Previous Issue
Volume 24, May-1
 
 
sensors-logo

Journal Browser

Journal Browser

Sensors, Volume 24, Issue 10 (May-2 2024) – 289 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Examining the Effects of Altitude on Workload Demands in Professional Basketball Players during the Preseason Phase
by Sergio J. Ibáñez, Carlos D. Gómez-Carmona, Sergio González-Espinosa and David Mancha-Triguero
Sensors 2024, 24(10), 3245; https://doi.org/10.3390/s24103245 (registering DOI) - 20 May 2024
Abstract
Basketball involves frequent high-intensity movements requiring optimal aerobic power. Altitude training can enhance physiological adaptations, but research examining its effects in basketball is limited. This study aimed to characterize the internal/external workload of professional basketball players during preseason and evaluate the effects of [...] Read more.
Basketball involves frequent high-intensity movements requiring optimal aerobic power. Altitude training can enhance physiological adaptations, but research examining its effects in basketball is limited. This study aimed to characterize the internal/external workload of professional basketball players during preseason and evaluate the effects of altitude and playing position. Twelve top-tier professional male basketball players (Liga Endesa, ACB; guards: n = 3, forwards: n = 5, and centers: n = 4) participated in a crossover study design composed of two training camps with nine sessions over 6 days under two different conditions: high altitude (2320 m) and sea level (10 m). Internal loads (heart rate, %HRMAX) and external loads (total distances covered across speed thresholds, accelerations/decelerations, impacts, and jumps) were quantified via wearable tracking and heart rate telemetry. Repeated-measures MANOVA tested the altitude x playing position effects. Altitude increased the total distance (+10%), lower-speed running distances (+10–39%), accelerations/decelerations (+25–30%), average heart rate (+6%), time in higher-intensity HR zones (+23–63%), and jumps (+13%) across all positions (p < 0.05). Positional differences existed, with guards accruing more high-speed running and centers exhibiting greater cardiovascular demands (p < 0.05). In conclusion, a 6-day altitude block effectively overloads training, providing a stimulus to enhance fitness capacities when structured appropriately. Monitoring workloads and individualizing training by playing position are important when implementing altitude training, given the varied responses. Full article
25 pages, 4459 KiB  
Article
RI2AP: Robust and Interpretable 2D Anomaly Prediction in Assembly Pipelines
by Chathurangi Shyalika, Kaushik Roy, Renjith Prasad, Fadi El Kalach, Yuxin Zi, Priya Mittal, Vignesh Narayanan, Ramy Harik and Amit Sheth
Sensors 2024, 24(10), 3244; https://doi.org/10.3390/s24103244 (registering DOI) - 20 May 2024
Abstract
Predicting anomalies in manufacturing assembly lines is crucial for reducing time and labor costs and improving processes. For instance, in rocket assembly, premature part failures can lead to significant financial losses and labor inefficiencies. With the abundance of sensor data in the Industry [...] Read more.
Predicting anomalies in manufacturing assembly lines is crucial for reducing time and labor costs and improving processes. For instance, in rocket assembly, premature part failures can lead to significant financial losses and labor inefficiencies. With the abundance of sensor data in the Industry 4.0 era, machine learning (ML) offers potential for early anomaly detection. However, current ML methods for anomaly prediction have limitations, with F1 measure scores of only 50% and 66% for prediction and detection, respectively. This is due to challenges like the rarity of anomalous events, scarcity of high-fidelity simulation data (actual data are expensive), and the complex relationships between anomalies not easily captured using traditional ML approaches. Specifically, these challenges relate to two dimensions of anomaly prediction: predicting when anomalies will occur and understanding the dependencies between them. This paper introduces a new method called Robust and Interpretable 2D Anomaly Prediction (RI2AP) designed to address both dimensions effectively. RI2AP is demonstrated on a rocket assembly simulation, showing up to a 30-point improvement in F1 measure compared to current ML methods. This highlights its potential to enhance automated anomaly prediction in manufacturing. Additionally, RI2AP includes a novel interpretation mechanism inspired by a causal-influence framework, providing domain experts with valuable insights into sensor readings and their impact on predictions. Finally, the RI2AP model was deployed in a real manufacturing setting for assembling rocket parts. Results and insights from this deployment demonstrate the promise of RI2AP for anomaly prediction in manufacturing assembly pipelines. Full article
Show Figures

Figure 1

26 pages, 8206 KiB  
Article
Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM)
by Jiří Maxa, Vilém Neděla, Pavla Šabacká and Tomáš Binar
Sensors 2024, 24(10), 3243; https://doi.org/10.3390/s24103243 (registering DOI) - 20 May 2024
Abstract
A combination of experimental measurement preparations using pressure and temperature sensors in conjunction with the theory of one-dimensional isentropic flow and mathematical physics analyses is presented as a tool for analysis in this paper. Furthermore, the subsequent development of a nozzle for use [...] Read more.
A combination of experimental measurement preparations using pressure and temperature sensors in conjunction with the theory of one-dimensional isentropic flow and mathematical physics analyses is presented as a tool for analysis in this paper. Furthermore, the subsequent development of a nozzle for use in environmental electron microscopy between the specimen chamber and the differentially pumped chamber is described. Based on experimental measurements, an analysis of the impact of the nozzle shaping located behind the aperture on the character of the supersonic flow and the resulting dispersion of the electron beam passing through the differential pumped chamber is carried out on the determined pressure ratio using a combination of theory and mathematical physics analyses. The results show that nozzle shapes causing under-expanded gas outflow from the aperture to the nozzle have a worse impact on the dispersion of the primary electron beam. This is due to the flow velocity control. The controlled reduction in the static pressure curve on the primary electron beam path thus causes a significantly higher course of electron dispersion values than variants with shapes causing over-expanded gas outflow. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

34 pages, 5772 KiB  
Review
A Comprehensive Overview of Network Slicing for Improving the Energy Efficiency of Fifth-Generation Networks
by Josip Lorincz, Amar Kukuruzović and Zoran Blažević
Sensors 2024, 24(10), 3242; https://doi.org/10.3390/s24103242 (registering DOI) - 20 May 2024
Abstract
The introduction of fifth-generation (5G) mobile networks leads to an increase in energy consumption and higher operational costs for mobile network operators (MNOs). Consequently, the optimization of 5G networks’ energy efficiency is crucial, both in terms of reducing MNO costs and in terms [...] Read more.
The introduction of fifth-generation (5G) mobile networks leads to an increase in energy consumption and higher operational costs for mobile network operators (MNOs). Consequently, the optimization of 5G networks’ energy efficiency is crucial, both in terms of reducing MNO costs and in terms of the negative environmental impact. However, many aspects of the 5G mobile network technology itself have been standardized, including the 5G network slicing concept. This enables the creation of multiple independent logical 5G networks within the same physical infrastructure. Since the only necessary resources in 5G networks need to be used for the realization of a specific 5G network slice, the question of whether the implementation of 5G network slicing can contribute to the improvement of 5G and future sixth-generation networks’ energy efficiency arises. To tackle this question, this review paper analyzes 5G network slicing and the energy demand of different network slicing use cases and mobile virtual network operator realizations based on network slicing. The paper also overviews standardized key performance indicators for the assessment of 5G network slices’ energy efficiency and discusses energy efficiency in 5G network slicing lifecycle management. In particular, to show how efficient network slicing can optimize the energy consumption of 5G networks, versatile 5G network slicing use case scenarios, approaches, and resource allocation concepts in the space, time, and frequency domains have been discussed, including artificial intelligence-based implementations of network slicing. The results of the comprehensive discussion indicate that the different implementations and approaches to network slicing pave the way for possible further reductions in 5G MNO energy costs and carbon dioxide emissions in the future. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

25 pages, 874 KiB  
Article
PrivShieldROS: An Extended Robot Operating System Integrating Ethereum and Interplanetary File System for Enhanced Sensor Data Privacy
by Tianhao Wang, Ke Chen, Zhaohua Zheng, Jiahao Guo, Xiying Zhao and Shenhui Zhang
Sensors 2024, 24(10), 3241; https://doi.org/10.3390/s24103241 (registering DOI) - 20 May 2024
Abstract
With the application of robotics in security monitoring, medical care, image analysis, and other high-privacy fields, vision sensor data in robotic operating systems (ROS) faces the challenge of enhancing secure storage and transmission. Recently, it has been proposed that the distributed advantages of [...] Read more.
With the application of robotics in security monitoring, medical care, image analysis, and other high-privacy fields, vision sensor data in robotic operating systems (ROS) faces the challenge of enhancing secure storage and transmission. Recently, it has been proposed that the distributed advantages of blockchain be taken advantage of to improve the security of data in ROS. Still, it has limitations such as high latency and large resource consumption. To address these issues, this paper introduces PrivShieldROS, an extended robotic operating system developed by InterPlanetary File System (IPFS), blockchain, and HybridABEnc to enhance the confidentiality and security of vision sensor data in ROS. The system takes advantage of the decentralized nature of IPFS to enhance data availability and robustness while combining HybridABEnc for fine-grained access control. In addition, it ensures the security and confidentiality of the data distribution mechanism by using blockchain technology to store data content identifiers (CID) persistently. Finally, the effectiveness of this system is verified by three experiments. Compared with the state-of-the-art blockchain-extended ROS, PrivShieldROS shows improvements in key metrics. This paper has been partly submitted to IROS 2024. Full article
(This article belongs to the Special Issue AI-Driven Cybersecurity in IoT-Based Systems)
Show Figures

Figure 1

11 pages, 2139 KiB  
Communication
Refinement of Different Frequency Bands of Geomagnetic Vertical Intensity Polarization Anomalies before M > 5.5 Earthquakes
by Haris Faheem, Xia Li, Weiling Zhu, Yingfeng Ji, Lili Feng and Ye Zhu
Sensors 2024, 24(10), 3240; https://doi.org/10.3390/s24103240 (registering DOI) - 20 May 2024
Abstract
Geomagnetic vertical intensity polarization is a method with a clear mechanism, mature processing methods, and a strong ability to extract anomalous information in the quantitative analysis of seismogenic geomagnetic disturbances. The existing analyses of geomagnetic vertical intensity polarization are all based on the [...] Read more.
Geomagnetic vertical intensity polarization is a method with a clear mechanism, mature processing methods, and a strong ability to extract anomalous information in the quantitative analysis of seismogenic geomagnetic disturbances. The existing analyses of geomagnetic vertical intensity polarization are all based on the 5~100 s frequency band without refinement of the partitioning process. Although many successful results have been obtained, there are still two problems in the process of extracting anomalies: the geomagnetic anomalies that satisfy the determination criteria are still high in occurrence frequency; and the anomalies are distributed over too large an area in space, which leads to difficulties in determining the location of the epicenter. In this study, based on observations from western China, where fluxgate observation points are positioned in areas with frequent, densely distributed medium-strength earthquakes, we refined the frequency bands of geomagnetic vertical intensity polarization, recalculated the spatial and temporal evolution characteristics of geomagnetic disturbances before earthquakes, and improved the crossover frequency anomaly prediction index while promoting the application of the method in earthquake forecasting. Full article
(This article belongs to the Collection Seismology and Earthquake Engineering)
Show Figures

Figure 1

28 pages, 1250 KiB  
Article
Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants
by Ali Yavari, Christopher J. Harrison, Saman A. Gorji and Mahnaz Shafiei
Sensors 2024, 24(10), 3239; https://doi.org/10.3390/s24103239 (registering DOI) - 20 May 2024
Abstract
The demand for green hydrogen as an energy carrier is projected to exceed 350 million tons per year by 2050, driven by the need for sustainable distribution and storage of energy generated from sources. Despite its potential, hydrogen production currently faces challenges related [...] Read more.
The demand for green hydrogen as an energy carrier is projected to exceed 350 million tons per year by 2050, driven by the need for sustainable distribution and storage of energy generated from sources. Despite its potential, hydrogen production currently faces challenges related to cost efficiency, compliance, monitoring, and safety. This work proposes Hydrogen 4.0, a cyber–physical approach that leverages Industry 4.0 technologies—including smart sensing, analytics, and the Internet of Things (IoT)—to address these issues in hydrogen energy plants. Such an approach has the potential to enhance efficiency, safety, and compliance through real-time data analysis, predictive maintenance, and optimised resource allocation, ultimately facilitating the adoption of renewable green hydrogen. The following sections break down conventional hydrogen plants into functional blocks and discusses how Industry 4.0 technologies can be applied to each segment. The components, benefits, and application scenarios of Hydrogen 4.0 are discussed while how digitalisation technologies can contribute to the successful integration of sustainable energy solutions in the global energy sector is also addressed. Full article
(This article belongs to the Special Issue Smart IoT System for Renewable Energy Resource-2nd Edition)
Show Figures

Figure 1

12 pages, 6227 KiB  
Article
GPR Mapping of Cavities in Complex Scenarios with a Combined Time–Depth Conversion
by Raffaele Persico, Ilaria Catapano, Giuseppe Esposito, Gianfranco Morelli, Gregory De Martino and Luigi Capozzoli
Sensors 2024, 24(10), 3238; https://doi.org/10.3390/s24103238 (registering DOI) - 20 May 2024
Abstract
The paper deals with a combined time–depth conversion strategy able to improve the reconstruction of voids embedded in an opaque medium, such as cavities, caves, empty hypogeal rooms, and similar targets. The combined time–depth conversion accounts for the propagation velocity of the electromagnetic [...] Read more.
The paper deals with a combined time–depth conversion strategy able to improve the reconstruction of voids embedded in an opaque medium, such as cavities, caves, empty hypogeal rooms, and similar targets. The combined time–depth conversion accounts for the propagation velocity of the electromagnetic waves both in free space and in the embedding medium, and it allows better imaging and interpretation of the underground scenario. To assess the strategy’s effectiveness, ground penetrating radar (GPR) data referred to as an experimental test in controlled conditions are accounted for and processed by two different approaches to achieve focused images of the scenario under test. The first approach is based on a classical migration algorithm, while the second one faces the imaging as a linear inverse scattering approach. The results corroborate that the combined time–depth conversion improves the imaging in both cases. Full article
Show Figures

Figure 1

14 pages, 652 KiB  
Article
Antijamming Schemes for the Generalized MIMO Y Channel
by Karolina Lenarska and Krzysztof Wesołowski
Sensors 2024, 24(10), 3237; https://doi.org/10.3390/s24103237 (registering DOI) - 20 May 2024
Abstract
Signal space alignment (SSA) is a promising technique for interference management in wireless networks. However, despite the excellent work done on SSA, its robustness against jamming attacks has not been considered in the literature. In this paper, we propose two antijamming strategies for [...] Read more.
Signal space alignment (SSA) is a promising technique for interference management in wireless networks. However, despite the excellent work done on SSA, its robustness against jamming attacks has not been considered in the literature. In this paper, we propose two antijamming strategies for the SSA scheme applied in the multiple-input–multiple-output (MIMO) Y channel. The first scheme involves projecting the jamming signal into the null space of each source’s precoding vectors, effectively eliminating it entirely. The second scheme removes interference originating from the jammer by subtracting the disturbance estimate from the incoming signal. The estimate is derived on the basis of the criterion of minimizing the received signal energy. The block error rate (BLER) performance of the proposed strategies in various channel configurations is verified by link level simulations and is presented to show the efficiency in mitigating jamming signals within the SSA-based MIMO Y channel. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

19 pages, 4309 KiB  
Article
Deep Anomaly Detection Framework Utilizing Federated Learning for Electricity Theft Zero-Day Cyberattacks
by Ali Alshehri, Mahmoud M. Badr, Mohamed Baza and Hani Alshahrani
Sensors 2024, 24(10), 3236; https://doi.org/10.3390/s24103236 (registering DOI) - 20 May 2024
Abstract
Smart power grids suffer from electricity theft cyber-attacks, where malicious consumers compromise their smart meters (SMs) to downscale the reported electricity consumption readings. This problem costs electric utility companies worldwide considerable financial burdens and threatens power grid stability. Therefore, several machine learning (ML)-based [...] Read more.
Smart power grids suffer from electricity theft cyber-attacks, where malicious consumers compromise their smart meters (SMs) to downscale the reported electricity consumption readings. This problem costs electric utility companies worldwide considerable financial burdens and threatens power grid stability. Therefore, several machine learning (ML)-based solutions have been proposed to detect electricity theft; however, they have limitations. First, most existing works employ supervised learning that requires the availability of labeled datasets of benign and malicious electricity usage samples. Unfortunately, this approach is not practical due to the scarcity of real malicious electricity usage samples. Moreover, training a supervised detector on specific cyberattack scenarios results in a robust detector against those attacks, but it might fail to detect new attack scenarios. Second, although a few works investigated anomaly detectors for electricity theft, none of the existing works addressed consumers’ privacy. To address these limitations, in this paper, we propose a comprehensive federated learning (FL)-based deep anomaly detection framework tailored for practical, reliable, and privacy-preserving energy theft detection. In our proposed framework, consumers train local deep autoencoder-based detectors on their private electricity usage data and only share their trained detectors’ parameters with an EUC aggregation server to iteratively build a global anomaly detector. Our extensive experimental results not only demonstrate the superior performance of our anomaly detector compared to the supervised detectors but also the capability of our proposed FL-based anomaly detector to accurately detect zero-day attacks of electricity theft while preserving consumers’ privacy. Full article
Show Figures

Figure 1

25 pages, 3407 KiB  
Review
Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review
by Jicong Li, Qi Chen, Jia Zhou, Zhi Cao, Tianchi Li, Fang Liu, Zhongyuan Yang, Shangwen Chang, Keyuan Zhou, Yuzhou Ming, Taihong Yan and Weifang Zheng
Sensors 2024, 24(10), 3235; https://doi.org/10.3390/s24103235 (registering DOI) - 20 May 2024
Abstract
In recent years, optical fibers have found extensive use in special environments, including high-energy radiation scenarios like nuclear explosion diagnostics and reactor monitoring. However, radiation exposure, such as X-rays, gamma rays, and neutrons, can compromise fiber safety and reliability. Consequently, researchers worldwide are [...] Read more.
In recent years, optical fibers have found extensive use in special environments, including high-energy radiation scenarios like nuclear explosion diagnostics and reactor monitoring. However, radiation exposure, such as X-rays, gamma rays, and neutrons, can compromise fiber safety and reliability. Consequently, researchers worldwide are focusing on radiation-resistant fiber optic technology. This paper examines optical fiber radiation damage mechanisms, encompassing ionization damage, displacement damage, and defect centers. It also surveys the current research on radiation-resistant fiber optic design, including doping and manufacturing process improvements. Ultimately, it summarizes the effectiveness of various approaches and forecasts the future of radiation-resistant optical fibers. Full article
(This article belongs to the Special Issue Specialty Optical Fibers: Advance and Sensing Application)
Show Figures

Figure 1

18 pages, 4076 KiB  
Article
Research on a Wind Turbine Gearbox Fault Diagnosis Method Using Singular Value Decomposition and Graph Fourier Transform
by Lan Chen, Xiangfeng Zhang, Zhanxiang Li and Hong Jiang
Sensors 2024, 24(10), 3234; https://doi.org/10.3390/s24103234 (registering DOI) - 20 May 2024
Abstract
Gearboxes operate in challenging environments, which leads to a heightened incidence of failures, and ambient noise further compromises the accuracy of fault diagnosis. To address this issue, we introduce a fault diagnosis method that employs singular value decomposition (SVD) and graph Fourier transform [...] Read more.
Gearboxes operate in challenging environments, which leads to a heightened incidence of failures, and ambient noise further compromises the accuracy of fault diagnosis. To address this issue, we introduce a fault diagnosis method that employs singular value decomposition (SVD) and graph Fourier transform (GFT). Singular values, commonly employed in feature extraction and fault diagnosis, effectively encapsulate various fault states of mechanical equipment. However, prior methods neglect the inter-relationships among singular values, resulting in the loss of subtle fault information concealed within. To precisely and effectively extract subtle fault information from gear vibration signals, this study incorporates graph signal processing (GSP) technology. Following SVD of the original vibration signal, the method constructs a graph signal using singular values as inputs, enabling the capture of topological relationships among these values and the extraction of concealed fault information. Subsequently, the graph signal undergoes a transformation via GFT, facilitating the extraction of fault features from the graph spectral domain. Ultimately, by assessing the Mahalanobis distance between training and testing samples, distinct defect states are discerned and diagnosed. Experimental results on bearing and gear faults demonstrate that the proposed method exhibits enhanced robustness to noise, enabling accurate and effective diagnosis of gearbox faults in environments with substantial noise. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

14 pages, 1321 KiB  
Article
Ultra-Wideband Vertical Transition in Coplanar Stripline for Ultra-High-Speed Digital Interfaces
by Mun-Ju Kim, Jung-Seok Lee, Byung-Cheol Min, Jeong-Sik Choi, Sachin Kumar, Hyun-Chul Choi and Kang-Wook Kim
Sensors 2024, 24(10), 3233; https://doi.org/10.3390/s24103233 (registering DOI) - 19 May 2024
Viewed by 80
Abstract
A design method for an ultra-wideband coplanar-stripline-based vertical transition that can be used for ultra-high-speed digital interfaces is proposed. A conventional via structure, based on a differential line (DL), inherently possesses performance limitations (<10 GHz) due to difficulties in maintaining constant line impedance [...] Read more.
A design method for an ultra-wideband coplanar-stripline-based vertical transition that can be used for ultra-high-speed digital interfaces is proposed. A conventional via structure, based on a differential line (DL), inherently possesses performance limitations (<10 GHz) due to difficulties in maintaining constant line impedance and smooth electric field transformation, in addition to the effects of signal skews, FR4 fiber weave, and unbalanced EM interferences. DL-based digital interfaces may not meet the demands of ultra-high-speed digital data transmission required for the upcoming 6G communications. The use of a coplanar stripline (CPS), a type of planar balanced line (BL), for the vertical transition, along with the ultra-wideband DL-to-CPS transition, mostly removes the inherent and unfavorable issues of the DL and enables ultra-high-speed digital data transmission. The design process of the transition is simplified using the analytical design formulas, derived using the conformal mapping method, of the transition. The characteristic line impedances of the transition are calculated and found to be in close agreement with the results obtained from EM simulations. Utilizing these results, the CPS-based vertical transition, maintaining the characteristic line impedance of 100 Ω, is designed and fabricated. The measured results confirm its ultra-wideband characteristics, with a maximum of 1.6 dB insertion loss and more than 10 dB return loss in the frequency range of DC to 30 GHz. Therefore, the proposed CPS-based vertical transition offers a significantly wider frequency bandwidth, i.e., more than three times that of conventional DL-based via structures. Full article
(This article belongs to the Special Issue Microwave/MM-Wave Components for Communications and Sensors)
24 pages, 5316 KiB  
Article
Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism
by Zhenhao Sun, Yunjiang Yin, Baoguo Liu, Tao Xue and Qiang Zou
Sensors 2024, 24(10), 3232; https://doi.org/10.3390/s24103232 (registering DOI) - 19 May 2024
Viewed by 131
Abstract
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel [...] Read more.
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO4 and propose a self-calibration compensation strategy. The strategy utilizes a metal salt solution to adjust the carrier concentration of the hydrogel to mitigate the resistance drift phenomenon to improve the stability and accuracy of hydrogel sensors in amphibious scenarios, such as land and water. The ExpGrow model was used to characterize the trend of the ∆R/R0 dynamic response curves of the hydrogels in the stress tests, and the average deviation of the fitted curves ` was calculated to quantify the stability differences of different groups. The results showed that the stability of the uncompensated group was much lower than that of the compensated group utilizing LiCl, NaCl, KCl, MgCl2, and AlCl3 solutions (` in the uncompensated group in air was 276.158, 1.888, 2.971, 30.586, and 13.561 times higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2, and AlCl3, respectively;` in the uncompensated group in seawater was 10.287 times, 1.008 times, 1.161 times, 4.986 times, 1.281 times, respectively, higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2 and AlCl3). In addition, for the ranking of the compensation effect of different compensation solutions, the concentration of the compensation solution and the ionic radius and charge of the cation were found to be important factors in determining the compensation effect. Detection of events in amphibious environments such as swallowing, robotic arm grasping, Morse code, and finger–wrist bending was also performed in this study. This work provides a viable method for stability and accuracy enhancement of dual-network hydrogel sensors with strain and pressure sensing capabilities and offers solutions for sensor applications in both airborne and underwater amphibious environments. Full article
15 pages, 5914 KiB  
Communication
Shear Wave Velocity Determination of a Complex Field Site Using Improved Nondestructive SASW Testing
by Gunwoong Kim and Sungmoon Hwang
Sensors 2024, 24(10), 3231; https://doi.org/10.3390/s24103231 (registering DOI) - 19 May 2024
Viewed by 135
Abstract
The nondestructive spectral analysis of surface waves (SASW) technique determines the shear wave velocities along the wide wavelength range using Rayleigh-type surface waves that propagate along pairs of receivers on the surface. The typical configuration of source-receivers consists of a vertical source and [...] Read more.
The nondestructive spectral analysis of surface waves (SASW) technique determines the shear wave velocities along the wide wavelength range using Rayleigh-type surface waves that propagate along pairs of receivers on the surface. The typical configuration of source-receivers consists of a vertical source and three vertical receivers arranged in a linear array. While this approach allows for effective site characterization, laterally variable sites are often challenging to characterize. In addition, in a traditional SASW test configuration system, where sources are placed in one direction, the data are collected more on one side, which can cause an imbalance in the interpretation of the data. Data interpretation issues can be resolved by moving the source to opposite ends of the original array and relocating receivers to perform a second complete set of tests. Consequently, two different Vs profiles can be provided with only a small amount of additional time at sites where lateral variability exists. Furthermore, the testing procedure can be modified to enhance the site characterization during data collection. The advantages of performing SASW testing in both directions are discussed using a real case study. Full article
Show Figures

Figure 1

18 pages, 1430 KiB  
Article
Polycations as Aptamer-Binding Modulators for Sensitive Fluorescence Anisotropy Assay of Aflatoxin B1
by Alexey V. Samokhvalov, Alena A. Mironova, Sergei A. Eremin, Anatoly V. Zherdev and Boris B. Dzantiev
Sensors 2024, 24(10), 3230; https://doi.org/10.3390/s24103230 (registering DOI) - 19 May 2024
Viewed by 124
Abstract
Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte [...] Read more.
Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer–fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems. Full article
(This article belongs to the Special Issue Fluorescence Sensors for Biological and Medical Applications)
23 pages, 24886 KiB  
Article
Corrosion Monitoring by Plastic Optic Fiber Sensor Using Bi-Directional Light Transmission
by Liang Hou and Shinichi Akutagawa
Sensors 2024, 24(10), 3229; https://doi.org/10.3390/s24103229 (registering DOI) - 19 May 2024
Viewed by 116
Abstract
In this paper, a new sensor is proposed to efficiently gather crucial information on corrosion phenomena and their progression within steel components. Fabricated with plastic optical fibers (POF), the sensor can detect corrosion-induced physical changes in the appearance of monitoring points within the [...] Read more.
In this paper, a new sensor is proposed to efficiently gather crucial information on corrosion phenomena and their progression within steel components. Fabricated with plastic optical fibers (POF), the sensor can detect corrosion-induced physical changes in the appearance of monitoring points within the steel material. Additionally, the new sensor incorporates an innovative structure that efficiently utilizes bi-directional optical transmission in the POF, simplifying the installation procedure and reducing the total cost of the POF cables by as much as 50% when monitoring multiple points. Furthermore, an extremely compact dummy sensor with the length of 5 mm and a diameter of 2.2 mm for corrosion-depth detection was introduced, and its functionality was validated through experiments. This paper outlines the concept and fundamental structure of the proposed sensor; analyzes the results of various experiments; and discusses its effectiveness, prospects, and economic advantages. Full article
(This article belongs to the Special Issue Specialty Optical Fiber-Based Sensors)
Show Figures

Figure 1

11 pages, 4158 KiB  
Communication
Three-Dimensional Numerical Field Analysis in Transformers to Identify Losses in Tape Wound Cores
by Dariusz Koteras and Bronislaw Tomczuk
Sensors 2024, 24(10), 3228; https://doi.org/10.3390/s24103228 (registering DOI) - 19 May 2024
Viewed by 108
Abstract
To find the total core losses in 1-phase medium-frequency transformers, a 3D numerical field analysis was carried out. The proposed numerical modeling was based on the extended iterative homogenization method (IHM) developed by the authors. The achieved calculation results were validated by the [...] Read more.
To find the total core losses in 1-phase medium-frequency transformers, a 3D numerical field analysis was carried out. The proposed numerical modeling was based on the extended iterative homogenization method (IHM) developed by the authors. The achieved calculation results were validated by the corresponding values obtained experimentally, and a reasonably close agreement was obtained. Full article
(This article belongs to the Special Issue Innovative Devices and MEMS for Sensing Applications)
Show Figures

Figure 1

23 pages, 368 KiB  
Article
Specification of Self-Adaptive Privacy-Related Requirements within Cloud Computing Environments (CCE)
by Angeliki Kitsiou, Maria Sideri, Michail Pantelelis, Stavros Simou, Aikaterini-Georgia Mavroeidi, Katerina Vgena, Eleni Tzortzaki and Christos Kalloniatis
Sensors 2024, 24(10), 3227; https://doi.org/10.3390/s24103227 (registering DOI) - 19 May 2024
Viewed by 141
Abstract
This paper presents a novel approach to address the challenges of self-adaptive privacy in cloud computing environments (CCE). Under the Cloud-InSPiRe project, the aim is to provide an interdisciplinary framework and a beta-version tool for self-adaptive privacy design, effectively focusing on the integration [...] Read more.
This paper presents a novel approach to address the challenges of self-adaptive privacy in cloud computing environments (CCE). Under the Cloud-InSPiRe project, the aim is to provide an interdisciplinary framework and a beta-version tool for self-adaptive privacy design, effectively focusing on the integration of technical measures with social needs. To address that, a pilot taxonomy that aligns technical, infrastructural, and social requirements is proposed after two supplementary surveys that have been conducted, focusing on users’ privacy needs and developers’ perspectives on self-adaptive privacy. Through the integration of users’ social identity-based practices and developers’ insights, the taxonomy aims to provide clear guidance for developers, ensuring compliance with regulatory standards and fostering a user-centric approach to self-adaptive privacy design tailored to diverse user groups, ultimately enhancing satisfaction and confidence in cloud services. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

20 pages, 8443 KiB  
Article
A Rapid Localization Method Based on Super Resolution Magnetic Array Information for Unknown Number Magnetic Sources
by Linliang Miao, Tianyi Zhang, Chao Zuo, Zijie Chen, Xiaofei Yang and Jun Ouyang
Sensors 2024, 24(10), 3226; https://doi.org/10.3390/s24103226 (registering DOI) - 19 May 2024
Viewed by 112
Abstract
A rapid method that uses super-resolution magnetic array data is proposed to localize an unknown number of magnets in a magnetic array. A magnetic data super-resolution (SR) neural network was developed to improve the resolution of a magnetic sensor array. The approximate 3D [...] Read more.
A rapid method that uses super-resolution magnetic array data is proposed to localize an unknown number of magnets in a magnetic array. A magnetic data super-resolution (SR) neural network was developed to improve the resolution of a magnetic sensor array. The approximate 3D positions of multiple targets were then obtained based on the normalized source strength (NSS) and magnetic gradient tensor (MGT) inversion. Finally, refined inversion of the position and magnetic moment was performed using a trust region reflective algorithm (TRR). The effectiveness of the proposed method was examined using experimental field data collected from a magnetic sensor array. The experimental results showed that all the targets were successfully captured in multiple trials with three to five targets with an average positioning error of less than 3 mm and an average time of less than 300 ms. Full article
(This article belongs to the Special Issue Multi-Sensor Systems for Object Tracking—2nd Edition)
Show Figures

Figure 1

15 pages, 5458 KiB  
Article
Muscle Synergy during Wrist Movements Based on Non-Negative Tucker Decomposition
by Xiaoling Chen, Yange Feng, Qingya Chang, Jinxu Yu, Jie Chen and Ping Xie
Sensors 2024, 24(10), 3225; https://doi.org/10.3390/s24103225 (registering DOI) - 19 May 2024
Viewed by 122
Abstract
Modular control of the muscle, which is called muscle synergy, simplifies control of the movement by the central nervous system. The purpose of this study was to explore the synergy in both the frequency and movement domains based on the non-negative Tucker decomposition [...] Read more.
Modular control of the muscle, which is called muscle synergy, simplifies control of the movement by the central nervous system. The purpose of this study was to explore the synergy in both the frequency and movement domains based on the non-negative Tucker decomposition (NTD) method. Surface electromyography (sEMG) data of 8 upper limb muscles in 10 healthy subjects under wrist flexion (WF) and wrist extension (WE) were recorded. NTD was selected for exploring the multi-domain muscle synergy from the sEMG data. The results showed two synergistic flexor pairs, Palmaris longus–Flexor Digitorum Superficialis (PL-FDS) and Extensor Carpi Radialis–Flexor Carpi Radialis (ECR-FCR), in the WF stage. Their spectral components are mainly in the respective bands 0–20 Hz and 25–50 Hz. And the spectral components of two extensor pairs, Extensor Digitorum–Extensor Carpi Ulnar (ED-ECU) and Extensor Carpi Radialis–Brachioradialis (ECR-B), are mainly in the respective bands 0–20 Hz and 7–45 Hz in the WE stage. Additionally, further analysis showed that the Biceps Brachii (BB) muscle was a shared muscle synergy module of the WE and WF stage, while the flexor muscles FCR, PL and FDS were the specific synergy modules of the WF stage, and the extensor muscles ED, ECU, ECR and B were the specific synergy modules of the WE stage. This study showed that NTD is a meaningful method to explore the multi-domain synergistic characteristics of multi-channel sEMG signals. The results can help us to better understand the frequency features of muscle synergy and shared and specific synergies, and expand the study perspective related to motor control in the nervous system. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

18 pages, 7382 KiB  
Article
Sensor Fault Reconstruction Using Robustly Adaptive Unknown-Input Observers
by Qiang Huang, Zhi-Wei Gao and Yuanhong Liu
Sensors 2024, 24(10), 3224; https://doi.org/10.3390/s24103224 (registering DOI) - 19 May 2024
Viewed by 125
Abstract
Sensors are a key component in industrial automation systems. A fault or malfunction in sensors may degrade control system performance. An engineering system model is usually disturbed by input uncertainties, which brings a challenge for monitoring, diagnosis, and control. In this study, a [...] Read more.
Sensors are a key component in industrial automation systems. A fault or malfunction in sensors may degrade control system performance. An engineering system model is usually disturbed by input uncertainties, which brings a challenge for monitoring, diagnosis, and control. In this study, a novel estimation technique, called adaptive unknown-input observer, is proposed to simultaneously reconstruct sensor faults as well as system states. Specifically, the unknown input observer is used to decouple partial disturbances, the un-decoupled disturbances are attenuated by the optimization using linear matrix inequalities, and the adaptive technique is explored to track sensor faults. As a result, a robust reconstruction of the sensor fault as well as system states is then achieved. Furthermore, the proposed robustly adaptive fault reconstruction technique is extended to Lipschitz nonlinear systems subjected to sensor faults and unknown input uncertainties. Finally, the effectiveness of the algorithms is demonstrated using an aircraft system model and robotic arm and comparison studies. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 4529 KiB  
Article
Risk Evaluation and Attack Detection in Heterogeneous IoMT Devices Using Hybrid Fuzzy Logic Analytical Approach
by Pritika, Bharanidharan Shanmugam and Sami Azam
Sensors 2024, 24(10), 3223; https://doi.org/10.3390/s24103223 (registering DOI) - 19 May 2024
Viewed by 139
Abstract
The rapidly expanding Internet of Medical Things (IoMT) landscape fosters enormous opportunities for personalized healthcare, yet it also exposes patients and healthcare systems to diverse security threats. Heterogeneous IoMT devices present challenges that need comprehensive risk assessment due to their varying functionality, protocols, [...] Read more.
The rapidly expanding Internet of Medical Things (IoMT) landscape fosters enormous opportunities for personalized healthcare, yet it also exposes patients and healthcare systems to diverse security threats. Heterogeneous IoMT devices present challenges that need comprehensive risk assessment due to their varying functionality, protocols, and vulnerabilities. Hence, to achieve the goal of having risk-free IoMT devices, the authors used a hybrid approach using fuzzy logic and the Fuzzy Analytical Hierarchy Process (FAHP) to evaluate risks, providing effective and useful results for developers and researchers. The presented approach specifies qualitative descriptors such as the frequency of occurrence, consequence severity, weight factor, and risk level. A case study with risk events in three different IoMT devices was carried out to illustrate the proposed method. We performed a Bluetooth Low Energy (BLE) attack on an oximeter, smartwatch, and smart peak flow meter to discover their vulnerabilities. Using the FAHP method, we calculated fuzzy weights and risk levels, which helped us to prioritize criteria and alternatives in decision-making. Smartwatches were found to have a risk level of 8.57 for injection attacks, which is of extreme importance and needs immediate attention. Conversely, jamming attacks registered the lowest risk level of 1, with 9 being the maximum risk level and 1 the minimum. Based on this risk assessment, appropriate security measures can be implemented to address the severity of potential threats. The findings will assist healthcare industry decision-makers in evaluating the relative importance of risk factors, aiding informed decisions through weight comparison. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

14 pages, 2478 KiB  
Article
MRD-YOLO: A Multispectral Object Detection Algorithm for Complex Road Scenes
by Chaoyue Sun, Yajun Chen, Xiaoyang Qiu, Rongzhen Li and Longxiang You
Sensors 2024, 24(10), 3222; https://doi.org/10.3390/s24103222 (registering DOI) - 18 May 2024
Viewed by 282
Abstract
Object detection is one of the core technologies for autonomous driving. Current road object detection mainly relies on visible light, which is prone to missed detections and false alarms in rainy, night-time, and foggy scenes. Multispectral object detection based on the fusion of [...] Read more.
Object detection is one of the core technologies for autonomous driving. Current road object detection mainly relies on visible light, which is prone to missed detections and false alarms in rainy, night-time, and foggy scenes. Multispectral object detection based on the fusion of RGB and infrared images can effectively address the challenges of complex and changing road scenes, improving the detection performance of current algorithms in complex scenarios. However, previous multispectral detection algorithms suffer from issues such as poor fusion of dual-mode information, poor detection performance for multi-scale objects, and inadequate utilization of semantic information. To address these challenges and enhance the detection performance in complex road scenes, this paper proposes a novel multispectral object detection algorithm called MRD-YOLO. In MRD-YOLO, we utilize interaction-based feature extraction to effectively fuse information and introduce the BIC-Fusion module with attention guidance to fuse different modal information. We also incorporate the SAConv module to improve the model’s detection performance for multi-scale objects and utilize the AIFI structure to enhance the utilization of semantic information. Finally, we conduct experiments on two major public datasets, FLIR_Aligned and M3FD. The experimental results demonstrate that compared to other algorithms, the proposed algorithm achieves superior detection performance in complex road scenes. Full article
(This article belongs to the Section Remote Sensors)
40 pages, 970 KiB  
Review
Personalized Stress Detection Using Biosignals from Wearables: A Scoping Review
by Marco Bolpagni, Susanna Pardini, Marco Dianti and Silvia Gabrielli
Sensors 2024, 24(10), 3221; https://doi.org/10.3390/s24103221 (registering DOI) - 18 May 2024
Viewed by 203
Abstract
Stress is a natural yet potentially harmful aspect of human life, necessitating effective management, particularly during overwhelming experiences. This paper presents a scoping review of personalized stress detection models using wearable technology. Employing the PRISMA-ScR framework for rigorous methodological structuring, we systematically analyzed [...] Read more.
Stress is a natural yet potentially harmful aspect of human life, necessitating effective management, particularly during overwhelming experiences. This paper presents a scoping review of personalized stress detection models using wearable technology. Employing the PRISMA-ScR framework for rigorous methodological structuring, we systematically analyzed literature from key databases including Scopus, IEEE Xplore, and PubMed. Our focus was on biosignals, AI methodologies, datasets, wearable devices, and real-world implementation challenges. The review presents an overview of stress and its biological mechanisms, details the methodology for the literature search, and synthesizes the findings. It shows that biosignals, especially EDA and PPG, are frequently utilized for stress detection and demonstrate potential reliability in multimodal settings. Evidence for a trend towards deep learning models was found, although the limited comparison with traditional methods calls for further research. Concerns arise regarding the representativeness of datasets and practical challenges in deploying wearable technologies, which include issues related to data quality and privacy. Future research should aim to develop comprehensive datasets and explore AI techniques that are not only accurate but also computationally efficient and user-centric, thereby closing the gap between theoretical models and practical applications to improve the effectiveness of stress detection systems in real scenarios. Full article
(This article belongs to the Section Wearables)
21 pages, 4116 KiB  
Article
Design and Modeling of a Terahertz Transceiver for Intra- and Inter-Chip Communications in Wireless Network-on-Chip Architectures
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Sensors 2024, 24(10), 3220; https://doi.org/10.3390/s24103220 (registering DOI) - 18 May 2024
Viewed by 198
Abstract
This paper addresses the increasing demand for computing power and the challenges associated with adding more core units to a computer processor. It explores the utilization of System-on-Chip (SoC) technology, which integrates Terahertz (THz) wave communication capabilities for intra- and inter-chip communication, using [...] Read more.
This paper addresses the increasing demand for computing power and the challenges associated with adding more core units to a computer processor. It explores the utilization of System-on-Chip (SoC) technology, which integrates Terahertz (THz) wave communication capabilities for intra- and inter-chip communication, using the concept of Wireless Network-on-Chips (WNoCs). Various types of network topologies are discussed, along with the disadvantages of wired networks. We explore the idea of applying wireless connections among cores and across the chip. Additionally, we describe the WNoC architecture, the flip-chip package, and the THz antenna. Electromagnetic fields are analyzed using a full-wave simulation software, Ansys High Frequency Structure Simulator (HFSS). The simulation is conducted with dipole and zigzag antennas communicating within the chip at resonant frequencies of 446 GHz and 462.5 GHz, with transmission coefficients of around −28 dB and −33 to −41 dB, respectively. Transmission coefficient characterization, path loss analysis, a study of electric field distribution, and a basic link budget for transmission are provided. Furthermore, the feasibility of calculated transmission power is validated in cases of high insertion loss, ensuring that the achieved energy expenditure is less than 1 pJ/bit. Finally, employing a similar setup, we study intra-chip communication using the same antennas. Simulation results indicate that the zigzag antenna exhibits a higher electric field magnitude compared with the dipole antenna across the simulated chip structure. We conclude that transmission occurs through reflection from the ground plane of a printed circuit board (PCB), as evidenced by the electric field distribution. Full article
(This article belongs to the Special Issue Integrated Sensing and Communication)
18 pages, 8167 KiB  
Article
Designing a Novel Hybrid Technique Based on Enhanced Performance Wideband Millimeter-Wave Antenna for Short-Range Communication
by Tanvir Islam, Dildar Hussain, Fahad N. Alsunaydih, Fahd Alsaleem and Khaled Alhassoon
Sensors 2024, 24(10), 3219; https://doi.org/10.3390/s24103219 (registering DOI) - 18 May 2024
Viewed by 196
Abstract
This paper presents the design of a performance-improved 4-port multiple-input–multiple-output (MIMO) antenna proposed for millimeter-wave applications, especially for short-range communication systems. The antenna exhibits compact size, simplified geometry, and low profile along with wide bandwidth, high gain, low coupling, and a low Envelope [...] Read more.
This paper presents the design of a performance-improved 4-port multiple-input–multiple-output (MIMO) antenna proposed for millimeter-wave applications, especially for short-range communication systems. The antenna exhibits compact size, simplified geometry, and low profile along with wide bandwidth, high gain, low coupling, and a low Envelope Correlation Coefficient (ECC). Initially, a single-element antenna was designed by the integration of rectangular and circular patch antennas with slots. The antenna is superimposed on a Roger RT/Duroid 6002 with total dimensions of 17 × 12 × 1.52 mm3. Afterward, a MIMO configuration is formed along with a novel decoupling structure comprising a parasitic patch and a Defected Ground Structure (DGS). The parasitic patch is made up of strip lines with a rectangular box in the center, which is filled with circular rings. On the other side, the DGS is made by a combination of etched slots, resulting in separate ground areas behind each MIMO element. The proposed structure not only reduces coupling from −17.25 to −44 dB but also improves gain from 9.25 to 11.9 dBi while improving the bandwidth from 26.5–30.5 GHz to 25.5–30.5 GHz. Moreover, the MIMO antenna offers good performance while offering strong MIMO performance parameters, including ECC, diversity gain (DG), channel capacity loss (CCL), and mean effective gain (MEG). Furthermore, a state-of-the-art comparison is provided that results in the overperforming results of the proposed antenna system as compared to already published work. The antenna prototype is also fabricated and tested to verify software-generated results obtained from the electromagnetic (EM) tool HFSS. Full article
(This article belongs to the Special Issue Antenna Design and Sensors for Internet of Things - 2nd Edition)
Show Figures

Figure 1

16 pages, 488 KiB  
Article
IDAC: Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT
by Takahiro Ohtani, Ryo Yamamoto and Satoshi Ohzahata
Sensors 2024, 24(10), 3218; https://doi.org/10.3390/s24103218 (registering DOI) - 18 May 2024
Viewed by 214
Abstract
The recent rapid growth in Internet of Things (IoT) technologies is enriching our daily lives but significant information security risks in IoT fields have become apparent. In fact, there have been large-scale botnet attacks that exploit undiscovered vulnerabilities, known as zero-day attacks. Several [...] Read more.
The recent rapid growth in Internet of Things (IoT) technologies is enriching our daily lives but significant information security risks in IoT fields have become apparent. In fact, there have been large-scale botnet attacks that exploit undiscovered vulnerabilities, known as zero-day attacks. Several intrusion detection methods based on network traffic monitoring have been proposed to address this issue. These methods employ federated learning to share learned attack information among multiple IoT networks, aiming to improve collective detection capabilities against attacks including zero-day attacks. Although their ability to detect zero-day attacks with high precision has been confirmed, challenges such as autonomous labeling of attacks from traffic information and attack information sharing between different device types still remain. To resolve the issues, this paper proposes IDAC, a novel intrusion detection method with autonomous attack candidate labeling and federated learning-based attack candidate sharing. The labeling of attack candidates in IDAC is executed using information autonomously extracted from traffic information, and the labeling can also be applied to zero-day attacks. The federated learning-based attack candidate sharing enables candidate aggregation from multiple networks, and it executes attack determination based on the aggregated similar candidates. Performance evaluations demonstrated that IDS with IDAC within networks based on attack candidates is feasible and achieved comparable detection performance against multiple attacks including zero-day attacks compared to the existing methods while suppressing false positives in the extraction of attack candidates. In addition, the sharing of autonomously extracted attack candidates from multiple networks improves both detection performance and the required time for attack detection. Full article
(This article belongs to the Section Sensor Networks)
17 pages, 6850 KiB  
Article
Development of an NO2 Gas Sensor Based on Laser-Induced Graphene Operating at Room Temperature
by Gizem Soydan, Ali Fuat Ergenc, Ahmet T. Alpas and Nuri Solak
Sensors 2024, 24(10), 3217; https://doi.org/10.3390/s24103217 (registering DOI) - 18 May 2024
Viewed by 280
Abstract
A novel, in situ, low-cost and facile method has been developed to fabricate flexible NO2 sensors capable of operating at ambient temperature, addressing the urgent need for monitoring this toxic gas. This technique involves the synthesis of highly porous structures, as well [...] Read more.
A novel, in situ, low-cost and facile method has been developed to fabricate flexible NO2 sensors capable of operating at ambient temperature, addressing the urgent need for monitoring this toxic gas. This technique involves the synthesis of highly porous structures, as well as the specific development of laser-induced graphene (LIG) and its heterostructures with SnO2, all through laser scribing. The morphology, phases, and compositions of the sensors were analyzed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. The effects of SnO2 addition on structural and sensor properties were investigated. Gas-sensing measurements were conducted at room temperature with NO2 concentrations ranging from 50 to 10 ppm. LIG and LIG/SnO2 sensors exhibited distinct trends in response to NO2, and the gas-sensing mechanism was elucidated. Overall, this study demonstrates the feasibility of utilizing LIG and LIG/SnO2 heterostructures in gas-sensing applications at ambient temperatures, underscoring their broad potential across diverse fields. Full article
Show Figures

Figure 1

23 pages, 1784 KiB  
Article
ISLS: An Illumination-Aware Sauce-Packet Leakage Segmentation Method
by Shuai You, Shijun Lin, Yujian Feng, Jianhua Fan, Zhenzheng Yan, Shangdong Liu and Yimu Ji
Sensors 2024, 24(10), 3216; https://doi.org/10.3390/s24103216 (registering DOI) - 18 May 2024
Viewed by 133
Abstract
The segmentation of abnormal regions is vital in smart manufacturing. The blurring sauce-packet leakage segmentation task (BSLST) is designed to distinguish the sauce packet and the leakage’s foreground and background at the pixel level. However, the existing segmentation system for detecting sauce-packet leakage [...] Read more.
The segmentation of abnormal regions is vital in smart manufacturing. The blurring sauce-packet leakage segmentation task (BSLST) is designed to distinguish the sauce packet and the leakage’s foreground and background at the pixel level. However, the existing segmentation system for detecting sauce-packet leakage on intelligent sensors encounters an issue of imaging blurring caused by uneven illumination. This issue adversely affects segmentation performance, thereby hindering the measurements of leakage area and impeding the automated sauce-packet production. To alleviate this issue, we propose the two-stage illumination-aware sauce-packet leakage segmentation (ISLS) method for intelligent sensors. The ISLS comprises two main stages: illumination-aware region enhancement and leakage region segmentation. In the first stage, YOLO-Fastestv2 is employed to capture the Region of Interest (ROI), which reduces redundancy computations. Additionally, we propose image enhancement to relieve the impact of uneven illumination, enhancing the texture details of the ROI. In the second stage, we propose a novel feature extraction network. Specifically, we propose the multi-scale feature fusion module (MFFM) and the Sequential Self-Attention Mechanism (SSAM) to capture discriminative representations of leakage. The multi-level features are fused by the MFFM with a small number of parameters, which capture leakage semantics at different scales. The SSAM realizes the enhancement of valid features and the suppression of invalid features by the adaptive weighting of spatial and channel dimensions. Furthermore, we generate a self-built dataset of sauce packets, including 606 images with various leakage areas. Comprehensive experiments demonstrate that our ISLS method shows better results than several state-of-the-art methods, with additional performance analyses deployed on intelligent sensors to affirm the effectiveness of our proposed method. Full article
(This article belongs to the Special Issue Digital Imaging Processing, Sensing, and Object Recognition)
Previous Issue
Back to TopTop