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Abstract: The intensity gradient is a new cutpoint-free metric that was developed to quantify physical
activity (PA) measured using accelerometers. This metric was developed for use with the ENMO
(Euclidean norm minus one) metric, derived from raw acceleration data, and has not been validated
for use with count-based accelerometer data. In this study, we determined whether the intensity
gradient could be reproduced using count-based accelerometer data. Twenty participants (aged
7–22 years) wore a GT1M, an ActiGraph (count-based), and a GT9X, ActiGraph (raw accelerations)
accelerometer during both in-lab and at-home protocols. We found strong agreement between GT1M
and GT9X counts during the combined in-lab activities (mean bias = 2 counts) and between minutes
per day with different intensities of activity (e.g., sedentary, light, moderate, and vigorous) classified
using cutpoints (mean bias < 5 min/d at all intensities). We generated bin sizes that could be used to
generate IGs from the count data (mean bias = −0.15; 95% LOA [−0.65, 0.34]) compared with the
original IG. Therefore, the intensity gradient could be used to analyze count data. The count-based
intensity gradient metric will be valuable for re-analyzing historical datasets collected using older
accelerometer models, such as the GT1M.

Keywords: accelerometer; cutpoint-free metrics; physical activity; ActiGraph; activity monitor;
acceleration

1. Introduction

Accelerometers are commonly used to measure physical activity (PA). These devices
are often worn on the wrist or hip, and track and store accelerations in real time, allowing
researchers to examine PA over the time period it was worn [1]. Older accelerometer models
with limited storage did not output raw acceleration data but rather a proprietary “count”
value for each epoch (a user-selected length of time). Accelerometer calibration studies
often used energy expenditure (indirect calorimetry to derive metabolic equivalent tasks
(METs)) to develop count thresholds (cutpoints) corresponding to the intensity of PA [2].
Traditionally, these cutpoints were then applied to count data to identify how much time
participants spent at different PA intensities (i.e., sedentary (SED), light PA (LPA), moderate
to vigorous PA (MVPA), and vigorous PA (VPA)) [2,3]. A limitation of the cutpoint-based
approach is that very rich datasets of PA (e.g., those sampled many times per minute) are
reduced to a few measures of time spent at different intensities of PA (e.g., minutes per day
of MVPA). Although this is a convenient way to convey daily PA recommendations to the
public, it may limit our ability to detect relationships between PA and health outcomes.

Recently, there has been increased interest in accounting for the full PA profile. For
example, the intensity gradient (IG) describes the distribution of the full spectrum of
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PA intensity [4]. The IG was originally developed using the Euclidean norm minus one
(ENMO) acceleration metric from wrist-worn accelerometers worn 24 h per day with a
5 s epoch. ENMO is a summary metric calculated using the vector magnitude of triaxial
raw acceleration data (mg) that is averaged over user-defined epochs [5]. The IG involves
sorting the participant’s full spectrum of PA data into bins on the basis of the intensity and
using the log–log slope of the intensity of the PA and time accumulated at each intensity
to quantify the distribution of the individual’s PA intensity (Figure 1). Slopes are always
negative to reflect less time spent at higher intensities, and a steeper slope indicates an
uneven distribution of time spent across all intensities (e.g., more time at lower intensities);
a shallower slope indicates a more even distribution of time spent at all intensities of
PA (e.g., more time at higher intensities). The IG metric has been used to examine the
relationship between PA and bone mineral content (BMC,) areal bone mineral density
(aBMD), and body mass index in children and adolescents [6–8]. However, most studies
that have used the IG to identify associations between PA and health outcomes have used
raw acceleration data.
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Figure 1. Two examples of the intensity gradient. Time accumulated in each bin is represented as the
black dots. (A) Someone with more time at lower intensities of physical activity has a steeper slope.
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Because large historical PA datasets have been collected using older accelerometer
models that output data in counts, it is necessary to understand whether novel metrics
developed using summary measures of raw acceleration data (such as the IG developed
with ENMO) can be used with accelerometry count data (i.e., whether the IGs calculated
using ENMO can be reproduced using count data). Because historical count data were
collected on uniaxial ActiGraph devices that cannot store raw accelerations, such as the
GT1M, it is impossible to compare IGs generated from ENMO and counts with these mod-
els. Accelerometer models that collect both counts and raw accelerations (i.e., the GT9X)
can be used to compare IGs from ENMO and counts. Therefore, to ensure that IGs are
applicable to historical count data, counts from the GT1M and GT9X must first be compared.
Comparisons among different models of the ActiGraph accelerometer have found good
agreement between different models in the past [9–12], but not specifically between the
GT1M and GT9X. Therefore, the purpose of this study was to first determine whether the
activity counts collected by an older accelerometer, GT1M (ActiGraph, Pensacola, FL, USA),
were comparable with the activity counts collected by a newer accelerometer, the GT9X
(ActiGraph, Pensacola, FL, USA). The second objective was to investigate whether the IG
calculated from ENMO acceleration data could be replicated using activity count data.
We hypothesized that the count data would be comparable between the two accelerom-
eter models and that we would be able to reproduce the IG metric developed for raw
acceleration data with count data.
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2. Materials and Methods
2.1. Study Design

The 20 participants for this cross-sectional validation study included healthy children,
adolescents, and adults from Calgary, Alberta, Canada. We recruited participants by posting
recruitment flyers at the University of Calgary, through the University of Calgary research
portal, and by word of mouth. We obtained written informed consent from participants
aged 14 years and older and written informed consent from the parents or legal guardians
in addition to written assent for participants aged 13 years and younger. The University of
Calgary Conjoint Health Research Ethics Board approved the study (REB22-0603).

2.2. Anthropometry

We assessed height using a stadiometer (model 213; Seca, Hamburg, Germany), with
the participants standing barefoot on the scale, recording height measurements to the
nearest millimeter. We measured body mass to the nearest 0.1 kg using a digital scale (model
874; Seca, Hamburg, Germany). All measurements were taken twice unless differences of
>0.4 cm or 0.2 kg were detected, in which case, a third measurement was taken. The mean
of 2 measurements or median of 3 was used in all analyses.

2.3. Accelerometers

This study examined two ActiGraph accelerometers, the GT1M (ActiGraph, Pensacola,
FL, USA) and the GT9X Link (ActiGraph, Pensacola, FL, USA). The GT1M is a small
(3.8 × 3.7 × 1.8 cm), lightweight (27 g), uniaxial accelerometer that detects vertical accelera-
tions of 0.05–2.50 g [13]. After digitization, this signal is passed through a band-pass filter
(0.25–2.5 Hz) [13]. The signal is then used to output an activity count for each user-specified
epoch that is representative of the acceleration during that time period. The GT9X is a
smaller (3.5 × 3.5 × 1 cm), lighter (14 g) triaxial accelerometer that detects accelerations of
±8 g at 30–100 Hz [14]. The GT9X stores and outputs raw acceleration values. These raw ac-
celerations can be converted into the epochs’ activity count data in ActiGraph’s proprietary
software, ActiLife version v6.13.4 (ActiGraph, Pensacola, FL, USA). Both accelerometers
can be worn on the wrist or hip.

For this study, we initialized the GT1M accelerometers to collect data in 15 s epochs,
and used the GT9X accelerometers to collect data at 30 Hz in ActiLife v6.13.4 (ActiGraph,
Pensacola, FL, USA). All accelerometers were initialized on the same computer. As per
the manufacturers’ instruction for waist-worn accelerometers, we did not calibrate the
accelerometers [14]. We attached the GT1M and GT9X onto an elastic belt side by side,
and taped the GT9X and its clip to the belt to prevent it from slipping along the belt.
Participants were instructed to wear the belt over light clothing or under their clothing,
with the accelerometers positioned over their right hip.

2.4. Data Collection

The participants attended a 1-h in-lab testing session, during which anthropometry
was collected and the following activities were completed: walking, brisk walking, jogging,
sprinting, vertical jumping, jumping jacks, side-to-side shuffling through an obstacle course,
climbing stairs, and cleaning up (picking up and putting back down pylons); all pacing
was self-selected. These activities were chosen so that the participants would engage in a
wide range of activities during the session, including different intensities of activities and
various movements (e.g., vertical and side-to-side).

After the session, the participants were sent home with a second set of accelerometers
(GT1M and GT9X) and a PA log sheet. The participants were instructed to wear the
accelerometers for three days during all waking hours and to take them off for any water
activities. The participants were also asked to record when they put the accelerometer on
in the morning and took it off at night, as well as any times it was taken off during the day.
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2.5. Data Processing

Data were downloaded using ActiLife version v6.13.4 (ActiGraph, Pensacola, FL,
USA). We used ActiLife to generate an activity count file with 15-second epochs for each
of the GT9X accelerometers in addition to the raw acceleration data. The files generated
by ActiLife containing the 15 s epoch count data (.agd) were read into R using the R
package PhysicalActivity 0.2–4 (https://CRAN.R-project.org/package=PhysicalActivity
accessed on 1 May 2022); those containing raw acceleration data (.gt3x) were loaded using
the R package GGIR version 2.9.0 (https://CRAN.R-project.org/package=GGIR accessed
on 1 June 2022) [15]. GGIR was used to auto-calibrate the raw acceleration values [16]
and calculate the average magnitude of dynamic acceleration corrected for gravity (the
Euclidean norm minus 1 g); accelerations were averaged over the 15 s epochs. In-lab and
at-home data were analyzed separately. Accelerometer data collected during the times
indicated as wear time on the in-lab log sheet and take-home log sheet were considered
wear time and included in the analyses. For each participant, in-lab counts recorded by the
GT1M and GT9X were checked for lag between the devices. If lag was detected, the data
were shifted to match the more accurate accelerometer; the more accurate device was the
accelerometer that recorded activity counts of 0 at the times indicated to be rest periods by
the in-lab log sheet. Lag was identified in 11 of the 20 in-lab sessions. Typically, the lag was
10 epochs or less; however, three sessions had a lag of 229 epochs between accelerometers.

We determined the time spent at the PA intensities for each participant’s at-home data
using the Evenson cutpoints for count data [3] for 15 s epochs: SED < 25, LPA 26–573,
MPA 574–1002, and VPA ≥ 1003. We calculated three IGs [4] for each participant using
the at-home data collected by the GT9X (ActiGraph, Pensacola, FL, USA). The PA data
were categorized into different bins on the basis of intensity and the log–log slope of the
time at each intensity versus the intensity of each bin was calculated as the IG; all IGs
were calculated using data from the GT9X. The first two IGs were calculated using the
raw accelerations (accIG) and the 15 s epoch count (countIG) data, respectively. Data were
sorted into 160 bins with a resolution of 25 mg for the raw data and 25 counts for the 15 s
epoch data, with an additional bin including any counts of >4000 as originally described by
Rowlands et al. [4]. When we calculated the countIG, more bins included data compared
with the accIG; the ratio of bins including counts to bins including accelerations for ENMO
ranged from 2.3–5.2. With more bins including data for the countIG, the intensity bin
containing SED did not influence the countIG as much as the accIG. Thus, the countIG was
generally shallower than the accIG. Therefore, we reduced the resolution of the bins for the
count data to 100 counts per bin and created a third IG (adjusted IG; adjIG) using the 15 s
epoch data with the number of bins reduced to 40. The adjIG included a similar number of
bins with data points to the original accIG. One key difference was that for the countIG,
the first bin included only sedentary activity (0–25 counts), while the first bin for the adjIG
could include LPA as it also included count values from 26 to 100 [3]. Upon inspection of
the first bin for the adjIG, 14% (SD = 6%) of the values were LPA, on average; therefore, its
contents were mostly sedentary [4].

2.6. Statistical Analysis

We performed all analyses in RStudio (v2023.06.1+524; RStudio Team, 2020) with R
(v.4.3.1) and considered p-values < 0.05 to be statistically significant. To compare correlations
between the count data collected by the two accelerometers in the lab and at home, we
calculated the coefficient of determination (R2) between the counts of the GT9X and GT1M.
We used the R package rmcorr version 0.5.4 (https://CRAN.R-project.org/package=rmcorr
accessed on 1 April 2022) to fit repeated-measures linear regressions [17], as the data had
multiple measurements per participant. Bland–Altman (BA) plots assessed the agreement
between the count data of the GT9X and GT1M for the in-lab data. We used the R package
SimplyAgree version 0.1.2 (https://CRAN.R-project.org/package=SimplyAgree accessed
on 1 June 2022) [18] for the repeated-measures BA analyses [19–21]. SimplyAgree could not

https://CRAN.R-project.org/package=PhysicalActivity
https://CRAN.R-project.org/package=GGIR
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handle the entire dataset for the at-home data; thus, we explored the agreement for three
random participants on three random days.

For the at-home data, we compared minutes per day spent at different PA intensities
between the GT9X and GT1M. We calculated the coefficient of determination (R2) and used
the intraclass correlation coefficient (ICC) and BA plots to assess the agreement between the
GT9X and GT1M for minutes per day at each PA intensity. Intraclass correlation coefficient
estimates and their 95% confidence intervals (CIs) were calculated using the R package
psych version 2.4.3 (https://cran.r-project.org/web/packages/psych/index.html accessed
on 1 April 2024) based on a single-measurement, absolute-agreement, two-way random
effects model. We performed paired t-tests with equal variance to determine whether there
was a difference in the number of minutes per day spent at different intensities of activity
between the GT9X and GT1M’s home data. We assessed normality using Shapiro–Wilk
tests and the equality of variance between samples using F-tests.

Finally, to assess the agreement among the accIG, countIG, and adjIG, we used BA
plots and calculated the 95% limits of agreement (LOA). Intraclass correlation coefficient
estimates and their 95% CIs were calculated using the R package psych version 2.4.3
(https://cran.r-project.org/web/packages/psych/index.html accessed on 1 April 2024)
based on a single-measurement, absolute-agreement, two-way mixed effects model.

3. Results
3.1. Descriptive Characteristics

Females (n = 15) and males (n = 5) aged 7–22 years old (M = 14.2, SD = 4.5), with a
mean height of 156.3 cm (SD = 7.7) and mean body mass of 51.6 kg (SD = 18.8), participated
in the study protocol. Participants were excluded if no valid data were collected from either
accelerometer or if the GT9X accelerometer was incorrectly attached to its holder (i.e., the
GT9X was not fully inserted into the belt clip), resulting in the vertical axis of the GT9X
not being aligned with the vertical axis of the GT1M being worn at the same time. On
the basis of these criteria, one participant was excluded from the in-lab analysis (an incor-
rectly attached GT9X) and three from the home analysis (one had an incorrectly attached
GT9X, and two had no data from one or both of the accelerometers). We also excluded
two participants from the in-lab analysis because they were given GT3X (ActiGraph, Pen-
sacola, FL, USA) accelerometers to wear instead of GT1Ms. After exploratory analyses
were conducted, an outlier in the at-home data was detected; the difference in the time
spent in LPA (min/d) between the two accelerometers for this participant was ~100 min/d,
as compared with a mean of 18 min/d for the whole group and a maximum of 47 min/d
in the other participants. This participant was excluded from the at-home analyses, as the
accelerometer stopped functioning (it would not connect to ActiLife) and was returned
to the manufacturer. After these exclusions, 14 females and 3 males had complete in-lab
data, and 11 females and 5 males had complete at-home data. The mean wear time for
the at-home data was 732.2 min (SD = 123.3), with 510.4 min (SD = 126.4) and 505.9 min
(SD = 128.9) in SED, 186.9 min (SD = 89.8) and 191.3 min (SD = 91.5) in LPA, 25.8 min
(SD = 13.6) and 25.7 min (SD = 13.9) in MPA, and 9.0 min (SD = 8.0) and 9.3 min (SD = 7.9)
for the GT1M and GT9X, respectively.

3.2. Comparisons of Count-Based Output for the Two Accelerometers

Bland–Altman (BA) plots are shown for the in-lab activities in Figure 2. There were
strong correlations (R2 ≥ 0.70) between individual counts (15 s−1) measured by the two
accelerometers for the combined in-lab data (Figure S1) and all individual activities per-
formed during the in-lab protocol (Figure S2). The correlation between counts (15 s−1)
measured by the two accelerometers across 3 days of at-home wear was moderate and
weaker than the in-lab correlation (R2 = 0.50) (Figure S1). The BA plots showed moderate
agreement between the two accelerometers for counts measured during all in-lab activities,
with the largest mean difference being 24 counts for the obstacle course activity (Table 1).
For the combined in-lab count data, agreement between the GT9X and GT1M was strong

https://cran.r-project.org/web/packages/psych/index.html
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with little bias (bias = 2 counts) (Figure S1). BA plots for the individual in-lab activities did
not show systematic or proportional bias for most activities; there was minimal propor-
tional bias for jumping jacks and vertical jumps (Figure 2). Agreement for the combined
at-home count data (bias = −2) (Figure S2) was similar to the agreement shown in the in-lab
data.
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Figure 2. Bland–Altman plots for each individual activity performed during the in-lab testing session.
Data from all participants were combined. Plots show the individual participant data points as the
dots, mean difference as the solid black line, the zero line as the solid grey line, and the upper and
lower 95% limits of agreement as dotted lines. The mean difference and limits of agreement were
calculated using repeated-measures Bland–Altman analysis [19–21].
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The correlation between accelerometers was very strong for minutes per day spent at
all PA intensities including LPA, MPA, VPA, total PA, and SED time (R2 > 0.95; Table 1).
The mean time spent at each intensity (min/d) was not significantly different between the
GT9X and GT1M (Table 2). The BA plots demonstrated moderate agreement between the
accelerometers, with a mean difference of less than 5 min/d for each PA intensity (Table 2)
and no visible pattern of systematic or proportional bias in the BA plots (Figure 3).

Table 1. Linear regression and Bland–Altman analysis comparing the correlations and agreement
between activity counts measured by the GT9X and GT1M in the lab.

Linear Regression Bland–Altman

Slope Intercept R2
Mean

Difference
(Counts)

Upper
LOA

Lower
LOA

Combined 0.94 33.30 0.92 2 552 −549
Walk 0.82 78.57 0.75 −5 196 −207

Brisk walk 0.90 81.06 0.92 −6 208 −220
Jog 0.90 162.55 0.94 −19 344 −382

Sprint 0.90 81.09 0.84 2 505 −500
Jumping jacks 0.91 193.74 0.88 −17 1266 −1300
Vertical jumps 0.81 118.01 0.70 −1 606 −608

Obstacle course 0.85 157.92 0.78 −24 734 −783
Stairs 0.92 45.76 0.81 5 375 −365

Cleaning up 0.84 198.17 0.83 3 488 −482
Abbreviation: LOA, limit of agreement. N = 17.

Table 2. Linear regression, Bland–Altman analysis, and t-tests, comparing the correlations and
agreement between time at each activity intensity based on measurements by the GT9X and GT1M at
home.

Linear Regression Bland–Altman ICC

Slope Intercept R2 Mean Difference
(min/d)

Upper
LOA

Lower
LOA ICC (95% CI)

Combined
(counts) 0.71 28 0.50 −2 * −429 * 426 *

LPA (min/d) 0.99 6.57 0.98 −4.13 20.25 −28.50 0.99 (0.97, 0.99)
MPA (min/d) 0.98 0.33 0.97 −0.11 3.28 −3.50 0.98 (0.96, 0.99)
VPA (min/d) 0.89 1.17 0.96 −0.11 2.28 −2.50 0.97 (0.95, 0.99)

Total PA (min/d) 0.99 7.19 0.98 −4.08 22.16 −30.32 0.99 (0.98, 0.99)
SED (min/d) 0.99 0.95 0.99 4.08 30.32 −22.16 0.99 (0.98, 1.00)

Abbreviations: LOA, limit of agreement; CI, confidence interval; LPA, light physical activity; MPA, moderate
physical activity; VPA, vigorous physical activity; total PA, total physical activity (LPA, MPA, and VPA); SED,
sedentary. N = 16. * Bland–Altman analysis for three random participants on three random days.

3.3. The Intensity Gradient Using Counts Compared to Raw Accelerations

Intensity gradients were calculated for each participant: accIG (M = −2.347,
SD = 0.231), countIG (M = −1.635, SD = 0.165), and adjIG (M = −2.192, SD = 0.187).
The ICC of the accIG and the countIG (ICC (95% CI): 0.00 (−0.05, 0.12)) showed lower
agreement than that between the accIG and adjIG (ICC (95% CI): 0.27 (0.14, 0.64)). The BA
plots showed stronger agreement between the accIG and adjIG (bias = −0.154; 95% LOA
[−0.648, 0.339]) than the accIG and countIG (bias = −0.712; 95% LOA [−1.293, −0.131])
(Figure 4). The BA plots showed more systematic bias between the accIG and countIG
(with the countIG being consistently larger (shallower) than the accIG) than between the
accIG and the adjIG (Figure 4).
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Figure 3. Linear regression and Bland–Altman plots for minutes per day at each physical activity
intensity for at-home accelerometer data. Data from all participants were combined and individual
participant data points are represented as dots. Linear regressions show the line of best fit; the
Bland–Altman plots show the mean difference as the solid black line, the zero line as the solid grey
line, and the upper and lower 95% limits of agreement as dotted lines.
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Figure 4. Bland–Altman plots comparing the agreement between the accIG and the two IGs calcu-
lated using count data. (A) Bland–Altman plot for the accIG and countIG (the intensity gradient
calculated using 160 bins and the count data) (B) Bland–Altman plot for the accIG and adjIG (the
intensity gradient calculated using 40 bins and the count data). Individual participant data points are
represented as the dots, the mean difference is shown as the solid black line, the zero line as the solid
grey line, and upper and lower 95% limits of agreement as the dotted lines.

4. Discussion

This validation study provided unique insight into whether the IG developed for
ENMO data can be reproduced using count data. We first determined that counts
(15 s−1) and minutes per day at different intensities of PA were consistent between the two
accelerometers. Although individual counts were moderately correlated in the free-living
at-home data, minutes per day at various intensities were strongly correlated and compara-
ble between models. We also investigated whether the IG, a PA metric designed for raw
acceleration data, could be used with count data. We found that with the GT9X’s data, the
adjIGs generated from the count data were similar to the accIGs derived from the ENMO
data.

Our results indicated that the count data collected by the GT9X and GT1M accelerom-
eters were more strongly correlated when measuring consistent, repetitive PA. For in-lab
activities, the counts were most strongly correlated during the consistent activities of brisk
walking and jogging. Furthermore, we found that the combined in-lab count data were
more strongly correlated than the at-home count data. During in-lab testing, the partic-
ipants were performing activities at a consistent intensity for several minutes at a time
and were active for at least half the time the accelerometer was worn. In contrast, during
free-living wear, the intensity of activity varied substantially, and more accelerometer wear
time was spent in SED and LPA. The stronger correlation seen between the GT9X and
GT1M for the combined in-lab data compared with the combined at-home data is likely
to be due to the consistent activity at higher intensities that took place during the in-lab
sessions. Our findings are consistent with those of multiple other studies that found that
counts (min−1) did not differ between four generations (7164 and three versions of GT1M)
of ActiGraph accelerometers [10], nor between the GT1M and GT3X accelerometers on
the vertical axis [12] during walking and running. Additionally, we observed a similar
correlation for counts measured at home between accelerometers, as did a study examining
the average correlation between the counts/min/day of the ActiGraph 7164 and wGT3X-BT
for free-living activity (r = 0.74, n = 87) [22].

We found that the free-living PA intensity data (min/d) were comparable between
the GT9X and GT1M accelerometers. Although no previous studies compared the GT9X
and GT1M ActiGraph accelerometers, other studies identified good agreement between
the GT1M and GT3X ActiGraph models [11] and between the 7164 and GT1M ActiGraph
models [9] when comparing time spent at different PA intensities in minutes per day.
Further, the differences we observed between the GT9X and GT1M were similar to the
differences observed between two GT3X+ accelerometers worn on contralateral hips using
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10 s epochs (LOA: ±18.2 min, ±6.3 min, ±3.5 min, and ±51 min for LPA, MPA, VPA, and
SED, respectively). This indicates that the differences we found between the GT9X and
GT1M were similar to those found between two accelerometers of the same model [23].
However, some studies have found disagreement between accelerometer models, even
for time spent at different PA intensities. Differences in minutes per day of SED and LPA
were found between the 7164 and GT1M using 60 s epochs (~20 min/d less in SED and
more in LPA), [24] and differences in minutes per day in LPA, MPA, MVPA, and SED were
found between the 7164 and wGT3X-BT using 60 s epochs (mean differences ranging from
−3.9 to 12.1 min/d) [22]. All studies identified good agreement between accelerometers for
minutes per day spent in VPA.

We were also able to reproduce the IG metric created for use with raw acceleration
data with count-based data. Following adjustment of the bins’ sizes for the adjIG, the
mean bias decreased and the 95% limits of agreement narrowed. Thus, it is important to
consider the appropriate bin size when applying the IG to different accelerometer metrics.
This newly developed IG for use with count data may be valuable to researchers with
historical accelerometry datasets who are interested in applying cutpoint-free metrics to
their data. The IG has several strengths compared with traditional cutpoint metrics. First,
cutpoint metrics do not quantify free-living PA across the whole spectrum of PA intensity,
whereas the IG does. Therefore, using the IG could allow researchers to better identify
how an individual’s spread of PA across the intensity spectrum is associated with different
health outcomes. Second, with cutpoint metrics, there is no differentiation between the
differing magnitudes of acceleration contained within one PA intensity bin. For example, a
participant who spent most of their time at the high end of MVPA would have the same
minutes per day in MVPA as someone who spent all their time at the very low end of the
MVPA intensity bin defined using cutpoints. However, their IGs would differ, with the
participant spending more time at the high end of MVPA having a shallower slope than the
one who spent most of their time at the low end. Therefore, validating that the IG can be
reproduced with count data provides researchers with count-based datasets an opportunity
to glean more information from data that have been analyzed using cutpoint methods in
the past.

A limitation of this study is that the idle sleep mode was turned on for some of the
GT9X accelerometers to preserve the battery’s life, as the battery did not last long enough
for at-home data collection. Enabling the idle sleep mode has been found to affect the
minimum, maximum, and range of values output by the accelerometer as compared with
when it is turned off [25]. We also used 15 s epochs rather than the 5 s epochs that were used
when the IG was initially designed [4]. This may have contributed to the lower IG seen with
the count IG, as previous work has shown that as the epochs’ size increases, the IG becomes
shallower [26]. Furthermore, the lowest intensity bins in the adjIG likely differed in the
nature and range of activity compared with the accIG, as the adjIG bins included more
values above the sedentary threshold than the first bins in the accIG. Additionally, due to
the volume of data and limitations in the R packages used to analyze the raw accelerometer
data, we were not able to use the complete at-home dataset to determine the agreement
between the two accelerometers for the at-home data. We did not determine an a priori
criterion for clinically relevant limits of agreement to define comparability between metrics.
Finally, the small sample size may limit the generalizability. Several strengths of this study
should also be noted. Both in-lab and at-home data were collected, allowing us to compare
the data collected by the accelerometers in both the structured lab and free-living settings.
Furthermore, this study is the first, to our knowledge, to investigate whether a PA metric
designed for raw accelerations can be used with count data.

As accelerometers continue to be developed and upgraded, there is a need to under-
stand whether the accelerations they measure are comparable so that we know whether
studies conducted using different models of accelerometer (e.g., the GT1M versus GT9X)
can use the same metrics to quantify PA data. Specifically, it would be valuable to know
whether the novel metrics created to quantify PA data developed for use with raw accelera-
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tion data can be used with the count data that historical datasets contain. By examining
accelerometers’ output in structured the in-lab and unstructured free-living settings, we
determined that the counts (15 s−1) were comparable between the GT1M and GT9X for
structured but not unstructured PA. However, traditional cutpoint metrics (min/d at
various intensities) were comparable with count-based free-living PA. Furthermore, we
determined that the IG, originally developed for use with raw acceleration data, was repro-
ducible with count data. Collectively, our findings suggest that free-living count-based PA
data are comparable between the GT9X and GT1M when quantified using both traditional
cutpoint metrics and the newly introduced IG metric. In particular, the International Chil-
dren’s Accelerometry Database (ICAD) includes 44,454 count-based PA accelerometry files
collected from children and adolescents (aged 3–18 years) in 20 studies worldwide that
could now be assessed using the intensity gradient [27]. Applying this new IG metric may
provide additional insight into PA and its associations with health outcomes using these
existing databases, without the need to collect new raw acceleration data. Future work
should test the feasibility of using other metrics previously designed for raw accelerations
with count data.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/s24103019/s1. Figure S1: Linear regression and Bland–Altman plots
for the combined in-lab and at-home count data. Linear regressions show the line of best fit; the Bland–
Altman plots show the mean difference as the solid black line, the zero line as the solid grey line, and
the upper and lower 95% limits of agreement as dotted lines. Figure S2: Linear regression plots for
each individual activity performed during the in-lab testing session. Data from all participants are
combined. Plots show the line of best fit based on multiple linear regression [17].
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