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Abstract: Soil–Vegetation–Atmosphere Transfer (SVAT) models are a promising avenue towards
gaining a better insight into land surface interactions and Earth’s system dynamics. One such model
developed for the academic and research community is the SimSphere SVAT model, a popular
software toolkit employed for simulating interactions among the layers of vegetation, soil, and
atmosphere on the land surface. The aim of the present review is two-fold: (1) to deliver a critical
assessment of the model’s usage by the scientific and wider community over the last 15 years, and
(2) to provide information on current software developments implemented in the model. From the
review conducted herein, it is clearly evident that from the models’ inception to current day, Sim-
Sphere has received notable interest worldwide, and the dissemination of the model has continuously
grown over the years. SimSphere has been used so far in several applications to study land surface
interactions. The validation of the model performed worldwide has shown that it is able to produce
realistic estimates of land surface parameters that have been validated, whereas detailed sensitivity
analysis experiments conducted with the model have further confirmed its structure and architectural
coherence. Furthermore, the recent inclusion of novel functionalities in the model, as outlined in the
present review, has clearly resulted in improving its capabilities and in opening up new opportunities
for its use by the wider community. SimSphere developments are also ongoing in different aspects,
and its use as a toolkit towards advancing our understanding of land surface interactions from both
educational and research points of view is anticipated to grow in the coming years.

Keywords: land surface interactions; SVAT; SimSphere; triangle; geoinformation

1. Introduction

The land and atmosphere interact in complex ways through many biophysical and
biogeochemical feedbacks, operating at various spatial and temporal scales [1]. The land
surface interacts with the atmosphere through the exchange of momentum, water, and
carbon dioxide. Thus, land surface interactions (LSIs) can be summarised by the energy
balance, water, and carbon cycles and the associated critical processes. As a result, LSIs
influence microclimate, crop productivity, and extreme weather events such as heat waves,
droughts, and floods. These interactions are important drivers of the Earth’s system, regu-
lating the critical exchanges of mass and energy between the atmosphere and the terrestrial
biosphere [2–5]. Developing knowledge on Earth’s natural processes and component inter-
actions by recognizing its vital aspects is a key research priority, especially in the face of
ongoing climate change challenges. Moreover, understanding LSIs dynamics can support
the development of sustainable management strategies and policies [6].

Energy fluxes are typically obtained from ground monitoring networks of in situ flux
measurements, which are labour-intensive and high-cost and provide limited coverage.
Ground-based instruments, such as eddy covariance, provide direct measurements but face
challenges for large-scale use due to a lack of spatial and temporal variability in observation

Sensors 2024, 24, 3024. https://doi.org/10.3390/s24103024 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103024
https://doi.org/10.3390/s24103024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1442-1423
https://doi.org/10.3390/s24103024
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103024?type=check_update&version=1


Sensors 2024, 24, 3024 2 of 21

coverage, instrumentation complexity, difficulties in setting up, and cost. Ground opera-
tional networks such as FLUXNET nowadays provide ground observations at no cost that
support local-scale monitoring and model benchmarking, albeit with geographical inhomo-
geneity. In FLUXNET, the eddy covariance method is employed across all sites to quantify
the carbon, water, and energy fluxes between the biosphere and the atmosphere [7–10].

Mathematical models have demonstrated their effectiveness for studying and better
understanding Earth’s physical processes such as those of the energy balance, carbon, and
hydrological cycles and evaluating how these processes are impacted under different cli-
mate change scenarios [11–13]. Various such models have been developed to study LSIs at
different geographical scales. One of the most promising of these includes land–biosphere
models (LBMs) [14]. These simulate physical processes on the land surface related to radia-
tion absorption and partitioning, water and carbon cycles, and atmospheric interactions.
These models are able to estimate carbon and energy fluxes, e.g., sensible heat fluxes (H),
latent heat fluxes (LE), solar radiation, surface runoff, and soil moisture availability [15].
Yet, LBMs are characterised by several disadvantages, primarily due to their inherent
mathematical complexity, which is a result of the dynamic, adaptive, and infinitely complex
nature of life and its interactions with the environment. This complexity poses significant
challenges in accurately capturing complex ecosystem relationships, resulting in models
with limited predictability. A thorough review of these models can be found, for example,
in [14,16,17].

One type of LBM includes Soil–Vegetation–Atmosphere Transfer (SVAT) models [18].
SVATs aim to describe processes that regulate mass and energy transport in the
soil–vegetation–atmosphere system (radiation, water transport, and turbulence) and to
provide estimates of the variables at a detailed time step [19,20]. These mathematical
models provide a comprehensive understanding of the physical processes that control the
movement of matter and energy in soil, vegetation, and atmosphere [20–22]. SVAT schemes
combined with a planetary boundary layer (PBL) model are considered to be the commonly
adopted model framework at regional spatial scales [23,24]. SVATs can estimate soil and
vegetation conditions over time in accordance with atmospheric processes provided to
them. Accurate predictions using SVAT models are critical for modelling land–atmosphere
interactions, as integral components of numerical weather prediction and assimilation
models [25]. Yet, there are several limitations of SVAT models. The main challenge is
linked to their parameterization, due to their large number of input parameters, which
requires an excessive availability of data or field measurements. The representativeness
of the spatial scale is another challenge. In addition, the computational requirements for
simulations, particularly for multi-layer models, can often be both time consuming and
costly, prohibiting their wider applicability [26,27].

Yet, a promising path in the use of these models includes their integration with Earth
observation (EO) datasets, and for this purpose, a number of data assimilation methods
have been proposed [28–32]. The fine temporal continuity and vertical coverage of such
models, together with the horizontal coverage and spectral resolution of EO data, enable
more accurate predictions, informed land-use decisions, and effective strategies for climate
change mitigation [33,34]. Current efforts focus on exploiting the synergies between ground-
based observations, EO technology, and SVATs to develop innovative methodologies and
software tools for EO-based products to support a better understanding of hydrological
and biophysical cycles.

SimSphere is a 1D SVAT model introduced by [35,36]. The model has significantly
evolved since its inception, with its most recent version developed in Java by [37]. An
overview of the latest model version can be found in [19,38,39]. In brief, a number of
variables are simulated by the model, including surface energy fluxes at the soil surface as
well as in, around, and above the vegetation canopy, the transfer of water within the soil
and the plants, CO2 fluxes between the atmosphere and the plants, surface O3 fluxes, and
a variety of other parameters. SimSphere’s applicability has already been demonstrated
in various ecosystems worldwide, and results confirm its promise as a tool to study LSIs.
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Indeed, the successful application of the model to various ecosystem types [40] confirms
its ability to respond to the description of the complex physical processes of the natural
environment [41,42]. Furthermore, the extensive number of sensitivity analysis (SA) ex-
periments that have been carried out in the model confirm its architectural coherence and
stability [43,44], which enhanced its architectural design [19]. In addition to its use as a
stand-alone modelling tool, SimSphere has been widely adopted for its ability to be inte-
grated collaboratively with satellite-based data, providing valuable spatial and temporal
predictions of key parameters related to energy and water fluxes [44]. This integration
allows for the quantification of spatially variable fluxes and provides a mechanistic frame-
work for the extrapolation of small-scale observations to regional fluxes. It also deals
with challenges related to sub-grid variability and the impact of spatial heterogeneity
on carbon, water, and heat flux sources and sinks [41,45]. Various space agencies have
previously explored different variants of this technique to develop operational products,
as indicated by [46,47]. Since its first release, this model has undergone substantial archi-
tectural and functional development, and its application has been extensively proven in a
variety of multidisciplinary scientific studies [19,37]. In addition, SimSphere has gained
widespread usage as an educational toolkit to study LSIs, being used by several (at least
seven) universities worldwide.

All in all, from the above, it becomes evident that SimSphere is a well-known SVAT
model, and it has been identified as a valuable tool for the study of LSIs for research and
education purposes alike. Its continuous development from different facets, its successful
application in a variety of ecosystems, and its ability to be used in conjunction with
advanced EO data over decades provide further evidence of its recognition as a modelling
tool of LSIs by the community. SimSphere’s recently refined design, coupled with its
worldwide adoption, makes it a suitable model for research in exploring intricate physical
processes and mitigating climate change [19].

Given the interest in SimSphere so far from both an educational and research point of
view, providing a review on its use is very timely. Such a review not only helps to showcase
in a single point of reference its use in a variety of applications and disciplines so far but also
paves the way of future work linked to the model from multiple perspectives, including
its architectural design and emerging applications. As such, this review also addresses
key research priorities identified today by global organisations linked to the development
of methodologies and modelling tools that can assist in advancing our understanding
of our terrestrial biosphere and ensuring a more sustainable environment [5,48]. The
adverse impacts of climate change further underscore the necessity for innovative and
adaptive methodologies that will support building a sustainable future, as acknowledged,
for example, at the European scale by the European Union’s environmental goals and
initiatives [49]. Thus, the present SimSphere review can place SimSphere at the forefront of
activities in progress globally linked to addressing global challenges.

In this context, the present article’s aim is two-fold: (1) to provide a comprehensive
critical overview of the model’s recent use by the scientific and wider user community; and
(2) to provide information about recent software developments implemented in the model,
which have resulted in improving its capabilities. Information on the current developments
to the model and the identification of the directions in which future work should be focused
on concerning its use is very timely, given the global interest in the model by the academic
and scientific community via its use both as an educational and research tool alike.

2. SimSphere’s Modelling Architecture

This section provides an overview of the SimSphere model’s basic architectural design.
For an extensive discussion on the model’s principles, the reader may refer to [19,37,50]. The
latest model version can be accessed at no cost through the Department of Meteorology at
Pennsylvania State University, USA (https://courseware.e-education.psu.edu/simsphere/)
(accessed on 20 January 2024).

https://courseware.e-education.psu.edu/simsphere/
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SimSphere is a time-dependent, two-stream model designed to simulate
soil–vegetation–atmosphere interactions and calculate fluxes across a surface composed
of fractional segments of bare soil and vegetation [19]. It is a one-dimensional boundary
layer model operating with a plant component. The model’s scale in the horizontal domain
implicitly depicts an undefined horizontal region of the Earth’s surface that is formed from
a mixture of vegetation and bare soil in proportions (Fr) and (1−Fr) that range from 0
to 1.0, with Fr representing the fractional vegetation cover per unit area. As a result, the
model’s horizontal scale is determined by how well its initial conditions (input parameters)
correspond to the characteristics of the simulated horizontal area. SimSphere is applicable
to a specific location or, at the very least, a confined area, under the condition that the
characteristics of the atmosphere, surface slope, and incident radiation are evenly spread
across the entire domain.

The model is designed to operate over a full 24 h cycle, simulating the dynamic phys-
ical phenomena that occur along a vertical axis from the subterranean root zone to an
elevation above the vegetation cover. The simulation is initiated at dawn (specifically at
05:30 local time) with pre-defined initial conditions to simulate the continuous dynamics
between soil, vegetation, and atmosphere. Simulations are based on a number of input
parameters related to time, location, vegetation, surface characteristics, hydrology, meteo-
rology, soil properties, and the atmosphere (a total of 53 divided in 7 groups). SimSphere
calculates a set of 32 variables from the initial parameters, reflecting the environmental
conditions at the model site. These variables include surface energy fluxes (such as H and
LE) at the soil surface and within, above, and around the canopy of the vegetation as well
as carbon fluxes between the atmosphere and plants, along with the integrated surface
temperature (Ts) of the vegetation–soil mix at the scale of a grid cell [50].

Three primary systems can be identified within the structure of the model: the vertical,
the physical, and the horizontal system (Figure 1a). The overall model structure, which
includes a description of the operation of the vegetation component, is shown as Ohm’s
resistance (Figure 1b) with reference to the relative parameters summarised in Table 1.
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Figure 1. SVAT model’s different architectural components (a) (adopted from the SimSphere user
manual (https://courseware.e-education.psu.edu/simsphere/workbook) (accessed on 20 January
2024) and the vertical structure of the plant–canopy model using an Ohm’s electrical analogy are
depicted (b), which demonstrates how the SVAT model represents exchanges of H and LE fluxes
among the atmosphere, vegetation, and bare soil. Individual model parameters which are used in
Figure 1b are defined in Table 1 below (Figure 1b and Table 1 have been adopted from [36,51]).
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Table 1. The model architecture is represented by an electrical analogy based on Ohm’s law using the
coefficients and variables taken from SimSphere, as shown in Figure 1b.

Name Variable Units

Air vapour pressure in the atmosphere ea Mbar

Leaf–air boundary vapour pressure eaf Mbar

The saturation vapour pressure at the
temperature of the leaf eL (TL) Mbar

Flow of water from soil to leaf Fw Wm−2

Foliage sensible heat flux Hf Wm−2

Soil sensible heat flux Hg Wm−2

Foliage latent heat flux LeEf Wm−2

Soil latent heat flux LeEg Wm−2

Air resistance in surface layer ra sm−1

Resistance of heat and water vapour flux for
interleaf air spaces raf sm−1

Air resistance between the ground and the
interleaf air spaces rag sm−1

Air resistance in transition surface layer rb sm−1

Soil resistance from the substrate rg sm−1

Leaf resistance rL sm−1

Soil water content of the root zone θv cm3 cm−3

Surface soil water content θvo cm3 cm−3

Soil water potential ψg Bar

Mesophyllic leaf water potential ψL Bar

Air temperature of the surface layer Ta Kelvin

Temperature of the interfoliage air spaces Taf Kelvin

Temperature of the ground surface Tg Kelvin

Temperature of the leaf surface TL Kelvin

Root resistance Zroot Bar (Wm−2)−1

Stem resistance Zstem Bar (Wm−2)−1

Soil root surface resistance Zg Bar (Wm−2)−1

Shielding factor σf Unitless

The vertical structural component corresponds to the planetary boundary layer (PBL),
which is sub-divided into three layers: a surface transition layer that represents surface
vegetation or bare soil; a constant flux layer at the surface; and a surface mixing layer [37].
The microclimate conditions of the model are mainly determined by the physical compo-
nent, which is further divided into three groups: radiative, atmospheric, and hydrological.
Another important aspect of the model is the horizontal layout, which account for spatial
diversity in land (vegetation) cover. The atmospheric model layers’ depths are dynamic,
which means that they vary with time. For example, high temperatures during the day
will result in a significant upward transfer of heat and downward transfer of wind speed–
momentum that will cause the PBL to grow to heights of 1 or 2 km, where the air from the
surface is mixed. Therefore, the PBL top is defined as the top mixing layer. The constant
flux represents a surface layer in which the vertical variations in heat, moisture, and wind
speed fluxes do not differ by more than 10% and where certain logarithmic profile laws are
thought to apply. In the model, this layer forms a series of equilibria between the mixing
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above and the transition layer below. Sensible heat transferred into the mixing layer causes
it to warm and mix with the air above it. Latent heat conveyed into the mixing layer causes
the humidity to rise within it. The transition layer is a mathematical concept specifically
related to the vertical transfer of moisture and heat across the bare soil component. In
the transition layer, the vertical exchange is dominated by molecular and radiative effects
and wind shifts. When it comes to vegetation, an actual layer of vegetation replaces the
transition layer. The temperature, moisture, and wind profiles in the bare soil or vegetation
transition layers, like the surface layer, are controlled by laws that represent equilibrium
between the layers below and above it. During the day, the top of the mixing layer rises in
response to the H fluxes at the surface, as evidenced by a temperature inversion that traps
the air in convective interaction with the surface layer.

The substrate layer represents the depth of soil through which water and heat are
transferred. The user defines water content in the soil for the root zone layer and the top
layer by allocating a fraction of the field’s capacity. The model’s PBL is represented by the
fractional vegetation cover (Fr) and the bare soil fraction. All of these systems are treated
separately, and the resulting flows are combined at the base of the surface layer, which
is typically fifty meters above ground. Through vertical heat, energy, water vapour, and
CO2 transfer, the PBL receives almost all of its water vapour and most of its heat from
the surface. These transfers are mainly driven by mechanical wind turbulence between
the surface and atmosphere, and turbulent eddies caused by surface heating. The proper
balance of energy fluxes at the surface of the Earth and within the plant canopy poses
a challenging constraint for the model. The model begins by calculating solar radiation
using a one-dimensional boundary layer. Surface albedo, solar geometry, and atmospheric
transmission coefficients are used to calculate the total amount of downwelling irradiance
absorbed by the substrate layer at a given date, time, and latitude and longitude location.
The radiation flux calculations are designed to work under the assumption that no clouds
are present, although adjustments for a specific cloud coverage ratio can be added during
initialisation if necessary [50].

In its parameterisation, the model includes a vegetation layer between the surface of
the atmosphere and the ground, when the vegetation is activated. Leaf area index (LAI)
and Fr are used to quantify vegetation density. Each system functions autonomously
at the canopy level when integrating representations of bare ground and vegetation to
accommodate partial vegetation cover conditions. Nonetheless, there is a mutual exchange
of momentum, heat, and water vapor occurring between the shared substrate beneath
and the common surface and mixed layers above the canopy. For both the bare soil
and vegetation, the calculation of incoming shortwave radiation, downward longwave
radiation, and radiation partitioning remains consistent. Similarly, LE, H, upward longwave
radiation flux above the canopy, and substrate heat flux (G) are derived as weighted
averages of the vegetation and bare soil components within the SVAT model, with the
vegetation fraction as the basis for weighting. In both the vegetation and bare soil portions,
temperature, specific humidity at the top of the surface layer (Ta; qa), and soil water
content are identical. The canopy surface temperature (Ts) is then calculated using a
weighted average of upward long-wave radiation fluxes from both the vegetation and bare
soil components.

The model’s parameterisation that concerns, in particular, the plant’s stomatal resis-
tance is a critical aspect of the modelling parametrisation process. Stomatal resistance,
which represents the resistance of the vegetation to transpiration, is important in controlling
the energy partitioning between the H and LE fluxes. SimSphere allows the user to choose
between two options for modelling stomatal resistance: (1) the [52] parameterisation, and
(2) the [53] formulation. The former has the advantage of being able to represent the broad
aspects of the behaviour of stomata under the influence of sunlight and water in the soil.
However, the main disadvantage is that plant hydraulics are not taken into account, which
are responsible for shifts in transpiration rates throughout the diurnal period. Conversely,
the [53] formulation of stomatal resistance is given as the result of a dimensionless function
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explaining the effects of leaf water potential, vapour pressure deficit, and incident solar
flux. In this parameterisation approach, the impact of stomatal resistance is influenced by
the difference in water potential between mesophyll and epidermal leaf layers, known as
the leaf–atmosphere vapor pressure. The vapor pressure difference is modelled to propor-
tionally reflect its effect on the resistance of the stomata. The outcome of these operations is
converted into units of resistance by multiplication with a constant that is the minimum
stomatal resistance, which remains constant for each simulation. It is worth mentioning
that the selection of the value used as threshold in the epidermal water potential model
input parameter, which is required by the model, is a critical component of the stomatal
resistance formulation algorithm in this approach. Below this threshold, which is set by
the user, the stomatal resistance increases rapidly as leaf size decreases. After reaching
the threshold epidermal water potential, transpiration tends to remain relatively constant
until the epidermal water potential crosses the threshold once more, approaching higher
values. This phenomenon is known as the “transpiration plateau” by [53], where the
authors refer to it as the “flattening” of the transpiration curve. Fluxes that are simulated
by the model are expressed in Watts per m2 (Wm−2) leaf area to facilitate linkage to surface
energy balance. The scaling of the parameters that have been simulated from the leaf to the
canopy is considered in order to establish a correlation with the surface energy balance. The
conversion of flux per unit leaf area to flux per unit surface area is achieved by dividing the
leaf area index (LAI) by a “shelter factor”, as defined by [54]. The shelter factor considers
the variation in transpiration rates among leaves as solar radiation diminishes beneath the
upper canopy. For a more comprehensive understanding of the scaling factor concept, the
reader may also refer to [36].

3. SimSphere Use in the Last 15 Years

This section builds upon the comprehensive review conducted by [50], which explores
various aspects in the applications of SimSphere for studying land–atmosphere interactions
based on the model’s initial development to date. Subsequently, the discussion herein
shifts towards studies conducted since the [50] review paper and until present, addressing
more recent assessments and other analyses in the ongoing exploration of SimSphere’s
capabilities. As part of this systematic review conducted herein, Table 2 provides a summary
of the key studies covered in the present review along with some of their main findings.

Table 2. Summary of main studies performed using the SimSphere SVAT model.

Study Group Study Details Study Objective Key Findings

Studies
evaluating the
SVAT model
outputs

[40]

Evaluation of Rg, Rnet, LE, H,
Tair 1.3 m, and Tair 50 m using
in situ measurements from
eight sites within the
AmeriFlux (USA) and OzFlux
(Australia) monitoring
networks.

Varied simulation accuracy across land cover types.
High agreement for LE (RMSD 39.47 Wm−2), H
(55.06 Wm−2), Tair 1.3 m (3.23 ◦C), and Tair 50 m
(3.77 ◦C).
Slightly underestimated Rnet (RMSD 58.69 Wm−2,
MBE −16.46 Wm−2) and Rg (RMSD 67.82, MBE
−19.48 Wm−2).

[55]

Evaluate Rnet, LE, H, Tair 1.3
m, and Tair 50 m against in situ
measurements acquired from
seven CarboEurope (European)
network sites.

High agreement observed for H fluxes (RMSD
55.36 Wm−2, R2 0.83), LE fluxes (62.75 Wm−2), and
Rnet (64.65 Wm−2).
Increased vegetation reduced accuracy at Tair 1.3
(RMSD 4.1 ◦C) but enhanced model agreement at Tair
50 (RMSD 3.69 ◦C).

[41]

Evaluate Rnet, LE, and H
against in situ data acquired
from seven CarboEurope
(European) network sites.

Shrubland consistently showed low RMSDs in all
outputs.
Highest agreement for H (55.36 Wm−2), followed by
LE (62.75 Wm−2) and Rnet (64.65 Wm−2).
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Table 2. Cont.

Study Group Study Details Study Objective Key Findings

Studies based on
SA of the model

[56]
GSA based on BACCO method
for Rndaily, LEdaily, Hdaily,
Tairdaily and Modaily.

Initial BACCO GSA implementation in SimSphere.
Highly sensitive model inputs: aspect, Fr, Mo, and
slope; lower sensitivity to roughness, vegetation
height, and substrate mean temperature.

[57]
EFdaily, NEFdaily, and Traddaily
Assumption of normal PDFs
for the inputs/outputs.

Most sensitive inputs: aspect, slope, Fr, and Mo.
PDFs had minimal impact on model output sensitivity.

[58]

Rndaily, LEdaily, Hdaily,
Tairdaily, Modaily, EFdaily,
NEFdaily, and Traddaily.
Assumption of uniform PDFs
for the inputs/outputs.

Most sensitive inputs: slope, aspect, height, Fr, and
roughness.
Aspect and slope most influential across all model
outputs.

[59]

Rndaily, Rgdaily, LEdaily, Hdaily,
Tairdaily, Modaily, EFdaily,
NEFdaily, Traddaily Ldown,
and Lup.
Assumption of uniform PDFs
for the inputs/outputs.

Most sensitive inputs: slope and elevation, followed
by aspect, Fr, vegetation height, and Mo.
PDFs had minimal impact on model output sensitivity.
Temporal variability observed in parameter influence
on model outputs.

[43]

Evaluation of [CO2], CO2
fluxes, [O3], and O3 fluxes.
Assumption of normal and
uniform PDFs for the
inputs/outputs.

Most sensitive inputs: LAI, Fr, CR, and vegetation
height.
Limited model inputs significantly influence outputs,
mainly related to vegetation, CO2, and O3 fluxes.

[60]

Sensitivity of the Tairdaily
at 50 m.
Assumption of uniform PDFs
for the inputs/outputs.

Most sensitive inputs: slope, aspect, and Fr.
Lesser contributors: Mo and vegetation height.

Studies focusing
on the coupling
EO datasets with
the SVAT model

[61]

Estimation of SMC via the
triangle method using data
from AATSR/ASTER.
Measurements obtained from
seven CarboEurope (European)
network sites.

Superior performance of “triangle”-derived SMC with
AATSR over ASTER.

ASTER: RMSD = 0.19
vol vol−1

MBE = 0.08 vol vol−1

R = 0.56

AATSR: RMSD = 0.06 vol
vol−1

MBE = 0.01
R = 0.84

[62] Validation of the two-stage
trapezoid.

Two-stage trapezoid model aligns closely with
simulated LST/FVC space, validated
comprehensively using SimSphere.

[63]

Estimation of LE, H, SMC via
the triangle method using EO
AATSR 1P and 2P data and
assessed atmospheric
correction effects on accuracy.

SimSphere with EO AATSR data used for process
simulation.
“Triangle” method applied, comparing 1P and 2P
AATSR data.
2P level product improved flux prediction accuracy
for all parameters (SMC, LE, H H/Rn, and LE/Rn).

[64]
An intercomparison analysis of
models, based on SimSphere’s
simulations.

SimSphere model to evaluate Sun2021 for
LST/FVC space.
Results underscore SimSphere’s role in model
intercomparison.

3.1. Studies Evaluating LSI Parameters Simulated by SimSphere

Previous research has directly compared model simulations with ground-based obser-
vations or other SVAT models. Research over 20 years using SimSphere has been detailed
by [50], so research and applications based on the SimSphere SVAT model over the most
recent 15 year period are at the focal point of the studies discussed below.
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Ref. [40] evaluated the model’s ability in predicting key parameters such as LE, H,
shortwave incoming solar radiation (Rg), net radiation (Rnet), air temperature at 50 m
(Tair 50 m), and air temperature at 1.3 m (Tair 1.3 m) for different ecological types located
in USA and Australia. The results of the model’s simulations were tested against in
situ measurements derived from OzFlux (Australia) and AmeriFlux (USA) networks over
72 chosen days in 2011, representing eight different types of ecosystems. These sites covered
a wide range of biome, climatic, and environmental conditions, which allowed contrasting
conditions to be included in the model evaluation. Overall, the model simulations showed
good to excellent agreement with in situ measurements, especially for LE, H, and Tair 1.3 m,
followed by Tair 50 m with RMSD 39.47, 55.06 Wm−2, and 3.23, 3.77 ◦C, respectively. A
systematic underestimation of Rnet and Rg was also found (RMSD 58.69, 67.82 Wm−2, MBE
−16.46, −19.48 Wm−2, respectively). The Nash–Sutcliffe efficiency (NASH) index ranged
from 0.72 to 0.99, which indicated a strong model fit to the observed data. Authors reported
that woodland ecosystems achieved the highest overall accuracy in simulation, while some
ecosystems, such as cropland and grazing pasture, showed poorer simulation accuracy than
others. Figure 2 below shows as an example the comparisons between SimSphere-predicted
and in situ Rg and Rnet fluxes.
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Later, ref. [55] also evaluated the accuracy of the SimSphere model’s predictions of
essential parameters that characterize interactions within the land surface. Specifically,
the evaluation focused on the ability of the model to forecast H, LE, Rnet, and Tair at 1.3
and 50 m, which was examined over 70 days (10 for each experimental site) at seven Car-
boEurope network sites corresponding to different biomes and environmental conditions.
Overall, the model performed accurate predictions for most of the sites and parameters.
According to the statistical metrics, the best results were obtained for H fluxes (average
RMSD of 55.36 Wm−2 and R2 value of 0.83), followed by LE fluxes (average RMSD of
62.75 Wm−2) and Rnet (average RMSD of 64.65 Wm−2). The model’s prediction accuracy
for Tair simulations at 1.3 and 50 m was found to be satisfactory as well (average RMSDs of
4.1 ◦C and 3.69 ◦C, respectively). Results indicated that higher vegetation heights appeared
to have an effect on simulation accuracy at Tair 1.3 m, whereas estimations of Tair at 50 m
provide better agreement between modelled and measured values. These authors attributed
Tair temperature closely to vegetation phenology, as it has previously been shown to have a
strong influence on the magnitude and extent of air temperature [40].
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In the same context, ref. [41] examined the SVAT model’s ability to predict Rnet, LE,
and H fluxes over 70 days in 2011 at seven CarboEurope network sites, representing
various European ecosystems such as forested, grasslands, croplands, and olive plantations.
SimSphere performed well in predicting H fluxes, with an average RMSD of 55.36 Wm−2.
The model provided good agreement for the prediction of LE fluxes and Rnet, with RMSDs
of 62.75 Wm−2 and 64.65 Wm−2, respectively. Findings revealed that among the chosen
experiment sites, simulations performed on shrubland land cover consistently displayed
low RMSD, particularly for LE and H fluxes. The authors attributed these results to the
experimental characteristics, as the sites were located in a water-limited environment,
where the effects of transpiration are less pronounced, contributing to higher predictability,
especially due to site’s relative homogeneity.

From the above, it becomes evident that several studies aiming at assessing Sim-
Sphere’s ability to simulate key variables characterizing LSIs have been performed in recent
years. These studies were primarily based on direct comparisons of the model’s predictions
with reference data from FLUXNET sites, the largest operational ground measurement
network. The model’s performance has so far been assessed for different ecosystem set-
tings worldwide, in Europe, the USA, and Australia. Results have confirmed the models’
ability, demonstrating that the model can be used to facilitate LSIs in both research and
practical applications and to support its use in decision making. Based on the accuracies of
the model performance, the studies reported overall a good agreement, with acceptable
accuracies that vary over different land cover types, which represents a first confirmation
of the usefulness of the model as a tool in the study of LSIs. In general, the discrepancies
which were reported were attributed, in part, to inherent instrumentation uncertainties and
the intricate nature of environmental conditions, which can be attributed to the present
architectural design of the model.

3.2. Sensitivity Analysis (SA) Studies on SimSphere

SA becomes particularly crucial for the SimSphere model in order to verify its cor-
respondence with real-world observations and identify the critical input parameters that
significantly influence the model’s performance [65]. Hence, as part of model development,
it is vital to identify sensitive parameters. This involves comparing simulated outputs
with actual observations using statistical methods and sensitivity analysis (SA). Such an
analysis plays a key role in validating the model by systematically exploring how changing
input parameters affect the model’s output variables [57]. Many studies have been con-
ducted on the SimSphere model aiming to provide an insight into its modelling architecture
and coherence. A critical overview of these studies is provided next, along with their
key findings.

Ref. [56] pioneered the implementation of SA in the SimSphere model with the appli-
cation of the Bayesian Analysis of Computer Code Outputs (BACCO) method. BACCO
is a sophisticated approach employed in global sensitivity analysis (GSA) within environ-
mental modelling. It is designed to handle multiple sources of uncertainty affecting model
performance and provides a comprehensive means of assessing a model’s sensitivity and
stability [66]. The method first constructs a statistical emulator of the model using training
data points and second uses this emulator to perform SA. In contrast to conventional GSA
approaches (e.g., Monte Carlo-based methods), BACCO is characterised by its efficiency,
requiring fewer model runs, making it orders of magnitude faster, and allowing the an-
alytical derivation of sensitivity measures directly from the emulators [67]. In addition,
BACCO provides a simple way to rank the model inputs according to their importance,
based on the computed percentage contribution of the main effect of each input to the total
variance of a given parameter predicted by the model. The percentage variance component
associated with each input quantifies the amount by which its main effect contributes to the
total output variance. In addition, the total effects are computed, which provide insightful
information on the degree of input parameters interactions [60]. A detailed description and
insights into the BACCO method can be found in [67–69].
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In their study, ref. [56] performed experiments with SA on SimSphere using a Gaussian
process emulator, examining 30 input parameters. The study used LP-tau sampling and
produced a design space of 400 simulations of the model. Emulator accuracy was evaluated
based on statistical measures and showed an excellent performance. The SA results showed
a high sensitivity for all model outputs to a limited number of model inputs, particularly
to slope, aspect, surface soil moisture (Mo), and Fr. Additional influential model inputs
included the vegetation height, surface roughness, and substrate climatological mean
temperature. Soil parameters were also identified as significant. Although the study
provided first insight into the model’s structure and a comprehensive sensitivity mapping of
key target variables to inputs, the study assumed normal probability distribution functions
(PDFs) for all inputs and outputs, which, as was also noted by the authors, may not always
be the case in nature. However, this study marked the first implementation of the BACCO
method to a complex simulation SVAT model, namely, SimSphere.

Along the same lines, ref. [57] used BACCO GEM to perform another SA on SimSphere,
evaluating the sensitivity of critical model outputs, assuming uniform PDFs for both
model’s inputs and outputs. Top of FormSubsequently, the GSA expanded the scope of SA
to evaluate new model output parameters that had not been explored in previous relevant
SA studies, including the daily average non-evaporative fraction (NEFdaily), daily average
radiometric temperature (Traddaily), and daily average evaporative fraction (EFdaily). The
use of uniform probability density functions revealed varying parameter sensitivities for
different model outputs, such as Rndaily, LEdaily, Hdaily, Tairdaily, and Modaily. Findings
revealed that aspect, slope, Fr, and Mo consistently influence these outputs, explaining
significant variances. Additionally, new model parameters (EFdaily, NEFdaily, and Traddaily)
maintain accurate emulator performance. The results indicated that a limited set of input
parameters significantly influenced the model’s outputs. Key input parameters which were
identified as most sensitive included the slope and aspect, which demonstrated the highest
impact on simulating nearly all examined model outputs. Fr and Mo were also found to be
sensitive for two out of five model outputs each (i.e., for LEdaily and Hdaily and for LEdaily
and Modaily, respectively) and surface roughness, vegetation height, and soil parameters to
a lesser extent. Another important finding of the authors’ study was that the choice of PDFs
for input parameters had a minimal effect on the sensitivity of model outputs, confirming
previous conclusions on the sensitivity of SimSphere.

In another study conducted by [58], the model’s sensitivity was tested using data
acquired from a diverse experimental site and climate regime, providing valuable insights
into the model’s coherence. Particularly, experiments in previous studies were limited to a
specific atmospheric sounding setting [56,57]. In this study, a different region’s atmospheric
sounding was used to perform SA. This allowed for the examination of the sensitivity of
key variables in response to variations in the atmospheric sounding profile, considering
different input/output PDFs and focusing on specific model outputs (Rndaily, LEdaily, Hdaily,
Tairdaily, Modaily, EFdaily, NEFdaily, and Traddaily). In addition, the authors examined the
effects of different PDFs for the inputs and outputs of the model, a facet not previously
exhaustively investigated. By extending the analysis to a different climate regime, the study
validated the global-scale coherence of the model. In accordance with previous studies,
this study found that model outputs are notably influenced by only a limited number
of inputs. Overall, aspect and slope were reported as the parameters with the greatest
influence on the simulation of the model outputs examined in this study. Several model
outputs examined were found to be sensitive to vegetation parameters (e.g., Fr, vegetation
height), surface roughness, and soil moisture. The study also concluded that employing
different PDFs for the model inputs and outputs did not significantly affect the mapping of
the most sensitive inputs and interactions. However, it did have an impact only in terms of
the absolute numbers used to assess the SA, as computed by the BACCO method.

Later, ref. [59] conducted a GSA on SimSphere, employing a meta-modeling approach
based on Bayesian theory by investigating the sensitivity of previously examined param-
eters [58] parameters with the addition of two parameters examined for the first time,
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namely, daily average longwave upwelling radiation (Lup) and daily average longwave
downwelling radiation (Ldown). The study initially focused on the effects of uniform PDFs
for the inputs of the model and the subsequent SA of key parameters simulated at different
output times. Similarly, to previous studies, topographic input parameters, vegetation-
related factors, and Mo significantly influenced simulated model outputs, even when the
model is executed at different times of the day. Particularly, slope and aspect emerge as
significant parameters given their influence on Rg, energy fluxes and near-surface hydro-
logical processes. Vegetative height, surface roughness, and Mo were found also to be
significant. Moreover, the analysis indicated that the influence of specific parameters on
outputs of the model can vary throughout the day. For instance, the importance of topo-
graphic parameters such as aspect and slope may change, and the influence of parameters
like Mo and vegetation height can be time dependent. This temporal variability highlighted
the need for the consideration of the time of model simulation in parameterisation and also
in setting initial conditions.

In the context of taking into account the temporal variability of key parameters, ref. [43]
employed the GEM-SA tool to evaluate the sensitivity of various model outputs to changes
in input parameters (Figure 3). In particular, authors focused on ambient [CO2], the rate
of CO2 uptake by the plant, the ambient [O3], the flux of O3 from the air to the plant/soil
boundary, and the flux of O3 taken up by the plant, considering (3) different time scenarios.
Both the cases of normal and of uniform PDFs for the inputs and the outputs of the model
have been investigated. Results indicated that only a small subset of model inputs showed
a significant influence on model outputs, mainly in vegetation-related factors, CO2, and
O3 fluxes. The external [CO2] and its influence on [O3] and leaves in the air were also
highlighted as significant input parameters. Other important factors were the influence of
[O3] and [Ca] in the atmosphere, particularly in relation to CO2 canopy output. Parameters
such as vegetation height, LAI, Fr, and cuticle resistance (CR) were identified as the most
sensitive inputs for most model outputs.

Later, ref. [60] used the BACCO method to assess the impact of various input pa-
rameters, particularly focusing on the sensitivity of daily average air temperature at 50 m
(Tairdaily at 50.). The study highlighted aspect, slope, and Fr followed by vegetation height
and Mo as the most significant input parameters. These results were in line with previous
studies that have also identified the same set of sensitive parameters related to Tair (aspects,
slope, Fr, vegetation height, Mo, and surface roughness) on Tair by assessing the relative
contributions of various model inputs. Tair was found to be sensitive to the parameters to
which incoming solar radiation is sensitive. In particular, the Fr cover is important because
it affects the LE and H fluxes, which in turn have an effect on the radiation dynamics and
the air temperature. Similarly, ref. [70] also examined the sensitivity of Tairdaily at 50 m
in the SimSphere SVAT model to various input parameters and identified slope, aspect,
and fractional vegetation cover as most significant factors affecting Tair daily (50 m). The
expected sensitivity of Tair to parameters like solar radiation and vegetation cover due to
their influence on heat fluxes was also confirmed.

In conclusion, concerning the SA studies implemented on SimSphere, it is evident that
a series of such studies have been recently implemented on it. The common characteristic
between all these SA studies was the implementation of a global sensitivity analysis (GSA)
using the BACCO method, a sophisticated SA approach in environmental modelling based
on the development of an emulator. All SA studies performed confirmed SimSphere
structure and architectural coherence, identifying a limited number of model inputs as
the most sensitive ones to the simulation of key parameters characterising LSIs by the
model. In particular, the most sensitive model inputs in most cases included the slope
and aspect along with parameters such as Fr and Mo, which notably are easily obtainable
parameters from EO datasets. The selection of PDFs for the input and output parameters
was found to not significantly change the overall SA results, even though it might have an
effect on the absolute sensitivity measures. In addition, temporal variability in parameter
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influences on model outputs was observed, highlighting the importance of considering the
time of simulation.
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Figure 3. Results of the BACCO GEM SA method are shown according to different model simulations.
The vertical axis shows the relative influence of each input parameter on the model output, while the
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variance decomposition of the main effects and total effects are presented (left), as well as SA results
for the CO2 flux model output (right) and the O3 Flux in the plant model output (adopted from [43]).

3.3. Studies Focusing on Integrating EO Datasets with SVAT Model

The SimSphere model has also been proposed to be used synergistically with remote
sensing datasets to provide spatiotemporal estimates of H/LE fluxes as well as Mo via
the so-called “triangle” method [71]. The primary motivation in incorporating EO data
is the inherent challenge of acquiring precise spatiotemporal variability information on
these parameters, particularly across large and heterogeneous areas. In this context, the
current section reviews the synergistic use of SimSphere with EO data, with a focus on the
“triangle” method.

This method is called the “triangle” method due to the triangular (or trapezoidal)
shape that emerges when a satellite-derived vegetation index (VI) is plotted against surface
temperature (Ts) over a rather heterogeneous area (Figure 4). This triangular feature
space is a result of the complex interplay between Ts and VI, with vegetation affecting
Ts differently in vegetated areas compared to bare soil regions. The terms “dry edge” or
“warm edge” within the “triangle” or “trapezoidal” scheme correspond to the highest
temperature points, which include different bare soil and vegetation fractions. Similarly,
the “wet edge” or “cold edge” depicts water availability relative to vegetation conditions.
The “cold edge” and “warm edge” are essentially the boundaries of the triangle which
indicate the physical constraints that control these processes. Pixels with the same VI
have the greatest evaporative cooling at the lowest Ts, while pixels with the highest Ts
have the opposite effect. A thorough conceptual explanation of the method’s foundation
can be found in [38,39,72]. The role of changing soil thermal inertia in influencing Ts is
highlighted by the trapezoidal shape that can appear in the scatterplot, rather than a perfect
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triangle. The factors that influence the formation of Ts/VI, such as soil evaporation, leaf
stomatal resistance, Fr, surface moisture status, local meteorology, and incoming radiation,
are critical for the reliable interpretation of EO data.
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Researchers have used the Ts/VI scatterplot to uncover biophysical properties such
as surface resistance to moisture fluxes, Mo, and LE/H fluxes. The potential to extend
these concepts to regional scales and operational use has been explored, emphasising the
scalability of the Ts/VI approach using remote sensing satellites [39,50,61,71,72].

For example, ref. [61] explored the integration of advanced along track scanning
radiometer (AATSR) and advanced spaceborne thermal emission and reflection radiometer
(ASTER) satellites with SimSphere using the “triangle” method to estimate SMC across
different ecosystems in Europe. In this study, the SimSphere model, coupled with the
triangle method, provided spatial estimates of SMC. Standard statistical metrics were used
to evaluate the accuracy against in situ measurements from the CarboEurope flux network
as a reference. It was found that AATSR data were more accurate than ASTER data. Even
so, the “triangle”-derived SMC using ASTER imagery exhibited an RMSD of 0.19 vol vol−1,
slightly exceeding the operational accuracy requirement of 0.10 vol vol−1. Conversely,
a significant improvement was observed when AATSR data were used, resulting in an
RMSD of 0.06 vol vol−1. Correlation coefficients showed a strong agreement between in
situ measurements and both schemes (ASTER R = 0.561, AATSR R = 0.844), with AATSR
performing better than ASTER.

Later, ref. [62] used the SimSphere model to simulate the complex interactions within
the land surface temperature/fractional vegetation coverage (LST/FVC) space. In their
study, a two-step trapezoid instead of a “triangle” method was proposed, where vegetated
surface temperature (Tv) varies after Ts due to the ability of vegetation to absorb deep soil
moisture to maintain transpiration. The ability of the two-stage trapezoid to match the
simulated LST/FVC space and estimate EF using the HiWATER dataset and MODIS prod-
ucts was compared to that of the traditional trapezoidal LST/FVC space. The SimSphere
model conducted simulations varying FVC, SSM availability, and root zone soil moisture
availability (RSM) from 0 to 1, aiming to compute the integrated LST of corn vegetation
and silty loam soil mixtures at a grid-cell scale and create a simulated LST/FVC space.
According to the results of this study, the two-stage trapezoid more closely corresponded
with the simulated LST/FVC space. Notably, this study leveraged the capabilities of the
SimSphere model to perform a comprehensive validation analysis.
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Recently, ref. [63] evaluated the triangle method using AATSR data at 1 km mesoscale
resolution in order to determine how atmospheric correction and heterogeneity on the land
surface affect the accuracy of the predictions. Particularly, the study explored the use of EO
AATSR data coupled with SimSphere within the “triangle” method to obtain H, LE, and
SMC and also the daytime average LE and H fluxes (as expressed from the ratios of LE/Rn
and H/Rn, respectively) in different ecosystems in Europe. The impact of atmospheric
correction on the input datasets was examined using both non-atmospheric (1P) and atmo-
spherically corrected (2P) AATSR data spanning from 2007 to 2011 (a total of 47 imageries)
across 12 CarboEurope monitoring network sites. For all simulated parameters, the results
showed that the prediction accuracy was significantly improved with data at level 2P. In
particular, higher prediction accuracy was obtained for LE (R = 0.72 versus R = 0.91), SMC
(R = 0.76 versus R = 0.84), and H (R = 0.30 versus R = 0.68) fluxes, followed by H/Rn
(R = 0.0.57 versus 0.63) and LE/Rn (R = 0.49 versus 0.63). The average improvement in
RMSD across these parameters for 2P- compared to 1P-level products was reported to be
~15 Wm−2. The results presented in this study indicated that there has been a notable
improvement in prediction accuracy with the 2P-level product. Still, the authors acknowl-
edged challenges in their study implementation, including geolocation errors and surface
heterogeneity, which may introduce potential sources of error. Overall, the importance of
atmospheric correction in improving the accuracy of predictions was highlighted.

More recently, ref. [64] used SimSphere to assess the impact of a recently proposed
Priestly–Taylor equation, namely Sun2021 compared to the previously suggested Sun2016
method, to determine the wet edge boundary of the LST/FVC space for the prediction
of soil moisture and air temperature. The study used SimSphere model-simulated data,
satellite data from MODIS, air temperature from NLDAS, and SM observations from aircraft
campaigns (SMAPVEX16-IA, SMAPVEX16-MB, and SMAPVEX12). Specifically, SimSphere
was used to simulate key parameters, allowing for a systematic comparison between the
proposed Sun2021 and the traditional Sun2016 approaches. The findings suggested that the
new PT equation outperformed the traditional one in defining LST/FVC space boundaries.
The results also demonstrated the ability of SimSphere to be used for intercomparison
between models.

All in all, from the above studies, it becomes evident that the SimSphere model has
also demonstrated its robustness so far and in its integration of EO data, in particular in
the context of the “triangle” method. The incorporation of satellite-based data enhances
the model’s capabilities, making it a valuable tool for understanding land–atmosphere
interactions and providing critical information for various environmental applications.
The model has proven to be effective in providing accurate spatiotemporal variability
information for SMC and energy fluxes and water cycle-related fluxes over diverse land-
scapes. The Ts/VI scatterplot’s triangular feature space offers knowledge on the intricate
relationships between surface temperature and vegetation. An important aspect of the
model is SimSphere’s adaptability, demonstrated by its ability to be applied on a variety of
spatial scales and to adapt to different ecosystems. Another important aspect is the model’s
contribution to model intercomparison efforts.

4. Recent Developments in SimSphere’s Modelling Architecture

Recent developments in the SimSphere SVAT model’s architectural component have
so far focused on developing the model based on service-oriented architecture (SOA)
principles in order to improve model’s usability and applicability [37]. The computational
logic layer contains an orchestrator that reads XML via a mega-function interface and
exports computation results to CSV for third-party applications (Figure 5). The architecture
supports two CSV endpoints: one for time-based simulations and another for scenario
exploration. The architecture is designed to be stateless, making it appropriate for high-
performance computing (HPC) environments and allowing for scalability via stateless
clusters. SimSphere–SOA also improves the ease of use of the SA tool, which helps
in understanding the model’s behaviour and identifying critical input parameters. In
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addition, SimSphere–SOA addresses challenges in the original toolkit, such as the lack of
model inversion data export, the complexity of manual configuration, and issues related to
third-party interfaces and high-performance computing. SimSphere–SOA is built on the
principles of SOA to enable adaptable simulations. The serialisation layer generated from
the 1.0 document facilitates the integration of XML data into appropriate classes. It is worth
noting that this approach is four times smaller in size than manually generated Java code
and does not require any prior knowledge of Java. These updates include the integration
of new functionalities, resulting in a significant enhancement of the model’s capabilities.
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These new functionalities enhance the model’s architectural component to accommo-
date heterogeneity within its simulations and incorporate additional physical processes,
such as run-off and percolation, using sophisticated EO satellite data and novel image
analysis methods.

5. Discussion

Concerning the key results of the present review, first and foremost, it is clear that a
significant number of studies have been performed using the model in the last 15 years
covering a wide range of application areas. In particular, the successful application of Sim-
Sphere to various types of ecosystems has, to some degree, confirmed its ability to respond
to the description of the complex physical processes of the natural environment, producing
results that are in alignment with other SVATs [42,64]. In addition, the extensive number of
SA studies implemented on SimSphere have clearly enhanced our understanding of the
model’s sensitive parameters and structural and architectural coherence. A very important
finding in that respect is the fact that most SA studies identified the influential model inputs
as the ones which are easily accessible through EO-based datasets or products. Furthermore,
SimSphere’s application with EO data, especially using the “triangle” approach, provides
valuable insights into the way SimSphre can be used towards deriving spatiotemporal
estimates of key parameters characterizing LSIs, namely SMC, LE, and H fluxes. Last, but
not least, the SimSphere model has undergone significant improvements in recent years,
broadening its functionality and applicability in both teaching and research.

The SimSphere SVAT model carries out all the advantages of SVAT models. As
such, it is able to comprehensively analyse a large array of parameters characterising
LSIs associated with the hydrological, radiative, and physical domains of the Earth’s
system dynamics. Furthermore, SimSphere represents an effective method for examining
interactions and physical processes and executes different scenarios when studying LSIs
at exceptional temporal resolution, which is consistent with atmospheric and dynamical
physical processes. In addition, a unique characteristic of SimSphere, to some extent, is the
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fact that it can also be integrated with RS data via the so-called “triangle” method and can
be executed in an HPC environment.

Yet, SimSphere is also characterised by some limitations, many of which are inherent
to almost all SVAT models. In particular, a certain limitation is associated with the large
amount of input parameters required in its parameterisation and the actual geographical
scale represented in the parameterisation, which may hinder the model’s implementation
under certain circumstances (e.g., highly fragmented ecosystems). Also, given the computa-
tional complexity to perform data processing operations and simulations, their application
would require some technical expertise by the user.

There is still potential for improvements in different aspects of the model; thus, future
research will focus towards this direction. More specifically, the further development of
SimSphere’s use in ecological settings with varying physical and climate characteristics
will provide a critical contribution towards advancing our understanding of land surface
interactions in different environments. The evaluation of the model’s performance in the
direction of conducting a detailed assessment of its ability to study LSIs over a variety
of vegetation types and environmental conditions using reference data that come from
ground observational networks (such as FLUXNET) will provide valuable insights about
the model’s coherence and architecture. On this basis, comparing the SimSphere outputs
with outputs from other land surface process models is a further priority research topic.
Another important aspect would be the expansion of the model’s functional platform by
including physical processes such as runoff and/or percolation. The automation of aspects
linked to the synergistic use of the SimSphere model with the EO datasets via the “triangle”
method can represent another important direction of future research linked to the model.
Last, but not least, the linkage of the model platform with open-source image processing
platforms would offer versatility in its application and compatibility with various EO
data methods.

6. Concluding Remarks

The aim of the present communication was two-fold: first, to provide a critical eval-
uation of the recent use of the SimSphere SVAT model within the scientific and wider
user community; second, to provide information on recent software developments imple-
mented to SimSphere. This study extends the literature review provided by [50] based on
SimSphere applications, where early applications of the SimSphere model since its initial
development were extensively covered. As such, the present review shifted the focus to
more recent studies over a 15 year period, providing insights into ongoing evaluations and
analyses exploring the evolving process of SimSphere.

All in all, the model’s multidisciplinary nature further underscores its adaptability
and promising potential as a toolkit either as a stand-alone tool or coupled with novel
EO-based datasets to study LSIs in a multi-faceted way. Yet, there are challenges that still
remain to be addressed concerning the future model use and its further dissemination, as
already noted. Future work within our group is directed towards some of those directions
and also aim to contribute towards extending the model’s use by the wider community.
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