaction
forces were conveyed to the master device to enhance sensory perception, thus improving
the quality of the suturing process and minimizing tissue damage.



Sensors 2022, 22, 7829 5 of 20

3.1. Force Sensing Instrument

In the following section, various components of the slave robot on the patient’s side
will be discussed. The force-sensing needle driver consists of a force/torque (F/T) sensor,
tool shafts, the end-effector, and an actuator that drives the end-effector, as shown in
Figure 1.

(a) (b) (c)

Figure 1. Proposed robotic suturing system. (a) end-effector; (b) force-sensing semi-automated
needle driver instrument; (c) MIS robotic arm.

The cable-driven end-effector mechanism has previously been presented in our re-
search project [49]. This end-effector was designed to reduce workload and simplify the
suturing task, enabling it to be integrated into an automated system. The mechanism’s
working principle is based on decoupling the required needle insertion movements into
only one rotating DOF utilising a primary jaw responsible for applying force to the end of
the needle around a fixed centre of rotation (Figure 1a). This mechanism was designed to
pass the needle through its curvature.

The end-effector is integrated into the inner shaft of a force-sensing surgical instrument,
and the F/T sensor is located at the proximal end, as shown in Figure 1b. As shown in
this figure, the F/T sensor was enclosed in a casing to prevent contact with any other
components besides the inner tube. In order to protect the F/T sensing unit from external
forces such as tool–incision interaction or frictional loads, the inner shaft passes through an
outer tube. This resulted in an isolated measurement of tool–tissue interaction. Furthermore,
a cable guide was mounted under the F/T sensor to prevent contact between the driving
cables and the sensor. Because of the inner tube and end-effector weight components,
gravity affects the measurement of the proximal force sensor. In order to account for
gravitational forces, a bias was applied to the force sensor just before recording the force
data for each needle insertion cycle in order to remove the influence of tool weight on force
measurements. A reflective optoelectronic sensor was installed at the tip of the instrument’s
outer tube. The sensor was rigidly glued to the outer tube at a specific distance from the
tip. The optoelectronic sensor was used to measure the distance between the end-effector
and the tissue surface using infrared.
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Finally, the force sensing instrument is integrated into a 4-DOF robotic arm equipped
with actuators that rotate the instrument in roll, pitch, and yaw, as well as linearly along
the instrument shaft, as shown in Figure 1c. It features a double parallelogram structure
with a remote centre of motion (RCM) mechanism to avoid mechanical contact between the
robot and the incision point during motion.

3.2. Data-Based Interaction Force Estimation Using Neural Network Models

The indirect needle–tissue interaction force estimation model creates a mapping from
the robotic instrument sensor data, including tool force sensor data and needle insertion
motor kinematics, to the actual needle–tissue interaction forces. Data-based models were
constructed using neural network architecture to estimate the interaction forces. The neural
network model has been shown to be capable of modeling any nonlinear input–output
relationship when the network size and training are sufficient. There are three layers in
a neural network: the input layer, the hidden layer, and the output layer. The number
of hidden layers varies depending on the required accuracy and the network size to
approximate the desired function. Hidden layer output is expressed as follows:

Oh = s(Whu + bh) (1)

where s is a sigmoid function, and Oh is the vector of hidden layer outputs. Wh and bh
are the hidden layer weights matrix and bias coefficients vector, respectively. The number
of time steps in each input vector is another parameter that needs to be adjusted in the
training phase. The output layer calculates the estimated force values in each time-step ŷ
from the hidden layer output values (Oh) using the following equation:

ŷ = l(WoOh + bo) (2)

where l, Wo and bo are a linear function, the output layer weights matrix and bias coefficients
vector, respectively. The weight matrices and bias vectors were calculated using the
Levenberg–Marquardt (LM) algorithm. This algorithm is a standard gradient descent
method for training neural networks based on a dataset containing the input and target
output values.

Force estimation was performed using a recurrent neural network (RNN) architecture.
The RNN structure had one external output to input feedback connection. Therefore,
the input vector included estimated force values feedback to the system from the output.
This form of network is known as nonlinear autoregressive with external input (NARX).
The relationship between the input vector u and the estimated force ŷ at each time-step t
can be written as follows:

ŷ(t) = f (u(t− 1), . . . , u(t− d), ŷ(t− 1), . . . , ŷ(t− d)) (3)

where f is a nonlinear function resulting from substituting Equations (1) into (2) and d is
the number of subsequent time steps of input vector. The input vector u consists of three
measured force components of the tool–force sensor ( fx, fy, fz) and motor position and
velocity (θ, θ̇) in each time-step. The dependent output value ŷ is regressed on d number
of previous time-steps of the input vector (u(t− d) = ( fx, fy, fz, θ, θ̇)), as well as output
vector ŷ(t− d).

In the suturing process, the needle and tissue come into contact in two phases, dur-
ing needle insertion and needle extraction. In this study, the force models were trained
for needle insertion, and the force data from needle extraction were not considered during
training. The needle insertion stage begins when the needle tip touches the tissue surface,
and the needle passes through and cuts it. The needle insertion phase involves active
cutting forces that puncture the tissue, whereas the extraction phase does not include
such forces. In the extraction phase, the forces are primarily caused by friction between
the needle and the tissue as it passes through the already punctured tissue. Therefore,
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by providing force feedback during needle insertion, the surgeon can improve his or her
sensory perception of the tissue stiffness, reducing tissue damage.

Figure 2 shows a sample of input–output pairs recorded by the force sensing instru-
ment for one needle insertion cycle. Input data include needle insertion motor kinematics
and F/T sensor data of the instrument. The target output is the needle–tissue interaction
resultant force Fr of the three Cartesian force components measured by a force sensor un-
derneath the tissue base. The needle insertion process begins by loading the needle driver
and approaching the needle entry point. The force sensors are biased at this point and
have zero force component measurements (until time t1). The measured force components
by both force sensors and the motor position increase during the insertion cycle until the
needle tip emerges at the exit point (until time t2). Force estimation models were developed
using t1 and t2 interval data. In this interval, the recorded instrument’s force sensor data
contain the necessary needle driver force components applied to the needle during needle
insertion to overcome tissue resistance. Following this stage, the force values and motor
position were relatively constant until the jaw reached the first mechanical stopper (at
time t3). After the jaws are returned to their initial position, the force values are back to
zero with the exception of a small tool force sensor component, Fz, which measures jaw
opening force.

Figure 2. The recorded robot and tissue force sensors data for one cycle of needle insertion.

Networks were trained using 8725 input–output samples, including needle insertion
cycles with various rotational velocities from various silicone tissue locations. This dataset
was divided into three sets of 5672, 1745, and 1308 samples for training, validation, and test
dataset, respectively. In order to evaluate the model performance, the trained networks
were tested against an additional unseen dataset. There was only one hidden layer used
to model the dynamic relationship of the needle driver. One hidden layer would reduce
computational costs and provide a suitable model for real-time applications. The number
of investigated hidden nodes was from 10 to 50 nodes, increasing by increments of 5.
The number of delays considered ranged from 1 to 5, increasing by one increment. To reach
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a model with minimal complexity and desired accuracy, the means square error (MSE) of the
test dataset estimation was checked against a threshold for each trained model. Moreover,
a minimum delay value is desired to minimize the lag in the force estimation model.

Following the training phase, a model with suitable estimation MSE and network size
was selected. The selected RNN model consisted of 15 nodes in the hidden layer with d = 2
with estimation MSE of 10−4 N for the training dataset.

3.3. Needle–Tissue Interaction Haptic Feedback Using Impedance Control

An impedance control approach was used to provide estimated interaction force data
to the user using a phantom haptic device. As a result of the end-effector’s unique design,
the needle could be rotated along its curvature independently of other DOFs of the robot.
Therefore, only one DOF was required to provide the haptic feedback of needle–tissue
interaction. The dynamic equation of the interaction between the haptic device and the
operator for the considered DOF (x-direction) can be described as follows:

Mmx ẍmx + Cmx ẋmx = fmx + fhx (4)

where Mmx is the master robot inertia coefficient, Cmx, is the master robot damping co-
efficient, ẋmx and ẍmx are the master device velocity and acceleration in the x-direction,
respectively. The forces fmx and fhx are the master device control force and the user applied
force in the x-direction, respectively.

Based on the transparency definition, teleoperated systems must have equal user
interaction forces with the master device and slave arm forces on the tissue. To provide
a transparent sense of environment forces fe from the needle–tissue interaction forces,
the haptic force fmx was defined such that it compensates for the haptic device inertia
as follows:

fmx = Mmx ẍmx + Cmx ẋmx − αF f̂e (5)

where f̂e is the estimated needle–tissue interaction force using the force mapping model,
and αF is an environmental force scaling factor.

Phantom has no force sensors to directly measure forces, so the force applied by users
to the haptic device was estimated. The transmitted environment forces to the user can be
estimated as follows:

f̂hx = αF f̂e (6)

The selection of αF affects the system’s stability. In the following experiments, this
parameter was empirically selected (αF = 0.5) such that the user can easily overpower
scaled environment force.

The system stability is greatly influenced by the biomechanical impedance of the
user’s interaction with the haptic device, which can vary considerably [50]. When a
user grasps the haptic device, they can either stabilize a previously unstable system or
destabilize a previously stable system depending on whether they direct energy toward
the system or dissipate it. After testing multiple scaling factors, the user selected 0.5 based
on his ability to maintain the stability of the system throughout the experiments without
experiencing discomfort and fatigue. However, the scaling factor could be equal to one
without destabilizing the system depending on the user.

4. Hyperplanar Virtual Fixture Utilising a Reflective Optoelectronic Sensor

The VF algorithm aims to maintain the ideal distance between the end-effector and
tissue surface (LH) and prevent unwanted needle–tissue contact. The hyperplanar virtual
fixture geometry was developed by estimating the local tissue plane based on the distance
data recorded by the optoelectronic sensor. The incorporation of optoelectronic sensors
into teleoperated robotic systems was found to enhance human operator input during tool
fine alignment [51].

Figure 3 illustrates the schematic block diagram of the proposed algorithm for con-
structing the hyperplanar VF geometry by using a reflective optoelectronic sensor or optic
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sensor. Following a choice of the needle entrance point expressed in the robot’s base coor-
dinate frame, the algorithm began. The high-level controller generated a circular path for
the robot to scan the tissue around the entrance point and sent the required commands to
the robot motor low-level controllers to follow this path. In this step, the local coordinates
for samples taken near the desired point on the tissue surface were provided. The optical
sensor generated a voltage according to the distance between the tissue sample points and
the robot tip. Following the analog to digital conversion of sensor voltage data, a voltage to
distance mapping was performed. The collected distance data were then filtered using a
20th-order one-dimensional median filter to remove the noisy content. The code for the
robot was written in C++ and ran at a rate of 200 Hz.

Figure 3. Schematic block diagram of the optoelectronic sensor-based algorithm for hyperplanar VF
geometry construction.

In the next step, Matlab was used to generate the 3D point cloud based on the distances
collected by the optical sensor and corresponding robot joint coordinates. Before the plane
estimation step in Matlab, 3D point cloud data were subjected to noise cancellation. Using
filtered data, the plane estimation algorithm approximated the orientation of the tissue
plane. The estimated tissue plane orientation was then used for defining the hyperplane
parameters in VF geometry construction.

4.1. Reflective Optoelectronic Sensor-Based VF Geometry Construction

Reflective optoelectronic sensors work by transmitting and receiving infrared signals.
Distance is calculated by comparing the properties of the sent and received waves and
the time taken to receive them. An optical sensor generates an output voltage based
on the sensed signals using a combination of a position-sensitive detector, an infrared
emitting diode, and a signal processing circuit. The measurement is relatively robust
with various reflectivity percentages or environmental conditions due to incorporating the
triangle method.
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Over the sensor’s usable range, there is approximately a linear relationship between
the output voltage and the inverse of the distance between the sensor and the object,
according to the sensor’s datasheet. Sensor calibration was performed on silicone tissue
samples in order to determine the best-fit model between voltage and inverse distance.
A least-squares curve fitting method was used to calculate the following model using the
recorded output voltage v and the known distance between the optic sensor and tissue
surface dtip:

dtip = 9.041e4 (v× 366.2)−1.22 (7)

Figure 4 shows a sample of data collected for the evaluation of measurement accuracy.
The robot tip moved in a random sinusoidal pattern on the surface of the tissue sample.
Figure 4a shows the raw voltage recorded. Figure 4b presents the distance measured by
the sensor using Equation (7) and the reference value based on the known sensor position
attached to the robot’s tip. In this experiment, the RMS error for the silicone tissue sample
was 3.6 mm. According to the results, the sensor measured distances more accurately
between 54 mm and 100 mm, which is within the manufacturer’s reported working range.

(a) (b)

Figure 4. Sample of data collected for distance measurement accuracy evaluation (a) sensor’s recorded
raw output voltage; (b) distance measured by the sensor and the reference values.

In the next step, the coordinate frame transformation between the sensor frame, end-
effector frame, and robot base frame was used to calculate the 3D point cloud of the tissue
surface sample points. At each time step, measured distances dtip were associated with
robot joints data. The measured distances represent the location of the tissue sample point
in the frame attached to the sensor, as shown in Figure 1. The coordinates of each sampled
point on the tissue surface expressed in the robot base frame BPcl were calculated using
the following equation based on the orientation and position of the sensor frame at each
time step:

BPcl =
BTE

ETS
SPcl (8)

where SPcl = [0, 0, dtip, 0]T is the position of the sampled point on the tissue surface
expressed in the sensor frame, ETS is the transformation matrix from sensor frame to end-
effector frame, and BTE is the transformation matrix from the end-effector frame to a robot
base frame calculated using a forward kinematic model of the robot.

Figure 5a shows an example of raw data recorded during the scanning of a tissue
surface, including the end-effector tip coordinates [Tx, Ty, Tz], the robot’s roll and pitch DOF,
and the optical sensor measured distances dtip. The 3D point cloud of the tissue surface
generated from this dataset using Equation (8) is shown in Figure 5b. A discontinuity in
the path of the point cloud was caused by the optical sensor’s inaccuracy, as shown in this
figure. This issue was overcome in the next step using a robust plan estimation algorithm.
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(a) (b)

Figure 5. 3D point cloud generation (a) a sample of tissue surface scanning procedure raw data;
(b) 3D point cloud of the tissue surface generated from the raw dataset.

Estimation of tissue surface was performed using the maximum likelihood estimator
sample consensus algorithm (MLESAC) in Matlab. This algorithm is a modified and robust
version of the common random sample consensus (RANSAC) algorithm [52]. The MLESAC
algorithm separated the data into two groups of inliers and outliers and then dismissed
the outliers so that it could predict the data based only on the inliers. Plane solutions were
chosen that maximize the likelihood in the presence of outliers instead of only considering
data with a higher number of inliers. Next, the algorithm calculated the error term and
modeled it as a mixture of Gaussian and uniform distributions. A negative log-likelihood
was then calculated to minimize the error.

Using recorded 3D point clouds of the tissue surface, the algorithm was tested for
accuracy. The experiment was repeated ten times for four known plane orientations with
0◦, 5◦, 10◦, and 20◦ tilt. The RMS of the estimation error for each of the planes from 0◦ to
20◦ were 1.8◦, 2.1◦, 3.2◦, and 4.7◦, respectively. The plane estimation error was higher for
larger plane angles due to limitations in sensor measurement since sensor accuracy greatly
impacts plane estimation results.

4.2. Hyperplanar Virtual Fixture Impedance Control

The impedance control strategy was established to control the dynamic impedance of
the haptic device and adopt the VF guidance forces. Impedance dynamics equation for a
phantom haptic device interacting with the user in Cartesian space model is as follows:

Mm ¨̃x + Cm ˙̃x + Gm = fh + fm (9)

where Mm ∈ R3×3 is the positive definite inertia matrix, Cm ∈ R3×3 is the damping matrix,
Gm ∈ R3 is the gravitational force vector, x̃ = xd − x is the difference between the desired
value for the position vector xd in the task space, and the actual position vector x ∈ R3.
fh ∈ R3 is the human applied force on the master device, and fm ∈ R3 is the vector of
master tool control forces that are generated for the implemented VF force fv f and the
transmitted sensed tool–environment forces fe.

Due to the lack of a force sensor on the master tool, the user-applied force vector fh
cannot be directly measured. As a result, the following force estimator was implemented:

f̂h = Mm ¨̃x + Cm ˙̃x + Gm − fm (10)

Estimated force was assumed to equal the actual applied force ( fh = f̂h). Calculation
of master device control forces fm for VF force feedback was then carried out.

Figure 6 illustrates the hyperplanar VF spring–damper forces that guide the user
toward a desired plane. Using the geometrical relationships, it can be shown that the
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desired bite length LB is associated with the distance LH between the needle centre of
rotation and the tissue surface plane as follows:

LH = r cos (sin−1 (LB/2r)) (11)

In this equation, r represents the radius of the needle curve, and LB represents the distance
between the entrance and exit points of the needle.

The hyperplanar VF constrains the slave robot tip to move within a plane and main-
tains the distance LH calculated by Equation (11). The tissue plane can be defined based on
the identified orientation in Section 4.1, with the unit normal vector n̂ = (nx, ny, nz) and
the user selected point BPS. The following parallel constraint plane was defined above the
tissue plane:

Ptissue : nxx + nyy + nzz + d = 0 (12)

PVF : nxx + nyy + nzz + d + LH = 0 (13)

The closest point Bxcl
r on the constraint plane PVF and the robot end-effector centre

of rotation Bxr can be calculated using the projection of the point Bxr on the PVF plane as
follows:

Bxcl
r = BPcl

S − ((Bxr − BPcl
S ) · n̂) n̂ (14)

where BPcl
S is the projection of the user selected point BPS on the PVF plane.

Figure 6. Illustration of the hyperplanar VF spring–damper forces for maintaining the desired LH

distance between the needle centre of rotation and tissue surface plane for achieving the selected bite
length LB.

The desired master tool position, xmd, at each time step, can be calculated using the
mapping equation between the desired salve robot position Bxcl

r on the constraint plane
PVF as follows:

Mxmd = α−1
P

MRB
Bxcl

r (15)

A spring–damper guidance force was modeled to maintain the end-effector centre of
rotation within the constraint plane:

fm = fh f = Kh f x̃m + Ch f
˙̃xm (16)

where x̃m = xmd − xm is the difference between the desired and actual master tool position.
Kh f and Ch f are the hyperplanar VF spring and damper coefficient diagonal matrices,
respectively.

Subsequently, the haptic force felt by the user can be calculated based on Equation (10)
as follows:

f̂h = Mm ¨̃xm + (Cm − Ch f ) ˙̃xm − Kh f x̃m + Gm (17)
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fh force guided the user toward the closest point on the hyperplane. The direction of
fh changed based on the position of the end-effector on either side of the plane, bringing
the user back to the desired distance above the tissue.

5. Experimental Research Facility

The experimental research facility for this study is shown in Figure 7. The user
interacted with the robotic system using a C++ command interface connected to Matlab
via a Matlab Engine API and a Phantom Omni haptic device. C++ and Matlab were both
processed on the same PC and communicated via TCP/IP. Teleoperated robotic surgical
systems were originally developed in [53,54]. Commands for slave robot were transmitted
to Maxon EPOS 2 motor controllers using the CAN-bus protocol.

(a)

(b)

Figure 7. Experimental research facility: (a) user interface and haptic device; (b) teleoperated robotic
surgical system platform.

The infrared optoelectronic sensor used for distance measurement was Sharp IR distance
sensor GP2Y0A51SK0F, designed to measure distances of 2–15 cm. Voltage data were sampled
at a rate of 60 Hz due to the sensor’s limitations in providing higher sampling rates. Datasheets
indicated that the optical sensor could detect distances from surfaces with as little as 0.18
reflective grey paper. In the data synchronization process, the interpolation technique was used
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to calculate synchronized values for data collected at different rates to match the robot 200 Hz
control loop.

Haptic feedback was provided by a Phantom Omni with 6-DOF position sensing and 3-
DOF force feedback. The Phantom Omni standard IEEE-1394 FireWire communication protocol
was used for user interaction with the haptic device. Motion commands were taken from the
user by manipulating the stylus in different positions and orientations and transferring them to
the robot control loop. Through the actuation of the joints in 3 Cartesian coordinates, feedback
force data were transmitted to the user. The maximum force that the actuators could produce
was 3.3 N, and the position sensing resolution was 0.055 mm.

In this study, Ethicon J351H curved needles with 40 mm needle length and 29 mm needle
diameter were used with the scaled fabricated end-effector. A Johnson and Johnson laparoscopic
simulator box was used for the experiments. In order to measure needle–tissue interaction
forces, a silicone surgical training pad was installed on top of an ATI Mini40 force-torque sensor
(ATI Industrial Automation). Force data were transmitted at 30 kHz and smoothed with a
300 sample moving average filter, resulting in an effective 100 Hz rate.

6. Results
6.1. Hyperplanar Virtual Fixture

The user performed a series of needle insertion trials with each trial involving stitching
into eight evenly spaced needle entrance points on a circle of 40 mm diameter in two
different modes. The needle driver was manually loaded with a new needle between
needle insertion cycles. As part of the first mode, the user was provided with hyperplanar
VF forces to maintain the end-effector centre of rotation at a fixed LH distance above the
tissue using VF geometry determined by the optoelectronic sensor. A second mode allowed
the user to move the end-effector in any direction without being guided. The user repeated
this task for ten trials in each mode. The tissue plane was placed horizontally, and hence
the only VF force that the user received was normal to the tissue surface to keep the tool
above the tissue within the VF plane.

Figure 8a shows a sample of suturing trails data of the end-effector’s trajectory in
the second mode and identified VF hyperplane that indicates the ideal location for the
end-effector. Figure 8b demonstrates the relative distance between the end-effector and
VF hyperplane. Ideally, the end-effector should be located within the VF plane, as this
produces the desired bite length. Therefore, the relative distance between the end-effector
and VF plane should be as small as possible. To avoid contact with the tissue surface,
the needle tip had to be moved away from the tissue surface. As a result, the user needed
to adjust the LH distance repeatedly. For each marked needle entrance point, a LH distance
adjustment was made individually. A number of accidental contacts were also observed
when the end-effector passed through the VF plane, shown as negative relative positions.
In the fifth trial, the results of VF-activated mode and receiver guidance force are shown to
compare modes and demonstrate how effective VF assistance is at reducing repeated tool
height re-alignments. Based on this data, it is evident that the algorithm maintains the LH
distance and reduces the operator’s workload for adjusting end-effector positions.

Figure 9a illustrates a sample result of the end-effector’s trajectory during VF-assisted trials.
Figure 9b shows the relative distance between the end-effector’s centre of rotation and the VF
plane, as well as the user forces fh. Due to the horizontal VF plane, the user only received the
Fz force component normal to the tissue surface. In response to the user’s movements above
the tissue plane, the Fz sign changes to match the position of the end-effector relative to the VF
plane. A change in Fz direction was observed as the tool was moved out of the VF plane from
its two sides. As a result, the user was able to maintain the end-effector movement within the
VF plane with minimal fluctuations above the tissue plane with the assistance of the VF forces.
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(a)

(b)

(c)

Figure 8. Needle insertion task results for no hyperplanar VF assistance mode. (a) 3D path of the
needle tip in space toward the desired entrance point; (b) relative position of the end-effector centre
of rotation above the VF plane; (c) user received force Fh.

(a)

(b)

(c)

Figure 9. Needle insertion task results for hyperplanar VF assistance mode. (a) 3D path of the needle
tip in space toward the desired entrance point; (b) relative position of the end-effector centre of
rotation above the VF plane; (c) user received force Fh.

During the needle insertion task trials, the average time for the first and second modes
was 36.4 s and 54.2 s, respectively. The average needle entrance point error for the second
mode was 2.4 mm, while the average for the VF-assisted mode was 1.5 mm.

6.2. Data-Based Interaction Force Estimation and Haptic Feedback Implementation

The selected RNN model was tested with real-time and unseen data samples. The force
estimation results are presented in Figure 10. Figure 10a displays the actual and estimated
results in a time series. Using this model, the estimation error was −0.01 N, with a standard
deviation of 0.09 N. In addition, the RMSE for the test sample was calculated to be 0.15 N.
Figure 10b shows the model’s ability to follow the force–needle rotation profile. A first-order line
was fitted using a least squares approach to the pairs of the target values and estimated force to
determine the overall accuracy of the force model. It is ideal for the slope of target–output pairs
to be equal to one. Figure 10c shows the fitted line to the selected model target–output pairs.
The dashed black line indicates the ideal slope for this curve fit. A slope of 0.95 was calculated
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for the RNN network. According to this result, the RNN model performed well in modelling
the needle insertion process with a 5% error from the ideal slope line.

(a)

(b) (c)

Figure 10. Results for a sample output of the RNN model. (a) the force–time profile of the recorded
force versus the estimated force calculated by the force model; (b) the force–needle rotation profile;
(c) fitted line to the pairs of the target values versus the estimated force values with an ideal slope of
1 shown with a black dashed line.

As part of the last experiment, the user received direct feedback forces in two modes:
VF-assisted and without VF. The needle insertion actuator was activated by holding down
a button on the haptic device stylus and moving the stylus along the x-axis of the master
device coordinate frame. The haptic device provided the user with the online needle–tissue
interaction force estimations calculated from Equation (6). The transferred forces were
smoothed using a low pass filter applied to f̂hx. In addition, the user was presented with a
visual graph displaying real-time estimated forces.

Figure 11 shows a force–time profile of the needle–tissue interaction forces from the F/T
sensor under the tissue, as well as the haptic force provided to the user. The perceived user force
fh is shown in red, and the scaled ground truth value (αF fe) is shown in blue. Within the first
20 s, interaction data are shown in VF-assisted hyperplanar mode, and from 20–45 s, the non-VF
mode is presented. There was a 0.07 N RMSE between user-perceived forces and the scaled
environment forces in the sample results. According to the graph, the interaction forces were
relatively higher in the non-VF assistance mode due to inaccurate LH adjustments. Specifically,
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this is caused by excessive forces created by the end-effector pushing the needle tip down on
the surface of the tissue when the ideal LH distance is not maintained.

Figure 11. Force–time profile of the scaled actual needle–tissue interaction forces recorded by the F/T
sensor under the tissue versus the user received force.

7. Discussion and Conclusions

This paper presented a teleoperated suturing methodology using a force-sensing nee-
dle driver that semi-automates the MIS stitching task and provides an indirect measurement
of needle–tissue contact forces.

Initially, an indirect force-sensing method was developed. Using indirect force mea-
surement models, robot sensors were mapped to needle–tissue forces. The interaction force
was estimated using a data-based force estimation model. In order to test the accuracy of
force estimation models, online input data from the slave robot motor kinematics and the
instrument force sensor were used, and the results were compared with the ground truth
force profile that was acquired from tissue-integrated force sensors. As a result of the sim-
plified end-effector mechanism, indirect force estimation was possible with high accuracy,
thus facilitating intuitive force feedback. Additionally, these results demonstrated the po-
tential of data-based force estimation for force feedback. Using the force-sensing instrument
developed, bilateral teleoperation robotic methodology was established. An impedance
control scheme was used to cancel the dynamics of the master device and to transmit scaled
estimations of the environmental forces from needle–tissue interaction to the user. Exper-
imental evaluation and verification of the proposed robotic stitching methodology were
conducted. The haptic feedback experimental results indicated the ability of the proposed
teleoperated robotic needle driver to convey the interaction force data with 0.07 N RSME
between the actual scaled environment and user perceived forces.

A reflective optoelectronic sensor-based approach for estimating the tissue plane orientation
was investigated, using the scanned 3D point cloud of the tissue surface and the MLESAC
algorithm results. A hyperplanar virtual fixture was constructed based on the estimated
orientation of the tissue. The VF algorithm was established via impedance control of the master
haptic device. Compared to laser-based scanning or depth cameras, a reflective optic sensor’s
data analysis computational costs are significantly lower. There is a potential for reducing the
duration of real-time data processing with this benefit. In addition, the sensor is considerably
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less expensive than an image-based measurement camera. This reduces the system’s overall
cost and even makes it suitable for disposable instruments. Experimental results showed that
the proposed VF was capable of reducing robot manipulation time, increasing task accuracy,
and reducing interaction forces. The hyperplanar VF also restricted the robot manipulation
to a plane with the desired distance above the identified tissue surface, which resulted in the
desired bite length. In conclusion, the proposed methodology can potentially decrease the
complexity of the tool’s operation, ease the burden on the surgeons, and improve the accuracy
and repeatability of the task.

A number of extensions can be made to this research to improve the needle driver’s capabil-
ity. Investigating a needle driver mechanism that retrieves the needle after needle insertion could
significantly improve the suturing process. This feature requires removing passive clamping pro-
vided by mechanical stoppers and developing active clamping capability for the jaws that grasp
the needle tip using the same degree of freedom. Furthermore, the proposed methodologies can
be extended to other surgical skills such as dissection and retraction, which can greatly benefit
from the force-feedback capabilities of the system. It is possible to improve the force-sensing by
investigating data-based models with three outputs that could estimate each force component
separately. It is also likely that cable friction can affect estimation accuracy, requiring future
research to incorporate additional pulleys into the instrument. The force-sensing capability of
the instrument in the presence of tissue deformation can be investigated. The force models
evaluated were developed based on the assumption of minimal tissue deformation utilizing
the experimental data from a tissue installed on a firm base. In future studies, the accuracy
of data-based models can be improved with training data sets collected from experiments,
including vertical and horizontal tissue deformations. Finally, further research will assess how
the proposed instrument compares with the traditional instrument using objective scoring tools,
such as robotic assessment and competency evaluation (RACE).
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