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Abstract: Many countries use low-cost sensors for high-resolution monitoring of particulate matter
(PM2.5 and PM10) to manage public health. To enhance the accuracy of low-cost sensors, studies
have been conducted to calibrate them considering environmental variables. Previous studies have
considered various variables to calibrate seasonal variations in the PM concentration but have
limitations in properly accounting for seasonal variability. This study considered the meridian
altitude to account for seasonal variations in the PM concentration. In the PM10 calibration, we
considered the calibrated PM2.5 as a subset of PM10. To validate the proposed methodology, we used
the feedforward neural network, support vector machine, generalized additive model, and stepwise
linear regression algorithms to analyze the results for different combinations of input variables. The
inclusion of the meridian altitude enhanced the accuracy and explanatory power of the calibration
model. For PM2.5, the combination of relative humidity, temperature, and meridian altitude yielded
the best performance, with an average R2 of 0.93 and root mean square error of 5.6 µg/m3. For PM10,
the average mean absolute percentage error decreased from 27.41% to 18.55% when considering the
meridian altitude and further decreased to 15.35% when calibrated PM2.5 was added.

Keywords: particulate matter; low-cost sensor; calibration; seasonal variability; environment factors

1. Introduction

Particulate matter (PM) is a primary factor that influences air quality and has a
significant impact on public health [1–3]. Many countries have recognized the need for
PM monitoring systems and built sophisticated observation infrastructures to support PM
management and mitigation [4,5]. However, the installation and maintenance of high-
precision PM sensors is costly, and the large size of the sensors limits their installation
locations [5,6]. This limits the spatial resolution of the PM concentration monitoring. In
Korea, the average area of precision sensors installed at national observatories is only 11
km², which makes it challenging to provide PM information that affects the public [7].

Recently, low-cost sensors (LCSs) have been increasingly utilized as alternatives for
high-resolution PM monitoring [8,9]. LCSs are economical and small and can be densely
deployed, allowing the observation of PM with high spatial resolution [9,10]. However, the
PM LCS is relatively inaccurate compared with national observatories [8,9,11]. Calibration
methodologies have been proposed to improve the accuracy of the PM LCS. The approaches
of existing studies can be classified into the optimization of input variables and proposal of
calibration models.

The first approach to improve the calibration performance is to select and combine
different environmental variables as input variables. The PM LCS uses light scattering
to measure the size and concentration of the PM. The accuracy of these observations was
influenced by various environmental variables [9,12–14]. Relative humidity (RH) is a crucial
environmental factor commonly considered in PM LCS calibrations. This significantly
affects the accuracy of observations by altering the size and refractive index of hygroscopic
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particles [15–18]. Therefore, most studies on LCS calibration have selected RH as the
input variable [19]. In addition, previous studies have proposed calibration methodologies
that use RH and T as input variables [20–24]. Several studies have attempted to improve
calibration accuracy by incorporating wind speed and wind direction in addition to RH
and T [4,25–28].

Calibration methods can be categorized into physical-mechanism-based and statistical
models [29]. Physical-mechanism-based models are typically calibrated using a correction
factor to compensate for the bias caused by RH. Methodologies that use correction factors
require relatively low computational power and are easy to apply; therefore, they have
been used in several studies [15,30–36]. Crilley et al. and Venkatraman et al. proposed
RH correction factor-based calibration using the κ -Köhler theory [31,34,35]. In addition,
Laulainen et al. and Chakrabarti et al. performed PM concentration calibrations using
empirical RH correction factors [36,37]. These methodologies have the advantage of being
simple and efficient, requiring only RH information; however, they are generally less
accurate than other methodologies [10].

Statistical models include linear regression (LR) and machine learning and typically
utilize environmental factors, such as RH. These models can generally achieve higher
accuracy than correction factor methods and have been used in several studies. Sev-
eral studies have conducted PM calibrations using LR and multiple LR (MLR) [20,38,39].
Liu et al. used stepwise LR (SLR) to suggest appropriate combinations of input variables
for each pollutant, considering pollutant concentrations and meteorological factors, and
established calibration models for different types of pollutants [40]. Jiang et al. used SLR
with RH and T to improve the accuracy of LCS calibration [41]. Badura et al. used SLR
to select the optimal combination of input variables, enabling them to select a model that
balances brevity and precision [42]. Chen et al. considered the effects of RH, T, wind speed,
and wind direction on PM concentrations and used LR, a support vector machine (SVM),
and a feedforward neural network (FNN), with the FNN having the highest accuracy [25].
Mahajan et al. compared LR, an artificial neural network (ANN), support vector regression
(SVR), and random forest (RF) to select a suitable calibration model for PM2.5 and found
that SVR performed the best [43]. Munir et al. used LR and a generalized additive model
(GAM) with meteorological variables to calibrate air quality sensors; the GAM effectively
improved the accuracy of the sensors [27].

Several studies have contributed to the effective calibration of a PM LCS by develop-
ing calibration models, conducting comparative analyses using different methodologies,
and considering important environmental factors. However, several challenges remain
to be solved in order to further improve accuracy and efficiency. One of the challenges
is the seasonal variability of PM concentrations, which significantly affects calibration
accuracy [44,45]. The seasonal variation of PM concentrations is especially striking in re-
gions with distinct climate variations. For example, in South Korea, PM concentrations and
composition significantly change seasonally due to the arrival of fine dust from neighboring
countries in spring, the rainy season in summer, and heating activities in winter [46]. Previ-
ous studies have considered seasonal variation to account for PM measurements, but this
variability is not accounted for in the PM calibration [27,38,47]. Meanwhile, some studies
have considered seasonal variations in calibration, but they have the following limitations.
Kumar et al. have developed seasonal calibration models by selecting meteorological
variables that have a significant impact on each season [43]. Also, Srishti et al. converted
each season into a dummy variable and included it as an input variable in the calibration
model [48]. However, these approaches have limitations in properly accounting for the
continuous and gradually changing seasonal variability, as the seasons are categorized
based on a specific point in time. In another study, Considine et al. converted the month,
week, and hour variables into a periodic function such as sine or cosine to account for
continuous temporal variation [49]. But the periodic variables introduced in this study did
not contribute to the improvement in calibration accuracy, except when considering the
additional regional characteristics of LCS installation.
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This study aimed to improve the accuracy and efficiency of PM LCS calibration. To
achieve this goal, this study proposes a calibration methodology that can effectively account
for seasonal variations in the PM concentration using the following approach: First, this
study introduced meridian altitude (MA) as an input variable to consider seasonal variation
in the calibration. Second, the calibrated PM2.5 concentration was used as an additional
input variable in the PM10 calibration to enhance performance. We analyzed the results
by applying these methodologies to representative calibration models and verified the
effectiveness of the proposed methodologies.

2. Input Variables of Calibration
2.1. PM Observation and Reference Data

PM2.5 and PM10 observations and a reference dataset collected over two years (January
2021 to December 2022) were used to train and validate the calibration model. Observations
from January 2021 to December 2021 were used for training data, and observations from
January 2022 to December 2022 were used for validation data. Both the observation and
reference data were acquired from Il-San, South Korea, with each data acquisition being
approximately 30 m apart from the other (Figure 1). The reference data were obtained
from the BAM-1020 of Met One Instruments (Figure 2). BAM-1020 is a U.S. Environmental
Protection Agency (EPA)-approved Federal Equivalent Method (FEM) instrument that
is installed and maintained at a national observation station in Korea [4]. The BAM-
1020 provides hourly measurements and has a minimum detection limit of 4.8 µg/m3.
The Korea Meteorological Administration conducts a process to select and validate the
measurements from the BAM-1020. This process converts negative observations to zero and
retains positive observations that are below the detection limit. In this study, the processed
observations were used.
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Figure 2. The reference PM sensor (BAM-1020 of Met One Instruments). Here is the manufacturer
website: https://metone.com/products/bam-1020/ (accessed on 7 May 2024).
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This study validates the proposed methodology using the Air-Ruler AM100 and
Sniffer4D (Figure 3). Both sensors use light scattering to measure PM concentrations,
operating within the range of 0.3–1000 µg/m3 with a minimum detection limit of 1 µg/m3.
Each sensor and its observations were characterized (Table 1). AM100 provides PM10 and
PM2.5 measurements, along with ambient humidity and T, at 1 min intervals. The AM100
sensor was observed full-time for two years, except for 1–3 h of maintenance time per week.
The Sniffer 4D sensor provides PM, T, and humidity at 1 s intervals. To align the temporal
resolution of the two sensor observations, the Sniffer 4D observations were averaged per
minute. Sniffer 4D observations were performed at a frequency of approximately 2–3 days
per week for the same period as AM100.
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Figure 3. PM LCS used in this study: (a) Air-ruler AM100 and (b) Sniffer 4D. Here are manufacturer
websites for each sensor: http://www.iplug.com/mat/iplug120612/product_03.php (accessed on 7
May 2024) (AM100) and https://sniffer4d.eu/sniffer4d/ (accessed on 7 May 2024) (Sniffer4D).

Table 1. Specification of PM LCS (AM100 and Sniffer 4D).

Specification Air-Ruler AM100 Sniffer 4D

Detection method light scattering light scattering
Range 0.3–1000 µg/m3 0.3–1000 µg/m3

Minimum detection limit 1 µg/m3 1 µg/m3

Measurement resolution 0.1 µg/m3 1 µg/m3

Time resolution (observation) 1 min 1 s
Time resolution (experiment) 1 min 1 min (mean)

Additional observations temperature, humidity temperature, humidity

Observation period January 2021 to December 2022 January 2021 to December 2022
(3 days per week)

Meanwhile, both sensors have been evaluated by an institution or laboratory. The
AM100 sensor was evaluated for accuracy by the Korea Environment Corporation, resulting
in a rating of 90.1% (Incheon, Korea). The Sniffer4D sensor was assessed against the Thermo
Scientific Super Station by Jinan University in China over a period of approximately
180 days (Guangzhou, China). The results showed R2 values of 0.95 and 0.88 for PM2.5
and PM10, respectively [50]. Statistics on the mean, standard deviation, standard error, and
measurements below the detection limit for PM2.5 and PM10 observations using BAM-1020,
AM100, and Sniffer4D sensors can be found in Table 2.

http://www.iplug.com/mat/iplug120612/product_03.php
https://sniffer4d.eu/sniffer4d/
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Table 2. Statistics of PM2.5 and PM10 concentration collected from sensors (January 2021–December
2022; Unit: µg/m3).

Sensors Target
Num of

Observations
Used

Mean * SD * SE
Proportion of
Observations
Below * MDL

BAM-1020
(Reference)

PM2.5 11,737 28.2193 20.8432 0.1924 2.71%
PM10 11,697 53.0394 47.9211 0.4431 0.23%

Air-ruler
AM100

PM2.5 11,737 28.22 20.84 0.19 2.71%
PM10 11,697 53.04 47.92 0.44 0.23%

Sniffer 4D
PM2.5 4901 29.66 21.98 0.31 3.16%
PM10 4901 55.16 50.90 0.72 0.31%

* SD stands for Standard Deviation, SE stands for Standard Error, and MDL stands for Minimum Detection Limit.

2.2. Selection of Calibration Method

Various calibration methods were compared through pre-evaluation, and based on the
results, the methods were selected for the main experiment. The pre-evaluation includes
two methods based on physical mechanisms and four statistical methods. For the physical
mechanisms, the approaches of Crilley et al. [31] and Laulainen et al. [36] using RH
correction factors were adopted. For the statistical methodologies, the FNN [25], SVR [43],
GAM [26], and SLR [40] algorithms used in the respective references were selected. The
methods mentioned above were calibrated by considering RH as the only input variable.
The performance of each method was assessed using the root mean square error (RMSE),
mean absolute percentage error (MAPE), and R-squared (R2). This study used MATLAB
R2024a software to implement and evaluate the algorithms. Each metric is as shown in
Equations (1)–(3).

RMSE =

√
1
m∑m

i=1(yi − ŷi)
2, (1)

MAPE =
1
m∑m

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100, (2)

R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − yi)

2 (3)

where ‘m’ is the number of observations, ‘ŷi’ is the predicted values, ‘yi’ is the raw data of
observations, and ‘yi’ is the mean of ‘yi’.

The FNN, SVR, GAM, and SLR algorithms were selected as the calibration methods
in this study based on a pre-evaluation, and the specific results are shown in Table 3. The
FNN, SVR, and GAM algorithms exhibited higher accuracies than the other algorithms. In
contrast, correction-factor-based methods [35,39] showed the lowest accuracy and explana-
tory power. SLR performed poorly compared to FNN, SVR, and GAM but outperformed the
correction-factor-based methods. Based on these results, four statistical methods were applied
in the main experiment of this study, excluding physical-mechanism-based methods.

Table 3. Results of pre-evaluation using RH and selection of calibration method.

Algorithm Target Sensor RMSE (µg/m3) MAPE (%) R2 Selection

FNN [25]

PM2.5

AM100 9.04 42.21 0.81

Accepted

Sniffer 4D 10.17 48.29 0.79

Mean 9.61 45.25 0.80

PM10

AM100 21.24 34.91 0.80
Sniffer 4D 22.57 39.86 0.81

Mean 21.91 37.39 0.81
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Table 3. Cont.

Algorithm Target Sensor RMSE (µg/m3) MAPE (%) R2 Selection

SVR [43]

PM2.5

AM100 9.34 39.69 0.80

Accepted

Sniffer 4D 10.37 43.18 0.78

Mean 9.86 41.44 0.79

PM10

AM100 22.05 33.02 0.79
Sniffer 4D 23.85 39.38 0.78

Mean 22.95 36.20 0.79

GAM [26]

PM2.5

AM100 9.01 42.61 0.82

Accepted

Sniffer 4D 10.12 46.14 0.79

Mean 9.57 44.38 0.81

PM10

AM100 21.23 35.11 0.80
Sniffer 4D 22.79 39.99 0.80

Mean 22.01 37.55 0.80

SLR [40]

PM2.5

AM100 10.45 47.11 0.75

Accepted

Sniffer 4D 11.50 54.80 0.73

Mean 10.98 50.96 0.74

PM10

AM100 25.41 40.92 0.71
Sniffer 4D 26.92 42.88 0.72

Mean 26.17 41.90 0.72

Correction
factor 1 [31]

PM2.5

AM100 12.81 50.05 0.67

Rejected

Sniffer 4D 15.55 61.82 0.69

Mean 14.18 55.94 0.68

PM10

AM100 27.26 40.47 0.67
Sniffer 4D 29.69 47.81 0.72

Mean 28.48 44.14 0.70

Correction
factor 2 [36]

PM2.5

AM100 14.25 56.09 0.61

Rejected

Sniffer 4D 17.13 65.87 0.63

Mean 15.69 60.98 0.62

PM10

AM100 31.09 43.55 0.61
Sniffer 4D 32.01 50.09 0.67

Mean 31.55 46.82 0.64

2.3. Combinations of Input Variables for Calibration

In addition to PM observations, this study considered RH, T, MA, and calibrated PM2.5
as input variables that affect PM concentrations. The reasons for selecting these variables
are as follows: RH and T were selected because they have been identified as the most crucial
variables for PM calibration in several previous studies. For PM LCS studies, the RH is
considered an important variable in most calibrations. T was chosen because studies have
shown that calibration performance improves when it is used in conjunction with RH [10].
In this study, we utilized RH and T observations provided by the Korea Meteorological
Administration. These measurements were obtained from the meteorological observation
station operated by the Korea Meteorological Administration located near the research site.

MA was selected as an input variable to account for seasonal variations in the PM
calibration. The MA refers to the angle at which the sun reaches its zenith in the sky
at a specific location. This has a significant influence on the intensity of sunlight and
the length of the day, leading to climatic and seasonal changes. Therefore, MA can be
considered a significant variable that can directly account for seasonal variations in the
PM concentration in the calibration. It can continuously represent seasonal variations.
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Furthermore, time is based on local time zones, whereas MA is calculated using latitude
and longitude information, thus directly relating to seasonal variations. This can lead to
precise calibration performance.

Calibrated PM2.5 was selected as an additional input variable to calibrate PM10, al-
lowing for an indirect consideration of PM10 measurements. As PM2.5 and PM10 define
particles with sizes of 0–10 µm and 0–2.5 µm, respectively, PM2.5 is a fraction of PM10. This
study utilized calibrated PM2.5 as an input variable to explain the concentration of PM2.5
and coarse PM2.5-10 (2.5–10 µm) separately. During the calibration process, the calibrated
PM2.5 can indirectly account for changes in the concentration of PM10. In this case, the
calibrated PM2.5, used for the PM10 calibration, was calibrated in the same manner as the
PM10 calibration.

The combinations of input variables used for the calibration in this study are listed
in Table 4. The results of each combination were compared and evaluated to determine
their effectiveness. Comb-1 was calibrated by considering only RH, whereas Comb-2 also
included T. Comb-3 considered MA in combination with RH and T, and Comb-4 included
calibrated PM2.5 as a combination only for the calibration of PM10.

Table 4. Combinations of input variables consisting of RH, T, MA, and calibrated PM2.5.

Combination No. Calibration Target Variables

Comb-1 PM2.5, PM10 RH
Comb-2 PM2.5, PM10 RH + T
Comb-3 PM2.5, PM10 RH + T + MA
Comb-4 PM10 RH + T + MA + Calibrated PM2.5

3. Results of PM LCS Calibration and Discussion

This study evaluated the accuracy of PM calibration using a combination of input
variables and algorithms, including the FNN, SVR, GAM, and SLR. The four variable com-
binations used in the experiments consisted of RH, T, MA, and calibrated PM2.5 (Table 4).

3.1. Results of Calibration Based on Input Variable Combinations

PM2.5 calibration with Comb-3 performed the best across all sensors and algorithms.
Comb-2 performed better than Comb-1 but performed worse than Comb-3. These results
are listed in Table 5, which shows the average accuracy of all the algorithms for different
combinations. For PM2.5 calibration, Comb-3 outperformed Comb-1 and Comb-2 by about
24% and 17% for MAPE, and by 4.4 and 1.9 µg/m3 for RMSE, respectively. Comb-3 also
showed a higher R2 of about 0.14 and 0.05 compared to other combinations. Thus, it can be
concluded that Comb-3 contributes to the development of a calibration model with high
explanatory power and accuracy.

Table 5. Performance of PM2.5 calibration based on input variable combinations.

Combination Sensor RMSE (µg/m3) MAPE (%) R2

Raw data

AM100 13.97 57.86 0.72
Sniffer 4D 29.05 71.85 0.71

Mean 21.51 64.86 0.72

Comb-1 (RH)

AM100 10.54 48.10 0.77
Sniffer 4D 9.46 42.90 0.80

Mean 10.01 45.51 0.79

Comb-2 (RH + T)

AM100 7.06 26.57 0.88
Sniffer 4D 7.85 29.31 0.87

Mean 7.46 27.94 0.88
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Table 5. Cont.

Combination Sensor RMSE (µg/m3) MAPE (%) R2

Comb-3 (RH + T + MA)

AM100 5.37 20.98 0.93
Sniffer 4D 5.82 22.69 0.92

Mean 5.60 21.84 0.93

For PM10 calibration, Comb-3 and Comb-4 performed relatively better, with Comb-4
having the highest accuracy when including calibrated PM2.5. Table 6 shows the average
accuracy of all the algorithms across different combinations for PM10 calibration. The PM10
calibration accuracies of all the algorithms followed the order of Comb-4, Comb-3, Comb-2,
and Comb-1. The proposed Comb-4 showed 11.0, 6.5, and 1.3 µg/m3 lower RMSE and
23%, 12%, and 3% lower MAPE compared to Comb-1, Comb-2, and Comb-3, respectively.
Comb-4 also showed an improvement in the explanatory power of the model, with a higher
difference in R2 values of 0.16, 0.09, and 0.02 compared to Comb-1, -2, and -3. In comparison,
the proposed Comb-3 was found to be more accurate than Comb-1 and Comb-2, regardless
of the sensor type, but less accurate than Comb-4.

Table 6. Performance of PM10 calibration based on input variable combinations.

Combination Sensor RMSE (µg/m3) MAPE (%) R2

Raw data

AM100 28.29 42.81 0.67
Sniffer 4D 31.38 50.54 0.71

Mean 29.84 46.68 0.69

Comb-1 (RH)

AM100 22.49 35.99 0.77
Sniffer 4D 24.03 40.53 0.78

Mean 23.26 38.26 0.78

Comb-2 (RH + T)

AM100 18.70 27.88 0.84
Sniffer 4D 18.84 26.93 0.86

Mean 18.77 27.41 0.85

Comb-3 (RH + T + MA)

AM100 13.49 18.71 0.91
Sniffer 4D 13.79 18.37 0.92

Mean 13.64 18.55 0.92

Comb-4 (RH + T + MA + Calibrated PM2.5)

AM100 12.31 16.22 0.93
Sniffer 4D 12.29 14.47 0.94

Mean 12.30 15.35 0.94

3.2. Results of Calibration Based on Algorithms

The algorithm with the best overall calibration performance across all sensor types
and input variable combinations was the FNN. SVR and GAM performed similarly to FNN
overall, with SVR outperforming GAM for PM2.5 and the opposite was true for PM10. In
contrast, SLR showed the lowest overall accuracy and explanatory power compared to the
other algorithms. Furthermore, all the algorithms improved their calibration performance
with the proposed combinations of Comb-3 and Comb-4. This trend was consistently
observed, regardless of the sensor and PM type.

The PM2.5 calibration was followed by the FNN, SVR, GAM, and SLR (Table 7 and
Figure 4). The FNN, SVR, and GAM performed similarly and the R² values of Comb-
3 for these models were 0.96, 0.96, and 0.95, respectively, indicating high explanatory
power. However, SLR showed a significant performance difference compared to the other
algorithms, with RMSE, MAPE, and R² of 9.14 µg/m3, 37.53, and 0.82, respectively, for the
proposed combination of variables.
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Table 7. Performance of PM2.5 calibration based on algorithms.

Metric Algorithm Comb-1 Comb-2 Comb-3

RMSE (µg/m3)

FNN 9.60 6.42 4.29
SVR 9.85 6.61 4.39

GAM 9.57 7.19 4.58
SLR 10.98 9.62 9.14

MAPE (%)

FNN 45.25 23.71 16.91
SVR 41.43 21.94 15.05

GAM 44.37 26.67 17.84
SLR 50.96 39.45 37.53

R2

FNN 0.80 0.91 0.96
SVR 0.79 0.91 0.96

GAM 0.80 0.89 0.95
SLR 0.74 0.80 0.82
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The best PM2.5 calibration results using the FNN are shown in Figures 5 and 6. These
figures show the results of the PM2.5 calibration based on the FNN using AM100 and Sniffer
4D sensors. These results confirm that the proposed Comb-3 can achieve more accurate
calibration results than Comb-1 and Comb-2 for both sensors.
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For PM10 calibration, the FNN and GAM algorithms generally yielded the most
accurate calibration results, as shown in Table 8 and Figure 7. In calibrations using Comb-4,
which showed the highest accuracy among all algorithms, the FNN and GAM achieved
R² values of approximately 0.97 and 0.97. This performance was superior to that of SVR
and SLR, which achieved R² values of 0.93 and 0.86. The GAM performed lower than the
FNN in calibrations with Comb-1 and Comb-2 but outperformed the FNN in Comb-3 and
-4, which are the proposed combinations. SVR performed better than SLR but worse than
FNN and GAM, unlike PM2.5. Meanwhile, the SLR performed significantly worse than the
other algorithms in terms of PM10 calibration.

Table 8. Performance of PM10 calibration based on algorithms.

Metric Algorithm Comb-1 Comb-2 Comb-3 Comb-4

RMSE
(µg/m3)

FNN 21.91 15.11 11.01 8.68
SVR 22.95 18.46 14.26 13.81

GAM 22.01 17.16 10.06 8.58
SLR 26.17 24.35 19.23 18.13

MAPE (%)

FNN 37.38 23.93 16.73 12.37
SVR 36.20 21.56 13.08 10.00

GAM 37.55 27.39 14.24 11.35
SLR 41.90 36.74 30.11 27.66

R2

FNN 0.80 0.91 0.95 0.97
SVR 0.79 0.86 0.92 0.93

GAM 0.80 0.88 0.96 0.97
SLR 0.72 0.76 0.85 0.86
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Figures 8 and 9 show the results obtained using the FNN, one of the algorithms that
performed the best in PM10 calibration for various combinations of input variables. These
figures show the results of the AM100 and Sniffer 4D sensors. The results demonstrate that
the calibration accuracy improved when the proposed variables, such as MA and calibrated
PM2.5, were utilized (Comb-3 and Comb-4).
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3.3. Results of Calibration Based on Seasonal Variation

This study investigated the effectiveness of the proposed input variable combinations
for calibration by analyzing seasonal variations. The seasonal performance was analyzed
in terms of the MAPE and R2 of the calibration using the FNN, which was the algorithm
that exhibited the best performance for both PM2.5 and PM10. In other words, we assessed
performance by analyzing the extent to which the MAPE and R2 of the corrected obser-
vations with FNN correction differed from those of the raw data. In this study, spring
corresponded to March–May, summer to June–August, autumn to September–November,
and winter to December–January. The climatic characteristics of each season in Korea
where the observations were conducted are presented in Table 9.

Table 9. Meteorological characteristics of seasons in South Korea.

Season (Month) Spring
(Mar.–May)

Summer
(Jun.–Aug.)

Autumn
(Sep.–Nov.)

Winter
(Dec.–Feb.)

Humidity
(average RH)

Dry
(59.0%)

Humid
(75.2%)

Dry
(65%)

Dry
(59.8%)

Temperature
(average) 13.2 24.5 14.8 0.2

Daily temperature range 10.4 6.7 9.4 8.8

For PM2.5, RH and T showed different contributions depending on the season, and the
most precise calibration was achieved by applying MA, the variable proposed in this study,
regardless of the season. In particular, the calibration using RH alone showed significant
differences in accuracy depending on the season, as shown in Figure 10 and Table 10.
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Table 10. Enhancement rate of MAPE (%) over raw data of each season according to input variable
combinations in PM2.5 calibration.

Combination

Enhancement Rate of MAPE (%)

AM100 Sensor Sniffer 4D Sensor

Spring Summer Autumn Winter Spring Summer Autumn Winter

Comb-1 9 64 17 41 3 50 7 52
Comb-2 46 70 60 73 44 63 72 77
Comb-3 63 73 75 82 61 70 77 83

Comb-1 exhibited the best performance in summer, with an accuracy similar to the
results obtained using T and MA. This can be attributed to the relatively low PM con-
centrations and very high RH in Korea during the summer, which are influenced by the
rainy season. In winter, the accuracy of PM2.5 calibration was also significantly improved.
However, unlike in summer, it was relatively low compared to the combination of T and
MA. In contrast, there was only a slight improvement in spring and autumn when the
weather was relatively dry, and the PM concentrations were high. In spring, autumn, and
winter, Comb-2 showed a significant improvement in relative accuracy compared with
Comb-1, indicating that summer is greatly influenced by RH. Particularly in spring and
autumn, which have relatively high daily temperature ranges, the accuracy was lower than
that in the other seasons. This can be explained by the fact that the maximum temperatures
in spring and autumn are similar to those in summer, whereas the minimum temperature
is similar to that in winter. This makes it difficult for temperatures to account for seasonal
characteristics completely. Comb-3, on the other hand, was stable regardless of the season
and had the highest relative accuracy. Comb-3 improved the MAPE accuracy by 63–82%
(AM100) and 58–75% (Sniffer 4D) over the raw data (Table 10).

The seasonal R-squared for the AM100-PM2.5 observations with the FNN-based cali-
bration model can be seen in Figure 11. Comb-1 showed an improvement in R2 compared
to the raw data in spring, autumn, and winter, especially in autumn. In contrast, in summer,
the R2 value decreased from 0.77 to 0.70. This indicates that the FNN-calibrated model,
considering only the RH variable, exhibited reduced explanatory power for the summer
observations. In Comb-2, temperature was also taken into account, which enhanced the
explanatory power in all seasons compared to Comb-1. The Comb-3 exhibited the highest
R2 values across all seasons and the most explanations of PM2.5 concentrations. Spring,
autumn, and winter especially showed high values of R2 in the range of 0.95-0.97, with au-
tumn improving by 0.43 over the raw data. Observations in summer had lower explanatory
power than the other seasons for all input variable combinations but showed improved
performance with the addition of T and MA compared to raw data.
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Figure 11. Seasonal variation of FNN-based AM100-PM2.5 calibration results with different input
variable combinations: (a–c) spring result by combination, (d–f) summer result by combination,
(g–i) autumn result by combination, and (j–l) winter result by combination (from left to right, these
are Comb-1, -2, and -3).

The seasonal R-squared of the Sniffer4D-PM2.5 observations with the FNN-based
calibration model is shown in Figure 12. Comb-1 exhibited improved explanatory power
over the raw data in spring and autumn but decreased from 0.67 to 0.59 and from 0.90 to
0.88 in summer and winter, respectively. Compared to the AM100 sensor, the Sniffer4D
sensor showed reduced explanatory power for both winter and summer observations.
Comb-2 showed an improvement in the value of R2 compared to Comb-1. However, there
was a seasonal difference, with higher values in fall and winter and lower values in spring
and summer. Comb-3 decreased the difference in R2 between spring, autumn, and winter
to 0–0.01. In all seasons, the combination of RH, T, and MA variables explained PM2.5
concentrations the most.
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(g–i) autumn result by combination, and (j–l) winter result by combination (from left to right, these
are Comb-1, -2, and -3).

The relationship of each variable to the seasonal PM10 calibration results showed
similar patterns to PM2.5; that is, RH and T showed varying performances across different
seasons. In contrast, by considering the proposed variable MA and calibrated PM2.5, more
accurate calibration results were achieved regardless of the season (Figure 13 and Table 11).
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Table 11. Enhancement rate of MAPE (%) over raw data of each season according to input variable
combinations in PM10 calibration.

Combination

Enhancement Rate of MAPE (%)

AM100 Sensor Sniffer 4D Sensor

Spring Summer Autumn Winter Spring Summer Autumn Winter

Comb-1 2 69 11 14 5 64 3 13
Comb-2 30 75 62 56 62 68 35 46
Comb-3 34 76 85 71 47 69 68 68
Comb-4 60 79 89 79 58 71 74 75

The PM10 calibration based on seasonal input variables revealed the following trends:
Comb-1 shows a significant decrease in MAPE in summer but a relatively smaller decrease
in MAPE in other seasons. Comb-2, which used RH and T, demonstrated a consistently
higher accuracy across all seasons than Comb-1. However, Comb-2 still showed higher er-
rors in all seasons, except for summer, with the highest error levels in autumn. Comb-3 and
Comb-4 exhibited consistently high accuracies across all seasons. Comb-4 demonstrated
MAPE accuracy enhancements of 60–89% points (AM100) and 58–75% points (Sniffer 4D)
compared to the raw observations (Table 11).

The calibration of AM100-PM10 observations with the FNN-based calibration model
resulted in the following seasonal R-squared values (Figure 14). In Comb-1, the value of R2

increased in spring and autumn but decreased slightly in summer and winter. Similar to
PM2.5, PM10 concentrations also showed variations in explanatory power across seasons.
Comb-2 showed a higher R2 value of 0.91 in spring but lower values in the other seasons,
ranging from 0.73 to 0.77. In Comb-3, the value of R2 improved in all seasons, especially
in autumn and winter, increasing from 0.77 to 0.91 and 0.73 to 0.91, respectively. Comb-4
exhibited the highest R2 values in all seasons and further enhanced the explanatory power
of PM10 by incorporating calibrated PM2.5.
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The seasonal results of calibrating the Sniffer4D-PM10 observations with the FNN-
based calibration model are shown in Figure 15. Comb-1 showed an improvement in the
value of R2 in spring, autumn, and winter, but decreased slightly in summer. In Comb-2,
the explanatory power improved in all seasons compared to Comb-1. Moreover, similar
to the AM100 sensor, the spring observations showed higher explanatory power than the
other seasons. Comb-3 showed better calibration performance in all seasons, especially in
autumn and winter. The value of R2 decreased slightly in summer compared to Comb-2 by
0.01 but improved by 0.8 over the raw data. Comb-4 showed the highest R2 values in all
seasons, indicating that it was the best combination of input variables to describe PM10.
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4. Conclusions

This study proposed a methodology to enhance the calibration performance of the PM
LCS. The proposed methodology considers the MA and calibrated PM2.5 as novel input
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variables in a statistical calibration model. The MA was selected as a factor to consider the
seasonal variation in the PM concentration and calibrated PM2.5 was selected to account for
the concentration of PM2.5 and coarse PM2.5 in PM10 calibration. To assess the effectiveness
of the proposed input variables, four combinations of input variables were applied to the
FNN, SVR, GAM, and SLR algorithms.

The results showed that in PM calibration, the variable combination including MA
outperformed the combination without MA. For PM2.5, the combination that considered
RH, T, and MA had the highest relative accuracy and explanatory power of all algorithms.
For PM10 calibration, the combination that considered the MA outperformed the com-
bination that only considered RH and T. The highest performance in PM10 calibration
was observed when calibrated PM2.5 was included, specifically when RH, T, MA, and
calibrated PM2.5 were utilized. These results suggest that MA can explain the variation in
the PM concentration over the seasons and can be effectively considered in the calibration.
In addition, the PM10 calibration model using calibrated PM2.5 variables can efficiently
account for the characteristics of a subset of PM10.

Among the calibration models used, the FNN performed the best across all PM types,
sensors, and variable combinations, with R² values of 0.96 and 0.97 for PM2.5 and PM10
calibrations, respectively, indicating high explanatory power. SVR and GAM performed
similarly to FNN, with GAM showing a slightly poorer performance for PM2.5 and SVR
performing slightly poorly for PM10. In contrast, SLR, the regression model, performed
worse overall than the machine learning models.

The proposed methodology is expected to help efficiently calibrate the PM LCS in
different seasons and environments. In this study, we used one year of data to account for
seasonal variations. In the future, we plan to collect data for less than a year and develop
an in situ calibration methodology to ensure accuracy. We will also explore methods for
independently assessing PM2.5 and PM10.
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