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G.; Blažič, S. Minimum-Time

Trajectory Generation for Wheeled

Mobile Systems Using Bézier Curves

with Constraints on Velocity,

Acceleration and Jerk. Sensors 2023,

23, 1982. https://doi.org/10.3390/

s23041982

Academic Editor: Cosimo Distante

Received: 18 January 2023

Revised: 3 February 2023

Accepted: 7 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Minimum-Time Trajectory Generation for Wheeled Mobile
Systems Using Bézier Curves with Constraints on Velocity,
Acceleration and Jerk
Martina Benko Loknar , Gregor Klančar and Sašo Blažič *
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Abstract: This paper considers the problem of minimum-time smooth trajectory planning for wheeled
mobile robots. The smooth path is defined by several Bézier curves and the calculated velocity profiles
on individual segments are minimum-time with continuous velocity and acceleration in the joints.
We describe a novel solution for the construction of a 5th order Bézier curve that enables a simple
and intuitive parameterization. The proposed trajectory optimization considers environment space
constraints and constraints on the velocity, acceleration, and jerk. The operation of the trajectory
planning algorithm has been demonstrated in two simulations: on a racetrack and in a warehouse
environment. Therefore, we have shown that the proposed path construction and trajectory gen-
eration algorithm can be applied to a constrained environment and can also be used in real-world
driving scenarios.

Keywords: wheeled mobile robots; trajectory generation; velocity profile; trajectory optimization;
Bézier curves

1. Introduction

Path planning and trajectory planning are fundamental topics in autonomous mobile
robotics and even more broadly in the context of automation [1]. Path planning algorithms
generate a path through predefined points with the main goal of finding a continuous
path that minimizes the distance between the starting point and an end point without
colliding with obstacles [2,3]. While path planning is a geometric problem, trajectory
planning additionally parameterizes the resulting path by time. Consequently, defining
time moments along a path affects the kinematic and dynamic properties of the motion
of a mobile system. Forces and torques depend on acceleration along a trajectory, while
vibrations of its mechanical structure are mainly determined by values of jerk, the time
derivative of acceleration [4].

The aim of our work was to solve the problem of minimum-time trajectory generation
for wheeled mobile systems with constraints on velocity, acceleration, and jerk in a limited
planar space without obstacles. The idea we propose is to apply an optimization method to
determine the construction parameters of a Bézier curve primitive such that the resulting
travel time on a complete smooth path is minimal. The algorithm we use to compute the
minimum-time velocity profile is presented in Ref. [5]. It computes the velocity profile on a
predefined path under specified constraints on velocity, radial and tangential acceleration,
and radial and tangential jerk.

This paper is organized as follows. Section 2 gives a general overview of the related
work. Section 3 introduces the research problem and our main objectives, and Section 4
briefly lists the main contributions. The novel methodology of constructing and parameter-
izing the fifth-order Bézier curves that make up the resulting geometric path is detailed in
Section 5.1. In Section 6, we present two applications of our proposed trajectory generation
algorithm, namely the computation of the minimum-time trajectory of a wheeled mobile

Sensors 2023, 23, 1982. https://doi.org/10.3390/s23041982 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041982
https://doi.org/10.3390/s23041982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8152-1809
https://orcid.org/0000-0002-1461-3321
https://orcid.org/0000-0002-9347-8534
https://doi.org/10.3390/s23041982
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041982?type=check_update&version=1


Sensors 2023, 23, 1982 2 of 16

system on a racetrack (Section 6.1) and in a warehouse (Section 6.2). Our conclusions are
drawn in the last section.

2. Related Work

The problem of minimum-time trajectory planning remains relevant due to the grow-
ing demands for optimal operation of mobile systems, robots, and automated machines.
Trajectory planning or, more generally, the planning of the motion of mobile systems can
be divided into two parts: velocity profile optimization and path search [6].

The problem of velocity profile optimization is to determine the time-optimal speed
law that satisfies certain kinematic or dynamic constraints, and was considered in Refs. [7,8].
The authors in Ref. [9] have provided a comprehensive review of the consideration of jerk
in science and engineering, where it is used as a design factor to ensure ride comfort (e.g.,
amusement park rides, watercraft, elevators, and autonomous buses), and also reference
jerk-related ISO standards. As a result, jerk has established its relevance in numerous
scientific and engineering applications. Much of the research is dedicated to limiting or
minimizing jerk to reduce vibration, decrease positional errors, or improve the overall
performance of machine tools [10], robotic manipulators [11–15], and autonomous mobile
robots [5,16–19].

Numerous path planning strategies have been designed and implemented in the
literature [20–22]. To meet the kinematic limits of the vehicle and successfully transport
a hazardous, fragile, or valuable load, the resulting path must be smooth [23]; it must
be feasible at high speeds while being harmless to the mechanical system by avoiding
vibration and excessive acceleration of the actuators. Often, path planning techniques must
also comply with geometric constraints [3,24]. A significant part of path planning methods
is the choice of geometric curves, which can be polynomials [25], Bézier curves [6,26–28],
cubic splines [29], B-splines [30], Dubins curves, clothoids [31], hypocycloids [32], and
others, as presented in Ref. [23].

In this work, we have utilized Bézier curves due to their favorable properties, including
low computational cost and flexibility. The authors in Refs. [33–36] also used quintic Bézier
curves and various optimization approaches in an attempt to improve the efficiency and
accuracy of path planning for autonomous vehicles. In Ref. [33], the author described
the cubic and quintic (trigonometric) Bézier curves using a few shape parameters, which
makes the method flexible for use in cluttered environments. However, the author only
evaluated and compared the values of velocity, radial acceleration, longitudinal and radial
jerks on given unit speed curves. In Ref. [34], the authors proposed a real-time motion
planning approach for automated driving in urban environments. Similar to our case, they
used a decoupled method by separating path and speed planning. While their trajectory
generation approach is suitable for environments with obstacles, the generated velocity
profiles do not include jerk constraints. In Ref. [35], the presented method combines jump
point search with Bézier curves. However, their approach only ensures C2 continuity and
considers velocity and acceleration constraints. In Ref. [36], the authors proposed an
optimization approach for path planning for driverless vehicles in parallel parking using
a radial basis function neural network. The authors optimized performance to ensure
curve continuity, safety, and compliance with curvature constraints, but did not address
the problem of velocity planning or compliance with other dynamic constraints.

Mobile robots are finding broader application and have become an integral part of a
variety of environments: in manufacturing, medicine, and many other robotics-based ser-
vices, including automated warehouses [37–40]. In work environments where simple and
labor-intensive tasks of workers are replaced by mobile robots, labor efficiency, scalability,
adaptability, and warehouse visibility increase, and turnaround time decreases.

3. Problem Formulation

Let the motion of a mobile system along a three times continuously differentiable
plane curve C be described as a function of time t ∈

[
0, t f

]
by the position vector r(t)
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measured from a given fixed origin. The velocity vector v(t), the acceleration vector a(t),
and the jerk vector j(t) in the tangential-normal form are:

v(t) = v(t) · T̂, (1a)

a(t) = aT(t) · T̂ + aR(t) · N̂ = v̇ · T̂ + v2κ · N̂, (1b)

j(t) = jT(t) · T̂ + jR(t) · N̂ =
(

v̈− v3κ2
)
· T̂ +

1
v

(
d
dt

(v3κ)

)
· N̂, (1c)

where T̂ and N̂ are the unit tangential and the unit normal vector, respectively, and κ is
the curvature of the path at time t. In Equation (1a), v is called speed, and the tangential
and normal components of the acceleration (Equation (1b)) are called acceleration along
the path and centripetal acceleration (also called radial acceleration), respectively. The
expression (1c) is obtained by differentiating Equation (1b) and applying the Frenet–Serret
formulas for movement in two-dimensional Euclidean space R2 [41].

The maximum allowable value of velocity vMAX is determined by the capabilities of
the robot actuators and also the environmental conditions (e.g., surface type). Driving in the
reverse direction is not permitted. The maximum values of radial acceleration aRMAX and
tangential acceleration aTMAX can be set based on the dynamic constraints of a mobile robot
(e.g., maximum centripetal force and rolling resistance in a turn) [6]. Similarly, we imposed
third-order constraints jRMAX and jTMAX , whose values can be derived from ride comfort
criteria [9]. Although we could limit the acceleration and jerk components separately (and
treat them individually), we additionally restricted their values to the range within an
ellipse (similar to researchers in [5,6,35,42]:

0 ≤ |v(t)| ≤ vMAX, (2a)

a2
R(t)

a2
RMAX

+
a2

T(t)
a2

TMAX

≤ 1, (2b)

j2R(t)
j2RMAX

+
j2T(t)
j2TMAX

≤ 1. (2c)

Treating the tangential and radial components of acceleration (Equation (2b)) and jerk
(Equation (2c)) together is more rigorous than limiting the individual components. It also
provides greater ride comfort by constraining the overall norms. The goal of this research
was to develop a trajectory planning method for a mobile system operating in a constrained,
obstacle-free, planar environment while subject to kinematic constraints. Although motion
planning algorithms have been the subject of extensive research, dealing with third-order
constraints still proves challenging.

4. Contributions

The main contributions of this paper can be summarized as follows:

• We describe an innovative construction method for 5th order Bézier curves. The
proposed parameterization is simple and intuitive, yet effective for generating smooth
paths consisting of multiple splines (Section 5);

• The above smooth path generation basis is coupled with an algorithm that computes
a minimum-time velocity profile with velocity, acceleration, and jerk constraints on a
predefined path (see Ref. [5]). Together they form a powerful trajectory generation
algorithm (Section 6). The resulting trajectories thus provide continuous velocity and
acceleration profiles;

• To prove the applicability of our approach to trajectory optimization, we performed sim-
ulation experiments on a racetrack and in a warehouse environment (Sections 6.1 and 6.2).
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In the warehouse simulation, we identified and analyzed realistic situations with different
dynamic constraints to investigate and propose the most appropriate driving scenarios.

5. Curve Primitives

A Bernstein–Bézier curve (or Bézier curve) is defined by a set of control points
P0, P1, . . . Pb, b ∈ N :

rb(λ) =
b

∑
i=0

piBi,b(λ), (3)

where λ is a normalized time variable (0 ≤ λ ≤ 1) and pi denotes the position vector of a
control point Pi. The polynomials Bi,b(λ):

Bi,b(λ) =

(
b
i

)
λi(1− λ)b−i =

b!
i!(b− i)!

λi(1− λ)b−i, (4)

are known as Bernstein basis polynomials of degree b. Bézier curves can be defined for
N-dimensional space, N ∈ N. In planar space, the curve rb(λ) and the vectors pi are
two-element vectors: rb(λ) = [X(λ), Y(λ)]T and pi = [xi, yi]

T . These curves have several
useful properties for path planning. The first and last points of the Bézier curves introduced
in Equation (3) are their endpoints:

rb(0) = p0 and rb(1) = pb. (5)

The N-dimensional, b-th order Bézier curve also lies within the convex hull defined
by its control points. Furthermore, the beginning and the end of the curve are tangent to
the first and the last section of the convex polygon, respectively (Figure 1).

drb
dλ

∣∣∣∣
λ=0

= b(p1 − p0), (6)

drb
dλ

∣∣∣∣
λ=1

= b(pb − pb−1). (7)

P
0

P
1

P
2

P
3

P
4

P
5

Figure 1. Fifth order Bernstein–Bézier curve within its convex hull (dashed lines). The curve is
tangent to the sides of the convex hull, line segments P0P1 and P4P5.

Other properties of Bernstein polynomials (derivatives, calculation of definite integrals,
the de Casteljau algorithm, degree elevation, etc.) fall outside the scope of this article; more
details on this topic can be found in Ref. [28].

Bézier curves constructed by a large number of control points are computationally
intensive. For this reason, in path planning, it is desirable to construct a smooth path
by connecting low-degree Bézier curves [6]. The authors in Ref. [43] proposed a new
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parameterization of motion primitives based on Bézier curves for path planning appli-
cations of wheeled mobile robots. However, the method was presented for third-order
polynomials and the algorithm does not guarantee the existence of the curve for all possible
parameterizations. We used fifth-order Bézier curves because this is the degree of Bézier
curves that always satisfies the curvature continuity requirement (C2) in the joints. The 5th
order Bézier curve r5(λ) is defined by six control points Pi:

r5(λ) = (1− λ)5 p0 + 5λ(1− λ)4 p1 + 10λ2(1− λ)3 p2 + 10λ3(1− λ)2 p3

+ 5λ4(1− λ)p4 + λ5 p5. (8)

5.1. Construction of 5th Order Bézier Curves

It is very important to choose the appropriate construction parameters that would
efficiently define the Bézier curves and facilitate the search for the minimum-time trajectory.

With the above notation, let us mark the distances between consecutive control points
d(Pi, Pi+1) as di+1 and the angles between (Pi, Pi+1) and the positive direction of the x-axis
as ϕi+1 (Figure 2), i = {0, 1 . . . , 4}. For the coordinates of two consecutive control points, it
follows that:

xi+1 − xi = di+1 cos ϕi+1, (9a)

yi+1 − yi = di+1 sin ϕi+1. (9b)

We evaluate (9a) and (9b) for i ∈ {0, 1} using the sum and difference formulas for sine
and cosine. This gives the following expression for the value of the curvature in P0:

lim
λ→0

κ(λ) = κ0 =
4
5

d2

d2
1

sin(ϕ2 − ϕ1). (10)

The derivative of curvature κ0 in P0 with respect to λ is:

lim
λ→0

dκ

dλ
=

12
5

1
d2

1
d3 sin(ϕ3 − ϕ1) + κ0

(
−12

d2

d1
cos(ϕ2 − ϕ1) + 6

)
. (11)

We choose the parameters of the curve so that the second term in Equation (11)
becomes 0. This happens when:

d2

d1
=

1
2 cos(ϕ2 − ϕ1)

. (12)

The curvature κ0 from Equation (10) and its derivative κ′0 in P0 from Equation (11)
then become:

κ0 =
4

10
tan(ϕ2 − ϕ1)

d1
, (13a)

κ′0 =
12
5

d3 sin(ϕ3 − ϕ1)

d2
1

. (13b)

The purpose of introducing notations for di and ϕi and deriving expressions for κ0
and κ′0 is to make the process of path construction as efficient and intuitive as possible. This
also takes into account that the path ultimately consists of several Bézier curves. Thus, the
parameters needed to generate a 5th order Bézier curve are P0, P5, ϕ1, ϕ5, κ0, κ5, d1, d5, and
κ′0. However, how would one set the value of κ′0? It could be simply set to zero, but perhaps
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it is also useful to examine Equation (1c) and choose such a value for κ′0 that the value of
the radial component (in P0) of the jerk vector is zero.

A 5th order Bézier curve is therefore constructed in the following steps (Figure 2):

1. Outline the first control point and mark it as P0. In the direction of ϕ1, measure out
the distance d1 and mark the second point as P1.

2. In the direction ϕ1, measure out the distance d||2 (from Equation (12)):

d||2 = d2 cos(ϕ2 − ϕ1) =
1
2 d1. (14)

3. Measure in the perpendicular direction the distance d⊥2 (from Equation (10)):

d⊥2 = 5
4 d2

1κ0. (15)

and mark the third point as P2.
4. All points away from P2 for d⊥3 (Equation (11)) in the same direction (perpendicular

to the line segment P0P1) lie on the red dashed line.

d⊥3 = 5
12 d2

1κ′0. (16)

5. Mark the last point as P5. Measure out the distance d5 in the opposite direction from
ϕ5 and mark the fifth point as P4.

6. All points away from P4 for d⊥4 (Equations (9a), (9b) and (10) for i = 4) in the same
direction (perpendicular to the line segment P4P5) lie on the green dashed line:

d⊥4 = 5
4 d2

5κ5. (17)

7. The fourth control point P3 lies on the intersection of the red and green dashed lines.
The Bézier curve is now completely defined.

Figure 2. The proposed construction of a Bézier curve that enables efficient parameterization.

6. Generation of Minimum-Time Trajectories

We have shown the use of the proposed trajectory planning algorithm in two environ-
ments. On a racetrack, the focus was on demonstrating path construction and ensuring
that it is within the corridor boundaries. In a warehouse, we demonstrated the benefits of
our proposed methods in a real-world application. All simulations were performed using
the Matlab programming environment on a computer with an Intel(R) Core(TM) i7-8700
CPU 3.2 GHz processor with 16 GB RAM memory.
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A minimum-time trajectory is computed by applying an algorithm that generates a
minimum-time velocity profile (proposed in Ref. [5]) to Bézier curve splines. The algorithm,
which considers velocity, acceleration, and jerk constraints along a given path, consists
of two steps. In the first step of the algorithm, the velocity and acceleration constraints
are considered. In the second step, the algorithm modifies the original velocity profile to
include the jerk constraints, with the process varying depending on the type of violation
(single-point or interval jerk violations). The simulation methodology for computing the
minimum-time velocity profile, described in detail in Ref. [5], can essentially be described
as solving the presented ordinary differential equation with a given initial value. In our
own implementation, numerical methods (Euler’s method and trapezoidal integration)
were used to calculate the required values in the discrete time samples.

We then used a nonlinear gradient optimization method, an optimization routine
built into Matlab, to change the construction parameters of the Bézier curves. Using
this method, we found a solution where the travel time reached a minimum. Since the
simulated environments were static and free of obstacles, we divided the environments into
several individual sections. This was done primarily to reduce the number of optimization
parameters and consequently speed up the minimization process.

6.1. Racetrack Environment

The model of a racetrack that we used in our simulations is shown in Figure 3. It is
defined by the centerline. The left and right edges of the racetrack are at a distance w/2
from the centerline and represent the corridor boundaries. The shape of the racetrack can
in general be arbitrary complex and is therefore divided into segments. This is done by
analyzing the curvature of the centerline. Points where the curvature reaches local extrema
are denoted by the sequence Ci, i ∈ {1, . . . , Nparts + 1} where Nparts is the number of
segments. Then perpendicular lines to the centerline are drawn in Ci. These lines represent
the edges of individual segments. The first and last control points of the Bézier curves
lie somewhere on the segment edges. For simplicity, we represent the positions of Pi

0 and
Pi

5, i ∈ {1, . . . , Nparts}, by the parameter p ∈ [−1, 1]. The sign of p indicates whether the
control point lies somewhere between the centerline and the right (+) or left (−) edge of
the racetrack.

Figure 3. The racetrack model we used for the simulations. Shown are points Ci on the centerline
where the curvature is locally highest, and lines mi where Pi

1 and Pi
5 lie.

Thus, each curve in a segment is completely defined by the positions, angles, and
curvatures in the first and last control points (p0, ϕ1, κ0, p5, ϕ5, κ5), d1, and d5. Note that the
angles are measured from a tangent to the centerline in Ci (Figure 4). To find a reasonable
starting point for the optimization, we devised a simple heuristics. In each segment, a line
` is drawn from Pi

0 through the outermost edge of the inner side of the corridor at the end
of the (i + 1)th segment. The intersection of lines ` and mi is the initial estimate for the
position pi

5,init of the last control point P′i5 . If the intersection point is outside the corridor
(as in Figure 5), pi

5,init is set to its edge. The initial estimate for the angle ϕi
5,init is the angle

between the line ` and the line perpendicular to mi+1, while κi
5,init is the curvature of the



Sensors 2023, 23, 1982 8 of 16

centerline in Ci+1. The values of di
1 and di

5 were set to the value of a certain fraction of the
distance between Pi

0 and P′i5 . The heuristic procedure described is shown in Figure 5. To
simplify the notation, we will from now on omit the superscript i.

Figure 4. A segment with a Bézier curve. ϕ1 and ϕ5 are measured from the line perpendicular to mi.

Figure 5. An example of heuristic determination of initial guesses for construction of Bézier curve(s).

We devised a series of separate simulation experiments to demonstrate the operation
and efficiency of the proposed Bézier curve construction and trajectory planning algorithm.

Let Nfree denote the number of optimization parameters on each corridor segment. It
is expected that the higher the number of (free) curve construction parameters Nfree, the
more versatile a curve is. Thus a better solution can be provided. However, in this way
the optimization problem becomes more computationally expensive and the solution more
difficult to obtain due to the complex form of the objective function.

Another problem is the gradual generation of the final trajectory. A Bézier curve can be
constructed for each segment separately and have the criterion assigned to it. Alternatively,
multiple Bézier curves spanning several segments can be constructed together, and the
objective is the travel time along all of them. Then only the solution on the first segment
is kept and this procedure is repeated in a receding horizon manner. Let us denote by
Nseg the number of segments that are treated simultaneously. If only a one-segment
optimization is performed (Nseg = 1), the solution does not take into account the corridor
shape in the following segment, e.g., when a sharp turn follows. On the other extreme, the
complete curve (on all corridor segments) can be generated in each run of the optimization,
but since the dimension of the optimization problem is the product of the construction
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parameters, namely Nfree × Nseg, it is reasonable not to exaggerate the two values and to
find a sensible compromise.

Simulations were performed for Nfree ∈ {2, 5} and Nseg ∈ {1, 2, 3}. Therefore, in one
group of experiments, the two optimization parameters are d1 and d5, while the other three
necessary parameters for curve construction (p5, ϕ5, and κ5) are given by the heuristics
discussed above and shown in Figure 5. In the other set of simulations, there are five
optimization parameters, namely d1, d5, p5, ϕ5, and κ5. Certainly, both simulation scenarios
also include cases with different Nseg. The data obtained from the simulation experiments
are compiled in Table 1, where ti represents the travel time at the end of a given corridor
segment and ∑6

i=1 ti is the total travel time on a resulting path.

Table 1. Resulting travel times on segments and total travel times. Simulations were performed
for different numbers of optimization parameters Nfree ∈ {2, 5}, and different numbers of seg-
ments Nseg ∈ {1, 2, 3}, whose geometry was taken into account when calculating the solution for
the current segment.

Nseg Nfree
t1 t2 t3 t4 t5 ∑6

i=1 ti
[s] [s] [s] [s] [s] [s]

1 2 2.91 4.20 7.18 9.73 11.24 12.11
5 2.34 2.87 5.44 7.89 9.42 10.20

2 2 2.87 4.15 7.14 9.69 11.19 12.03
5 2.34 2.88 5.54 7.90 9.27 9.66

3 2 2.89 4.16 7.13 9.68 11.22 12.07
5 2.34 2.90 5.52 7.68 8.87 9.17

Figures 6–11 show the resulting paths in the racetrack and the corresponding velocity
profiles. We imposed the following constraints: vMAX =1.75 m/s (represented by the dashed
horizontal lines), aRMAX = 1.6 m/s2, aTMAX = 0.8 m/s2, jRMAX = 16 m/s3, jTMAX = 12 m/s3.

Figure 6. Resulting path as optimization result for Nfree = 2 and Nseg = 1 (left) with the correspond-
ing velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.

Figure 7. Resulting path as optimization result for Nfree = 5 and Nseg = 1 (left) with the correspond-
ing velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.
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Figure 8. Resulting path as optimization result for Nfree = 2 and Nseg = 2 (left) with the correspond-
ing velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.

Figure 9. Resulting path as optimization result for Nfree = 5 and Nseg = 2 (left) with corresponding
velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.

Figure 10. Resulting path as optimization result for Nfree = 2 and Nseg = 3 (left) with the corre-
sponding velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches
its maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches
its maximum allowable value.

Figure 11. Resulting path as optimization result for Nfree = 5 and Nseg = 3 (left) with the corre-
sponding velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches
its maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches
its maximum allowable value.

As expected, the results in Table 1 show that the travel times decrease when either Nseg or
Nfree increases. The shortest travel time is calculated for the case where Nseg = 3 and Nfree = 5.
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6.2. Warehouse Environment

The enormous technological capabilities of automated guided vehicles (AGVs) and
other autonomous mobile robots (AMRs) are facilitating the launch of fully automated
warehouses. Common warehouse tasks performed by mobile robots include loading and
unloading goods, stacking and retrieving items, picking and sorting orders, inventory
tracking, and warehouse maintenance.

We tested the proposed trajectory planning algorithm in a simple warehouse environ-
ment by simulating the task of moving between three rows of storage racks, picking up
and dropping off loads from specific locations (Figure 12). Warehouses are usually very
confined environments, so we assumed that movement in the two aisles is restricted to a
straight line. To avoid collisions of AGVs with storage racks, the straight segments on both
sides protrude slightly beyond the edges (black solid dots in Figure 13). The optimization
problem is to find the most suitable path shape between the aisles.

Figure 12. The warehouse floor plan with three pairs of pick-up and drop-off points: A and A′, A
and B, A and C.

The simulation experiment was designed as follows. An AGV travels clockwise along
a circular route from the pick-up point (PUP) to the drop-off point (DOP) and back to the
starting point. At the pick-up and drop-off points, the speed is set to zero. As the load is
delicate, the dynamic constraints on the mobile system are more severe in the first part of
the path, as shown in Table 2.

Table 2. Constraints on velocity, acceleration, and jerk for a fully loaded (X) and an unloaded (×)
mobile system.

Load vMAX aRMAX aTMAX jRMAX jTMAX

[m/s] [m/s2] [m/s2] [m/s3] [m/s3]

X 1.0 2.0 1.0 4.0 4.0
× 2.25 4.0 2.0 16 16

We proposed that the continuous curvature path between a pick-up point and a drop-
off point (and vice versa) consists of two straight lines and two 5th order Bézier curves.
The coordinates of the control points were determined by an optimization process that
minimizes travel time. Since the velocity is set to zero at the symmetrically placed drop-off
point A′, the optimizations can be performed only on one half of the circular route (thus on
four segments instead of eight). The free optimization parameters for the construction of the
Bézier curves were d1 and d5 (Section 5.1 for a full explanation) and the x coordinate of the
joint between them, which is P5 of the first Bézier curve and P0 of the second Bézier curve.
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First, we computed the minimum-time trajectories for symmetrically placed pair of
pick-up and drop-off point (A and A′). Let us denote the path representing the full-load
optimization solution for the symmetrically placed pair A and A′ by F . Similarly, let N be
the path representing the no-load optimization solution for the symmetrically placed pair
A and A′ (Figure 13).

Figure 13. The drawn paths F and N are the result of an optimization that minimizes travel time.
The filled dots mark the points where the straight segments meet the Bézier curves.

We then conducted a comparative travel time analysis. The main question was whether
travel times differ in cases where a fully loaded/unloaded AGV travels along a path that
is not optimized for a load of the same type. Normally, AGVs in warehouses travel along
predefined trajectories. So with the simulation experiment, we wanted to test whether it is
possible to reduce travel time if each curve segment is optimized for the actual load being
carried. We also included examples with different ratios of travel times (or path lengths) of
fully loaded or unloaded mobile systems by adding drop points B and C. Essentially, we
calculated travel times for the three pick-up and drop-off pairs where the AGV was fully
loaded on the first part (PUP→DOP) and unloaded on the second part (DOP→PUP) of the
circular path, but traveling on either F or N . The travel times are given in Table 3, where
the subscripts indicate the load type of the AGV. By µ, we denote the relative increase (in
percent) in travel time in a given route case scenario compared to the travel time when the
AGV travels on a path optimized for a load of the same type (the last three rows in Table 3).

The results in Table 3 show that the travel time is indeed the shortest when the
mobile system travels along the route optimized for the actual load (PUP→DOP: FF, and
DOP→PUP: NN). Moreover, it can be seen that when the default path is F (rows 4–6
in Table 3), the corresponding travel times are always shorter than in the case when the
default path isN (rows 1–3 in Table 3). However, generally, the travel times are not radically
different and this observation is not entirely unexpected. We could achieve more obvious
travel time differences if we increased the ratio of fully loaded to unloaded constraint
values (see Table 2) or chose a more complex arrangement of pick-up and drop-off points
spanning multiple rows of storage racks. Nevertheless, the selected values for velocity,
acceleration, and jerk constraints (and the ratio between the two load types) should reflect
reality. Additionally, the examples presented can be viewed as the smallest units for which
this analysis can be performed. These subtle differences in travel times (approximately
1% reduction) imply significant absolute time differences when the presented trajectories
are combined into larger trajectories. Or if one considers that a warehouse robot would
traverse the same trajectories over and over again during its entire operation.
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Table 3. Travel times of the AGV on a circular route for different placements of pick-up (PUP)
and drop-off points (DOP). For the symmetrically placed pair A− A′, F and N denote the paths
representing the optimization solutions full-load and no-load, respectively. Similarly, the indices F
and N denote the type of load on the AGV. We write µ for the increase in travel time according to the
last three rows, expressed as a percentage.

Circular Route Case Pick Up
Point

Drop off
Point

Travel
Time µ

PUP→ DOP DOP→ PUP (PUP) (DOP) [s] [%]

NF NN

A A′ 20.74 1.49
A B 19.08 1.62
A C 22.40 1.38

FF FN

A A′ 20.65 1.04
A B 18.99 1.13
A C 22.25 0.66

FF NN

A A′ 20.44 0
A B 18.78 0
A C 22.10 0

Figure 14 shows the velocity profiles for all three pairs of pick-up and drop-off points
for the case where FF is on the first part and NN is on the second part of the circular route.

Figure 14. Velocity profiles of AGV traveling on a circular route for different placements of pick-up
and drop-off points: A and A′ (top), A and B (middle), A and C (bottom). The graphs show the
results for PUP→DOP: FF, and DOP→PUP: NN. Dashed horizontal lines represent the velocity
limit values. Blue vertical bands indicate intervals where the acceleration reaches its maximum
allowable values. Similarly, red vertical bands indicate intervals when the jerk reaches its maximum
allowable values.
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7. Conclusions

In this paper, we present a new minimum-time optimization-based approach for
planning the trajectory of a mobile robot in a planar constrained environment. We assumed
that a mobile system has constraints on velocity, acceleration, and jerk. The resulting
smooth path consists of 5th order Bézier curves, for whose construction we propose a new
method that allows efficient parameterization.

We analyzed the results of the proposed approach for generating trajectories in a simu-
lated automated warehouse. Different sets of dynamic constraints led to different solutions
for trajectories. We have shown that it is possible to achieve noticeable improvements
in travel times by choosing the appropriate trajectories. The approach is applicable for
trajectory and velocity planning of a single wheeled robot, but could be extended for the
use of multiple robots to take into account evasive maneuvers or cooperation on a given
task. It can also be used by various other mobile systems moving in a plane (e.g., track
robots, robotic manipulators), especially non-holonomic systems.

Our findings may be especially useful and have great potential for determining
minimum-time trajectories in automated warehouses, where the dynamic constraints
imposed on autonomous mobile robots may depend on the type of load the mobile system
is transporting. Our approach could also be applied to other planar environments with
similar requirements.

The values of the constraints in the warehouse environment were conservatively
estimated to ensure the vertical stability of a mobile system. However, the stability of the
system (mobile robot with load) itself was not the subject of our research. Future studies
should aim to describe the characteristics of the load in more detail, as this could impose
additional or more demanding constraints on a mobile system. For a specific mobile
system with known load characteristics (mass, mass distribution, dimensions, contact
area conditions) it would be possible to calculate the tipping angle and consequently
determine the allowable accelerations. The use of higher order Bézier curves or other
curve primitives would also be of particular interest. More broadly, research is needed to
apply the proposed trajectory planning approach to environments with static or dynamic
obstacles to demonstrate the proposed idea using global or local path planning methods.
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