
Citation: Liu, L.; Li, X.; Yang, J.; Tian,

X.; Liu, L. Three-Stage Interpolation

Method for Demosaicking

Monochrome Polarization DoFP

Images. Sensors 2024, 24, 3018.

https://doi.org/10.3390/s24103018

Academic Editor: Steve Vanlanduit

Received: 24 March 2024

Revised: 6 May 2024

Accepted: 7 May 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Three-Stage Interpolation Method for Demosaicking
Monochrome Polarization DoFP Images
Luping Liu 1,2, Xin Li 1,2,*, Jianmin Yang 1,2, Xinliang Tian 1,2 and Lei Liu 1,2

1 State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
liuluping@sjtu.edu.cn (L.L.)

2 SJTU Yazhou Bay Institute of Deep Sea Technology, Sanya 572000, China
* Correspondence: lixin@sjtu.edu.cn

Abstract: The emergence of polarization image sensors presents both opportunities and challenges for
real-time full-polarization reconstruction in scene imaging. This paper presents an innovative three-
stage interpolation method specifically tailored for monochrome polarization image demosaicking,
emphasizing both precision and processing speed. The method introduces a novel linear interpolation
model based on polarization channel difference priors in the initial two stages. To enhance results
through bidirectional interpolation, a continuous adaptive edge detection method based on variance
differences is employed for weighted averaging. In the third stage, a total intensity map, derived
from the previous two stages, is integrated into a residual interpolation process, thereby further
elevating estimation precision. The proposed method undergoes validation using publicly available
advanced datasets, showcasing superior performance in both global parameter evaluations and local
visual details when compared with existing state-of-the-art techniques.

Keywords: polarized imaging; DoFP technique; MPFA demosaicking; polarization image sensor;
residual interpolation

1. Introduction

As optical imaging and its applications have been rapidly evolving, the study of light’s
polarization properties emerges as an indispensable facet, providing higher-dimensional
insights into the orientation of light wave oscillations. Th polarization of light contains
rich information to facilitate a more profound comprehension and interpretation of the
physical world. For example, some of the species in nature exhibit acute responsiveness to
polarization cues and utilize polarized light for positioning and detection [1].

Notwithstanding the considerable potential of polarized imaging, it remains beyond
the perceptual scope of the human eye, necessitating the deployment of specialized polar-
ized imaging apparatus. Recent years have witnessed the rapid proliferation of polarized
imaging and measurement technologies across diverse academic disciplines and prac-
tical applications, including image recovery [2,3], surface inspection [4], and 3D shape
reconstruction [5].

The acquisition of polarization information from target images typically entails the
capture of a set of in-site images employing polarizers placed at different angular orienta-
tions in front of the camera [6]. This enables the computational assessment and analysis
of polarization attributes at the level of individual pixels within the acquired images.
However, such a multi-shot approach is unsuitable for dynamic scenes and video acquisi-
tion. Recently, a novel category of polarization image sensors using the division of focal
plane (DoFP) technique emerged as a pioneering sensing solution [7]. Analogous to con-
ventional color cameras employing color filter arrays (CFAs) [8], these sensors integrate
micro-polarizer arrays into the pixels of focal plane array sensors. Such polarization filter
arrays (PFAs) allow for the formation of polarizers at different angles on the chip during the
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semiconductor-manufacturing process, enabling highly precise alignment with the pixels.
The typical monochrome polarizing filter array (MPFA) used in DoFP polarization cameras
consists of a 2 × 2 period of four polarizers with angles set at 0, 45, 90, and 135 degrees, as
shown in Figure 1. Additionally, the color polarization filter array (CPFA) combines the
principles of color imaging with polarization imaging, and features a fundamental 4 × 4
periodic structure with unique color and polarization orientation at each position.
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Figure 1. Monochrome polarizing filter array of an industrial image sensor. (a) Sony polarization
image sensor IMX250MYR-C. (b) Macro image of the four directional polarizers [9]. (c) MPFA layout
of four polarization angles.

The emergence of DoFP polarization cameras provides better opportunities for captur-
ing polarization information, but it also presents new challenges that need to be addressed
for effective full-polarization reconstruction. Image demosaicking, also referred to as mo-
saic interpolation, is a crucial process in digital imaging with CFAs and also PFAs. In the
case of MPFAs, where each pixel location holds only one polarization orientation, retrieving
data of the other polarization channels requires interpolation or reconstruction for accurate
estimation. MPFA demosaicking based on interpolation-based methods is also an integral
component of CPFA interpolation-based demosaicking. This process is oriented towards
the completion of absent polarization information at each pixel location by extrapolating
values of the other three polarization orientations from the pixel’s neighborhood.

Compared to CFA demosaicking [10,11], that with MPFAs inherently presents greater
complexity due to the increased number of channel information within an array and the
challenges in addressing intricate polarization characteristics. The effective polarization
estimation and management of inter-channel correlations become imperative in this con-
text. In tackling the demosaicking challenge in monochrome polarization images, some
conventional interpolation methods employed in CFA demosaicking, including bilinear
interpolation, bicubic interpolation, and cubic spline interpolation, have been adapted for
MPFA demosaicking [12]. However, these methods primarily rely on spatial correlations
and overlook inter-channel correlations. Given the disparities in array types, many well-
structured CFA demosaicking algorithms may also not achieve optimal results, owing to
inherent distinctions in color and polarization mechanisms [13]. Zhang et al. [14] proposed
an interpolation method that enhances the demosaicking quality of DoFP polarization
images using intensity correlations. They performed dual bicubic interpolation with edge
detection for both oblique and vertical pixels, leading to improved results. Recognizing that
high-frequency information has lower polarization direction differences, Li et al. [15] pro-
posed a polarization differential domain interpolation method using Newton polynomial
interpolation. Morimatsu et al. [16] presented a method using intensity-guided edge-aware
residual interpolation based on channel differences, demonstrating notable improvements
despite the requirement for complex computations. In a recent development, Wu et al. [17]
introduced a simple yet effective polarization image demosaicking technique, leveraging
prior information about polarization channel differences to process MPFA demosaicking.
While Xin et al. [18] made further enhancements, neither one nor the other of these methods
yielded significantly superior results.

Numerous learning-based methods have also been proposed and applied to the PFA
demosaicking in recent years, and some have achieved commendable results. For MPFA
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demosaicking specifically, there exist dictionary-learning-based [19–22] and deep-learning-
based methods [23–26], but their efficacy is highly contingent on the datasets employed
during training and the demand a high computational costs and runtimes. These limitations
underscore the impracticality of their actual applications in image sensors and emphasize
the crucial need to further investigate intensity-based interpolation methods.

In this paper, we present a fast and highly effective demosaicking model comprising a
three-stage interpolation procedure designed to address this challenging issue. Our model
achieves superior results compared with state-of-the-art methods. The first two stages
introduce a novel linear interpolation method tailored for MPFAs, incorporating customized
weights for neighboring pixel values. For the first stage, we separately interpolate along
the 45-degree and 135-degree diagonal directions to recover the missing polarization
information that is perpendicular to the polarizer angle formed on the chip. A continuous
adaptive edge detection method that relies on the variance difference between these two
diagonal directions is then utilized to perform weighted averaging for this bidirectional
interpolation. For the second stage, we apply the same method twice in both horizontal and
vertical directions, thereby acquiring pixel values in the remaining two absent directions
for each pixel location. The complete polarization information for each pixel position is
obtained hereto, but we choose to refine the results through a residual interpolation step
in the third stage. Instead of using the residual value between two different polarization
orientations, we utilize the total intensity value calculated from the results obtained in the
previous stages.

Our proposed method has undergone validation on publicly available datasets, demon-
strating its superior performance in global evaluation and local details when compared
with existing intensity-based interpolation methods. Additionally, it offers relatively fast
computational times and holds the potential for further enhancement through parallel
acceleration.

2. Methods
2.1. Polarization Channel Difference Interpolation

Most CFA interpolation methods are based on color channel difference interpola-
tion [27,28]. The same holds true for PFA interpolation, as many studies have discussed the
difference interpolation between polarization channels [15,17,18]. After various tests and
verification, a relatively reliable assumption is made: high-frequency energy is reduced
in the polarization channel difference domain [17]. By using the channel difference for
interpolation, demosaicking accuracy can be improved compared with that of independent
interpolation for each polarization channel.

The purpose of basic linear polarization channel difference interpolation is to obtain the
average of the polarization channel differences on both sides of the pixel. Figure 2 is a 7 × 7
pixel array arranged in an MPFA pattern. Each angle marked in a small square represents
the polarization orientation at a specific pixel position within the MPFA. In Figure 2, I0(i, j)
is the available information in the central position, while Id(i, j), d ∈ {45, 90, 135}, denotes
the missing values that require interpolation. For illustration, only horizontal interpolation
is performed in this section, and the polarization information of orientation 135◦ can be
estimated in position (i, j), as shown below:

Î···135(i, j)− I0(i, j) =
I135(i, j − 1)−

∼
I 0(i, j − 1)

2
+

I135(i, j + 1)−
∼
I 0(i, j + 1)

2
(1)
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For example, (i, j) is the location of the center pixel in the pattern.

To avoid confusion with polarization orientations, “· · · ” is used in this paper to
represent the horizontal interpolating direction. We use “~” to indicate the unknown value
that needs to be temporarily represented and does not participate in the actual calculation
process. “ˆ” is used to represent the estimated result obtained in each interpolation stage.
In Equation (1), Î···135(i, j) represents the value estimated through horizontal interpolation.

All remaining terms except for
∼
I 0(i, j − 1) and

∼
I 0(i, j + 1) are known in the original MPFA

image. The challenge then lies in estimating these two unknown values. Most methods
simply treat these two terms as averages of their respective left and right neighbors [13].

∼
I 0(i, j ± 1) =

I0(i, j) + I0(i, j ± 2)
2

(2)

After rearranging Equations (1) and (2), we obtain the following:

Î···135(i, j) =
I135(i, j − 1) + I135(i, j + 1)

2
− I0(i, j − 2) + I0(i, j + 2)− 2I0(i, j)

4
(3)

where the first term is the first-order mean, and the second term, I0(i,j−2)+I0(i,j+2)−2I0(i,j)
4 ,

which could be written as ∂2 Î···135(i, j), represents the second-order gradient.
While this method is effective, it may not provide sufficient precision for MPFA

interpolation at a higher level. If we repeatedly estimate
∼
I 0(i, j − 1) and

∼
I 0(i, j + 1) using

the same method as that applied to Î···135(i, j) in Equation (1), it will contain a relatively high
proportion of I135(i, j − 1) and I135(i, j + 1). This would be consequently subtracted by the
first-order mean and potentially impact the primary interpolation results.

Therefore, we propose a compromise solution in which we replace the interpolation

of the polarization channel difference,
∼
I 0(i, j ± 1) − I135(i, j ± 1), with a new approach:

∼
I 0(i, j ± 1)− 1

2 I135(i, j ± 1). Then, Equation (2) is replaced by the following:

∼
I 0(i, j ± 1)− 1

2
I135(i, j ± 1) =

I0(i, j)− 1
2

∼
I 135(i, j)

2
+

I0(i, j ± 2)− 1
2

∼
I 135(i, j ± 2)

2
(4)
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where
∼
I 135(i, j) and

∼
I 135(i, j ± 2) can be obtained by averaging their neighbors, as in

Equation (2). After simplifying Equations (1) and (4), we arrive at the final interpolation
procedure in this stage:

Î···135(i, j) =
7I135(i, j − 1) + 7I135(i, j + 1) + I135(i, j − 3) + I135(i, j + 3)

16
− ∂2 Î···135(i, j) (5)

2.2. Interpolation Sequence and Edge Detection

Section 2.1 exclusively focuses on clarifying linear interpolation in a single direction.
However, in many cases, the values within an image can exhibit significant variations,
especially near edges. When solely relying on one-directional interpolation for miss-
ing values, the resulting outcome may lack reliability. Consequently, there is a need for
multi-directional interpolation. In actual practice, bidirectional interpolation is commonly
employed, while edge detection is then highly required for directional weighting.

In the process of CFA demosaicking, it is a common practice to prioritize the interpo-
lation of the green channel, both horizontally and vertically, due to it having double the
number of pixels compared with other color channels. However, as for MPFA interpolation,
polarization information is uniformly distributed in channels across the four directions
on the chip, as shown in Figure 1. Bidirectional interpolation for missing polarization
information poses a more challenging task.

In our initial stage, we employ diagonal interpolations along the 45-degree and
135-degree directions as a deliberate choice, instead of common interpolation starting
from horizontal and vertical directions. This approach allows us to simultaneously estimate
information from two perpendicular directions and thus minimizes interference stemming
from incorrect directional interpolation near image edges. We can then gather polarization
information perpendicular to the polarization orientation of each pixel’s polarizer on the
MPFA, as illustrated in Figure 3a.

Similarly, we use “. . .
” and “

. . .” to denote the 45-degree and 135-degree interpolation
directions, respectively. Î90(i, j) in bidirectional interpolation can then be expressed by the
following equation:

Î90(i, j) = ω . . .

90 (i, j) Î . . .

90 (i, j) + ω
. . .
90 (i, j) Î

. . .
90 (i, j) (6)

where Î . . .

90 (i, j) and Î
. . .
90 (i, j) are the results of interpolation in the respective directions.

While ω . . .

90 (i, j) and ω
. . .
90 (i, j) represent the coefficients of directional weights assigned to

their corresponding directions, ω . . .

90 (i, j) + ω
. . .
90 (i, j) = 1 can be obtained. Both weights are

determined based on the rate of change of pixel values in the respective directions within a
specific distance. In many studies [13,14,27], the rate of change, taking the position (i, j)
along the 45-degree interpolation direction as an example, is typically defined as follows:

ν . . .

90 (i, j) = |I0(i − 1, j + 1)− I0(i + 1, j − 1)|+ 4 ∗
∣∣∣∣∂2 Î . . .

90 (i, j)
∣∣∣∣ (7)

When changes along a certain direction are more rapid than those along the perpen-
dicular direction, they imply the potential presence of an edge at the corresponding pixel
location. In such cases, it is advisable to assign a smaller coefficient to that direction, given
the uneven variation across the edge along that direction. Many edge detection methods
adopt a similar coefficient assignment strategy: if one direction undergoes more significant
changes than the other, the coefficient for that direction is set to 0, and in the converse
scenario, it is set to 1. When the changes in both directions are equal, the coefficients
for both directions are set to 0.5 [8,27]. However, this common approach may result in
discontinuities across the image and improper estimated values due to the rare occur-
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rence of ν . . .

90 (i, j) = ν
. . .
90 (i, j). This leads to a situation where unidirectional interpolation

is predominantly employed in practical applications instead of the expected bidirectional
interpolation.
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Figure 3. Illustration of interpolation procedure at coordinate (i, j) using our three-stage MPFA
demosaicking method. The degrees within the grid represent the intensity values of the corresponding
polarization orientation at each location. (a) The first stage of obtaining Î90(i, j). (b,c) The second
stage of obtaining Î135(i, j) and Î45(i, j), respectively. (d–f) The third stage of obtaining the final
estimation of Î90(i, j), Î45(i, j), and Î135(i, j).

An enhanced edge detection method incorporates the utilization of gradients in both
directions and computes coefficients in accordance with the following formulation:

ω . . .

90 (i, j) =
ν

. . .
90 (i, j)

ν . . .

90 (i, j) + ν
. . .
90 (i, j) + ε

(8)

where ε is a small coefficient introduced to avoid division by zero. This method is more

effective and robust. However, in cases where ν . . .

90 (i, j) and ν . . .

90 (i, j) manifest substantial
disparities, the smaller weight still contributes as a non-negligible part. This often neces-
sitates the additional establishment of complex boundary conditions for constraints [15].
These conditions are typically based on their ratio, but may lack universality for various

image patterns. Moreover, when ν . . .

90 (i, j) and ν . . .

90 (i, j) are small values, the ratio between
them can easily become imbalanced, leading to an approximation of unidirectional inter-
polation. In light of this, directional coefficients are suggested to be established based on
the difference between the rates of change in this paper. To ensure that the weights change
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continuously with the difference, ω . . .

90 (i, j) and ω
. . .
90 (i, j) should have the same form and

satisfy the following requirements:

ω . . .

90 (i, j)+ω
. . .
90 (i, j) = f

(
ν . . .

90 (i, j)− ν
. . .
90 (i, j)

)
+ f

(
ν

. . .
90 (i, j)− ν . . .

90 (i, j)
)
= 1 (9)

where f represents the custom function determined to satisfy the equation and maintain the
sum of the two directional weights. Similar to the approach in [27], the following function
is selected to determine the coefficients of directional weights:

ω . . .

90 (i, j) =
1

1 + ek(ν . . .

90 (i,j)−ν
. . .
90 (i,j))

and ω
. . .
90 (i, j) =

1

1 + ek(ν
. . .
90 (i,j)−ν . . .

90 (i,j))
(10)

where k is a positive number used to adjust the changes of weights. In our experiments, we
set parameter k to 20 when pixel values in the MPFA image ranged from 0 to 1.

Once we acquired the polarization information of each pixel in the orthogonal direction
through the first stage of interpolation, we proceed with the same method in the vertical
and horizontal directions to obtain the remaining missing information for each pixel. For
position (i, j), the second stage aims to obtain Î135(i, j) and Î45(i, j), as shown in Figure 3b,c.

To illustrate, the estimation of Î45(i, j) through bidirectional interpolation is taken as

an example, as shown in Equation (11). The vertical result, Î
...
45(i, j), is obtained through

interpolation based on values directly from the original MPFA image and goes in the same
direction as the green arrow does. On the other hand, Î···45(i, j) is derived from interpolation
along the direction of the yellow arrow, utilizing the results obtained from the initial stage
of our procedure to proceed with the second stage:

Î45(i, j) = ω···
45(i, j) Î···45(i, j) + ω

...
45(i, j) Î

...
45(i, j) (11)

2.3. Third-Stage Interpolation

After completing two stages of bidirectional interpolations, as described in 2.1 and 2.2,
the full polarization information was retrieved and the results were already adequate for
calculating the polarization parameters, including total light intensity (Ŝ0), degree of linear
polarization (DOLP), and angle of linear polarization (AOLP).

However, we decided to go further to enhance estimation accuracy by employing a
method similar to that of residual interpolation in CFA [11]. For each position, we computed
the mean of the four polarization orientations, which accounts for half of the total intensity.
For position (i, j) in Figure 2, the mean value is calculated via the following:

1
2

Ŝ0(i, j)= (I 0(i, j) + Î90(i, j) + Î45(i, j) + Î135(i, j)
)
∗ 0.25 (12)

Next, we calculated the discrepancy between the mean value and the corresponding
pixel value in the original MPFA image, resulting in the residual value for each pixel
position. The residual map is decomposed into four images, I0

∗, I90
∗, I45

∗, and I135
∗, as

illustrated in Figure 4. Each contains residuals of a different orientation, with the remaining
positions filled with zeros. Subsequently, we performed linear interpolation of these four
images via convolution. After incorporating the mean value, we restored the original MPFA
values and updated pixel values at zero positions for these four images, as shown in the
following formula:

ID =

(
ImaskD
MFPA − 1

2
ŜmaskD

0

)
∗ F +

1
2

Ŝ0 (13)
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where ImaskD
MFPA is one of the decomposed images, with D ∈ {0, 45, 90, 135}, and F is the filter

of the convolution:

F =
1
4

1 2 1
2 4 2
1 2 1
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Taking pixel position (i, j) in Figure 2 as an example, the original value, I0(i, j), in
MPFA remains unchanged in I0

∗, while the additional polarization values Î90(i, j), Î45(i, j),
and Î135(i, j) are estimated, respectively, in I90

∗, I45
∗, and I135

∗, as illustrated in Figure 3d–f.
The entire procedure of our proposed method, including the first two stages, is illustrated
in Figure 4. This diagram provides a comprehensive overview of the process, and the final
estimation of the complete polarization information can be obtained from MPFA.

3. Experiment

To evaluate the effectiveness of our proposed method, we employed a publicly avail-
able dataset [16], comprising 40 distinct scenes. Each scene consisted of 12 monochrome
images, each with a size of 1024 × 768 pixels, representing different color channels and
polarization orientations. Notably, this dataset was captured using a 3-CCD camera, en-
abling the separate recording of each color channel. Unlike images captured with common
cameras, sets of four images with the same color channel and scene but taken at different
polarizer angles (0◦, 45◦, 90◦, and 135◦), excluding the need for CFA demosaicking, prove
to be a more suitable choice for evaluating MPFA demosaicking solutions compared with
other public datasets.

In our study, we utilized and tested all three color channels separately for experiments.
To simulate the polarization images captured by an actual monochrome DoFP camera,
each set was down-sampled, creating an MPFA pattern identical to the one depicted in
Figure 2. Consequently, each scene, stored in four captured color images, could generate
three simulated MPFA images for testing, as illustrated in Figure 5.

Besides our proposed method, we also tested other state-of-the-art demosaicking algo-
rithms to demonstrate our method’s superiority, including intensity correlation in polariza-
tion channel (ICPC, 2016) [14], pseudo-panchromatic image difference (PPID, 2018) [13],
Newton’s polynomial interpolation and polarization difference (NPPD, 2019) [15], edge-
aware residual interpolation (EARI, 2019) [16], polarization channel difference prior (PCDP,
2021) [17], and polarization difference based on edge compensation (PDEC, 2023) [18], on
the extracted down-sampled images with an MPFA pattern. The codes of all these methods
were downloaded from the internet and implemented in MATLAB. We slightly adjusted
and standardized these codes for comparative purposes. This ensured the consistency of
the input and output formats of various methods for the effective evaluation of performance
during the comparison.
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The full polarization information (I0, I45, I90, and I135) of each pixel position could
be obtained with these methods. Polarization parameters S0, DoLP and AoLP are also
computed separately using different methods for comparison. For quality assessment, we
compared the recovered results with ground truth values to evaluate the performance of
each method. The root mean square error (RMSE) is selected in this paper to quantify
how far predictions are from the ground truth values, and a lower RMSE indicates better
performance.

RMSE =

√√√√ 1
mn

m−1

∑
i=0

n−1

∑
j=0

(I est
p (i, j)− Igt

p (i, j))
2

(15)

where m and n represent the pixel dimensions of the images. In the dataset used in our
study, m = 1024, and n = 768. Iest

p denotes the estimated value of the compared polarization

parameter, and Igt
p is the ground truth value obtained from the captured images. In

some previous studies, PSNR was regarded as a critical indicator of image quality [11,20].
However, it is essential to note that the range of PSNR varies at different scales and is
represented on a logarithmic scale. It can be readily derived from RMSE, as shown in
Equation (16):

PSNR = 20 × log10(
MAX I
RMSE

) (16)

where MAX I is the maximum possible pixel value of the images. During these measure-
ments, we excluded the 12-pixel border around the images to mitigate any boundary effects
related to demosaicking. Additionally, we measured the runtime for each demosaicking
method.

In order to enhance the visualization and make better comparisons, the error images
based on an intensity value of S0 obtained through different methods mentioned above
are presented, which quantify the deviation of the estimated value from the ground truth.
Considering the difficulty in comparing the DOLP results in Figure 5, we simultaneously
represent the estimated values of both DOLP and AOLP within an image, following the
structure of HSV color space, which is analogous to that in [16]. Specifically, we mapped the
range of AOLP angles to the hue channel within the [0, π] range. Given that DOLP values
tend to be relatively small, we scaled them up by a factor of 20 and mapped the resulting
values to the saturation channel. The V channel was kept constant at 0.5 to maintain the
image intensity at a moderate level. These visual comparisons in specific regions allowed
us to depict the polarization information in a manner that made it easier to discern and
compare the outcomes achieved through various methods.

4. Discussion
4.1. Overall Performance Comparison

Table 1 presents the average RMSE values of the 40 scenes in a single-color channel
within the dataset for different demosaicking methods. One color channel in a particular
scenario may exhibit a considerably higher intensity compared with the other two channels,
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leading to notable disparities in the error of estimated results during MPFA demosaicking.
Consequently, comparison results obtained from a single-color channel may vary. The
average RMSE of the three color channels are thus all presented, and the results of these
methods reveal a nearly consistent difference in deviation among the three color channels,
effectively demonstrating and distinguishing the varying performance of these methods.

Table 1. The average RMSE comparisons between different methods for each color channel.

Color
Channel

Parameter
(Scaling)

ICPC
(2016)

PPID
(2018)

NPPD
(2019)

EARI
(2021)

PCDP
(2021)

PDEC
(2023)

TSI
(Our)

Red
Channel

I90(E-3) 7.99 5.59 4.82 4.77 5.19 5.70 4.43
I45(E-3) 9.20 7.30 7.13 6.77 6.89 6.90 6.53
I135(E-3) 9.12 7.34 7.29 6.95 7.00 7.01 6.83

I0(E-3) 8.36 6.02 5.18 5.14 5.59 6.07 4.84
S0(E-3) 6.00 4.45 3.79 3.91 4.15 4.34 3.74

DoLP(E-2) 1.80 1.47 1.74 1.47 1.51 1.46 1.54
AoLP(E-1) 2.25 2.06 2.04 2.02 2.04 2.08 1.98

Green
Channel

I90(E-3) 7.56 5.35 4.57 4.56 4.99 5.47 4.21
I45(E-3) 8.76 7.04 6.89 6.55 6.70 6.68 6.32
I135(E-3) 8.73 7.10 7.05 6.73 6.81 6.81 6.59

I0(E-3) 7.85 5.69 4.91 4.89 5.33 5.78 4.59
S0(E-3) 5.67 4.26 3.64 3.75 4.00 4.17 3.57

DoLP(E-2) 2.09 1.72 1.96 1.66 1.74 1.70 1.77
AoLP(E-1) 2.14 1.95 1.94 1.91 1.93 1.97 1.88

Blue
Channel

I90(E-3) 8.02 5.75 4.89 4.97 5.37 5.86 4.53
I45(E-3) 9.26 7.48 7.31 6.95 7.12 7.12 6.70
I135(E-3) 9.15 7.47 7.41 7.08 7.18 7.17 6.91

I0(E-3) 8.21 5.99 5.18 5.25 5.64 6.08 4.87
S0(E-3) 5.96 4.51 3.84 4.00 4.25 4.41 3.78

DoLP(E-2) 2.05 1.69 1.93 1.62 1.71 1.69 1.74
AoLP(E-1) 2.40 2.23 2.23 2.20 2.22 2.25 2.18

Among these results, our method consistently demonstrates superior performance
across most parameters, encompassing the four polarization images (I0, I45, I90, and
I135),Stokes image S0, and the AOLP image. The EARI method also exhibits noteworthy
efficacy among the existing methods, particularly in DOLP results, as it attains the lowest
RMSE values in DOLP images within the green and blue color channels. However, it does
not match the overall performance of our method across most parameters.

Moreover, it is important to note that the EARI method necessitates significantly more
computational time compared with other methods, whereas our method operates nearly
three times faster than EARI does under the same conditions, as shown in Table 2.

Table 2. Running time comparisons between different methods for a single MPFA demosaicking process.

ICPC
(2016)

PPID
(2018)

NPPD
(2019)

EARI
(2021)

PCDP
(2021)

PDEC
(2023)

TSI
(Our)

Time (s) 0.167 0.150 0.364 0.987 0.628 0.617 0.342

4.2. Visual Performance in Specific Regions

In the context of images captured using MPFA cameras, it is crucial to note that regions
with reflections and glass surfaces may exhibit more pronounced variations in polarization
information compared with other areas. Nevertheless, these specific scenarios may not
be adequately represented within the dataset. Consequently, it becomes imperative to
account for these cases when assessing demosaicking algorithms. We then extracted specific
256 × 256-pixel regions from the captured images in the dataset, where particular objects
such as bottles and bulbs occupy a significant portion of the region, as illustrated by the red
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box region from the original image in Figure 6. These were chosen to assess the algorithm’s
performance in these particular scenarios.
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in upper line: error images of S0 and lower line: AOLP-DOLP images.

For detailed comparison, we further selected specific local regions from the AOLP–
DOLP results. The error images based on intensity are also presented, which quantify
the deviation from the ground truth of S0. We use pseudo-colored images to represent
the degree of deviation of each pixel location within the selected region. The vivid visual
representations in these specific regions serve as a testament to the effectiveness of our
approach in preserving the finer details of polarization information. The pseudo-colored
images, which span from blue to red, offer a clear and intuitive means of conveying the
extent of deviation in each pixel within the selected regions. Notably, the ground truth
is consistently depicted in blue, allowing for the easy differentiation and comparison of
outcomes achieved via various methods.

In the comparative analysis of the localized regions selected from the two scenarios, it
is evident that our method outperforms others. In the S0 domain, the degree of deviation is
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relatively low, indicating the accuracy and precision of our approach in capturing polariza-
tion information. Within the AOLP–DOLP representation, we observe a reduced level of
blurriness, further underlining the superior performance of our technique. In conclusion,
the localized analysis of these specific regions not only showcases the superior performance
of our method in capturing polarization information with precision but also highlights the
reduced blurriness within the AOP–DOP domain. These results affirm the effectiveness
and potential of our approach in applications involving MPFA cameras and situations with
reflections and glass surfaces, which often present challenges in polarization imaging.

5. Conclusions

In summary, we presented a novel MPFA demosaicking model that demonstrated
exceptional performance, surpassing current state-of-the-art techniques in various crucial
aspects. Through a well-structured three-stage interpolation procedure, we achieved
remarkable success in the more accurate recovery of polarization information, setting a
new benchmark in the field. The validation on a public diverse dataset highlights our
method’s superiority in terms of RMSE values, especially in capturing different polarization
parameters including the four polarization images (I0, I45, I90, and I135), Stokes image
S0, and the AOLP image. Specific region analysis further underscored the precision and
accuracy of our technique, particularly in challenging scenarios involving reflections and
glass surfaces. These results collectively underscore the potential and effectiveness of our
approach in the realm of MPFA cameras and challenging polarization imaging applications.

Looking ahead, we are committed to exploring algorithm optimization to enhance
computational efficiency. Though our approach excels in computational efficiency, oper-
ating nearly three times faster than the closest competitor, it still has high potential for
further acceleration. Moreover, our work will encompass a broader range of environmental
conditions and scene complexities, ensuring the robustness and versatility of our approach.
This ongoing research will undoubtedly contribute to the continual evolution of polariza-
tion imaging, with far-reaching implications in domains including remote sensing, medical
diagnostics, and advanced material characterization.
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