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Abstract: Modern UAVs (unmanned aerial vehicles) equipped with video cameras can provide
large-scale high-resolution video data. This poses significant challenges for structure from motion
(SfM) and simultaneous localization and mapping (SLAM) algorithms, as most of them are developed
for relatively small-scale and low-resolution scenes. In this paper, we present a video-based SfM
method specifically designed for high-resolution large-size UAV videos. Despite the wide range of
applications for SfM, performing mainstream SfM methods on such videos poses challenges due
to their high computational cost. Our method consists of three main steps. Firstly, we employ a
visual SLAM (VSLAM) system to efficiently extract keyframes, keypoints, initial camera poses, and
sparse structures from downsampled videos. Next, we propose a novel two-step keypoint adjustment
method. Instead of matching new points in the original videos, our method effectively and efficiently
adjusts the existing keypoints at the original scale. Finally, we refine the poses and structures using a
rotation-averaging constrained global bundle adjustment (BA) technique, incorporating the adjusted
keypoints. To enrich the resources available for SLAM or SfM studies, we provide a large-size
(3840 × 2160) outdoor video dataset with millimeter-level-accuracy ground control points, which
supplements the current relatively low-resolution video datasets. Experiments demonstrate that,
compared with other SLAM or SfM methods, our method achieves an average efficiency improvement
of 100% on our collected dataset and 45% on the EuRoc dataset. Our method also demonstrates
superior localization accuracy when compared with state-of-the-art SLAM or SfM methods.

Keywords: structure from motion; SLAM; unmanned aerial vehicle; large-size videos; keypoint adjustment

1. Introduction

Modern unmanned aerial vehicles (UAVs) equipped with cameras have become crucial
in several fields, such as surveying and mapping, geographic information systems (GIS),
and digital city modeling. To achieve accurate localization and create 3D representations of
real-world scenes, techniques like image or video-based structure from motion (SfM) and
visual simultaneous localization and mapping (VSLAM) are utilized [1–10]. However, it is
important to note that there is a relatively limited amount of research on large-size video-
based SfM specifically designed for outdoor UAVs. On the one hand, a mainstream UAV
camera has already reached a resolution up to 20 megapixels, thus providing more detailed
information for all kinds of applications. However, the widely-used video datasets [11–15]
provide a resolution below 1 megapixel. On the other hand, there is limited research on
how to combine SfM and VSLAM for large-size video-based localization. For large-size
videos, current video-based SfM methods extract keyframes from videos usually based on
simple empirical rules, for example, Kurniawan et al. [16] performed SfM on the keyframes
extracted from videos simply according to the overlap rate of images, instead of a more
sophisticated VSLAM method, to achieve 3D terrain reconstruction. In fact, VSLAM
designed for continuous image processing inherently suits video data better. To process
large-size videos in real-time, SLAM systems estimate camera poses and build maps on
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downsampled images, which is more efficient but results in lower localization accuracy
than SfM methods. Some researchers [17,18] have attempted to utilize VSLAM to assist
the SfM method for reconstruction. However, these methods only utilize estimated camera
poses from a SLAM system. In fact, reusing feature extraction, matching, and keyframe
covisibility graph results from SLAM can significantly reduce the computational cost for
large-size video processing.

In this paper, we propose an efficient SfM pipeline designed to process high-resolution
aerial videos. Additionally, we introduce a new outdoor UAV video dataset comprising
images with a resolution of 3840 × 2160 pixels. Our approach maximizes the usefulness
of initial outcomes provided by a speedy VSLAM system and incorporates a constrained
bundle adjustment (BA) as a singular backend refinement step. The pipeline unfolds in
the following steps. Initially, we subject the downsampled video data to a VSLAM system,
which serves multiple purposes, including selecting keyframes and keypoints, as well
as establishing preliminary camera poses and 3D scene structures. Secondly, to optimize
the efficiency of the pipeline, we employ a coarse-to-fine two-step keypoint adjustment
(TS-KA) method with rotation invariants, which adjusts the positions of matched keypoints
projected onto the original high-resolution images instead of re-matching new feature
points. This adjustment process begins by roughly aligning keypoint positions using
normalized cross-correlation (NCC) [19]. Following the rough alignment, we apply direct
image alignment [20] within a learned dense feature space to further refine matched points
up to sub-pixel accuracy. Finally, the global bundle adjustment takes the initial camera
poses from the VSLAM system as inputs and integrates a rotation averaging strategy [21].
Optionally, ground control point (GCP) constraints can be included to retain high-accuracy
poses and 3D scene points at a centimeter-level precision.

The contributions of this paper are summarized as follows. (1) Efficient SfM pipeline.
We propose an efficient pipeline specifically designed to process large-size aerial videos.
By leveraging the strengths of a rapid VSLAM system and incorporating refined adjustment
steps, our pipeline achieves impressive accuracy and efficiency in pose localization of video
sequences. (2) Two-step keypoint adjustment (TS-KA) strategy. The novel strategy refines
the positions of keypoints matched in downsampled images up to sub-pixel accuracy on
the original high-resolution images. (3) High-resolution UAV video dataset. We provide a
high-resolution UAV video dataset and supply high-accuracy GCPs to facilitate evaluation.
This dataset fills a gap in the current availability of outdoor high-resolution video datasets
for SLAM or SfM research.

2. Related Work
2.1. Unstructured, Sparsely Sampled Collection

Early works laid the foundation for internet photo collections [22]. Inspired by these
works, reconstruction systems for increasingly high-resolution photo collections have been
developed [15,23]. These methods can be classified into incremental SfM, global SfM,
and hybrid SfM, based on the manner in which camera poses are estimated. Currently
available open-source incremental SfM algorithms, such as Bundler [1], VisualSfM [2],
and COLMAP [3,24,25], provide a solid foundation for SfM research. Mainstream global
SfM methods [4,5,26,27] estimate all camera poses and perform a global BA to refine
the camera poses and reconstruction scene, resulting in better scalability and efficiency.
Rotation averaging [28–31] estimates all camera rotations from pairwise relative rota-
tions, while translation averaging [32–34] calculates the translation of each camera pose.
However, the latter may fail to estimate correct camera centers when the camera moves
collinearly [4,5].

Indeed, these methods focusing on unordered, sparsely sampled images face chal-
lenges when dealing with coherent, densely sampled data. This difficulty arises from
frame-wise matching and triangulation with very short parallax, which can result in high
computation loads and unreliable geometric structures.
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2.2. Coherent, Densely Sampled Collection

This type of study addresses continuous feature tracking and mapping on coherent,
densely sampled image sequences. Specifically, VSLAM methods have been developed
to estimate camera trajectories and reconstruct scene structures from video streams in
real time [7–10,35]. However, these methods often prioritize speed and, as a result, face
limitations when processing large-size high-resolution images. This restriction hampers
their ability to produce fine-grained high-quality reconstructions.

Over the years, SfM methods have also been developed specifically for densely sam-
pled image sequences or videos. For example, Shum et al. [36] introduced the concept of
“virtual keyframes” in a hierarchical SfM approach to enhance efficiency. Resch et al. [37]
proposed multiple SfM techniques based on the KLT tracker and linear camera pose esti-
mation [38] for large-scale videos. Leotta et al. [39] accelerated feature tracking for aerial
videos by exploiting temporal continuity and planarity of the ground. More recently,
a deep learning-based approach [40] was proposed to select appropriate keyframes for
videos. To resolve ambiguity arising from repetitive structures, Wang et al. [41] proposed
a track-community structure to segment the scene. Gong et al. [42] proposed to disam-
biguate scenes in SfM by prioritizing pose consistency over feature consistency. However,
it should be noted that these methods may rely on fixed camera calibration and could
encounter significant drift issues in scenes without a loop. Different from these methods,
our work proposes a hybrid SfM solution that combines the advantages of global SfM and
feature-based VSLAM methods.

2.3. Keypoint Adjustment

Recently, there has been an increased focus on developing local search-based methods
to enhance the efficiency and accuracy of keypoint matching. These methods employ both
handcrafted [43,44] and learned features [45–47] to establish more accurate correspondences
between keypoints. For example, Taira et al. [48] presented a method that achieves dense
correspondence through a coarse-to-fine matching process using VGG-16 [49]. Li et al. [50]
employed a dual-resolution approach to achieve reliable and accurate correspondences.
Zhou et al. [51] proposed a detect-to-refine method, where initial matches are refined by
regressing pixel-level matches in local regions. However, it should be noted that these
methods [48,50,51] are primarily optimized for stereo pairs and may not be directly applied
for multiple views.

In order to enhance the quality of multi-view keypoints for downstream tasks like SfM,
Dusmanu et al. [52] incorporated a geometric cost with optical flow. However, this method
has limitations in terms of accuracy and scalability for large scenes. Lindenberger et al. [20]
addressed the alignment of keypoints by utilizing feature-metric representation to jointly
adjust feature matches across thousands of images. However, this method suffers from
a limited range of adjustment and may become less accurate when dealing with images
exhibiting significant viewpoint changes. To address these challenges, we introduce an
efficient two-step matching approach that takes into account errors in initial matching at a
lower resolution and effectively handles large viewpoint changes.

3. Proposed Method
3.1. System Overview

We introduce a novel SfM pipeline that efficiently selects appropriate keyframes and
calculates camera poses by utilizing rich information from high-resolution, high-frame-rate
videos. As depicted in Figure 1, our proposed pipeline comprises three main steps.

In the first step, we begin by downsampling the original high-resolution video to
improve efficiency. Then, we estimate the initial camera poses and select keyframes
using visual odometry on the downsampled video. The output of this step includes three
components: a set of N keyframes denoted as I = {I1, . . . , IN} along with their poses
TW

Ii
= {(RW

Ii
, tW

Ii
) ∈ SE(3)}, M sparse world points P = {PW

l ∈ R3} paired with their
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corresponding 2D keypoints {pu}, and a view graph (VG) G = {V, E} with absolute

rotation (RW
Ii

) as vertices and relative rotation (R
Ij
Ii

) as edges for image pairs (Ii, Ij).
In the second step of the pipeline, we upsample the keypoints obtained from visual

odometry to match the original resolution of the keyframes. To achieve sub-pixel accuracy,
we employ a two-step keypoint adjustment method called TS-KA. TS-KA refines the
position of the upsampled keypoints in a coarse-to-fine strategy. Initially, we utilize the
NCC algorithm [19] to roughly adjust the keypoint positions considering view angle
changes. Then, we introduce feature-metric optimization for further refinement.

Moving on to the third step, we perform rotation averaging on the VG obtained in
the first step. This helps us estimate the global rotation of all keyframes. The obtained
global rotation will be integrated into BA as a regularization measure, reducing cumulative
errors. Then, we refine the camera intrinsic parameters, keyframe poses, and sparse point
cloud coordinates through rotation-averaged BA. To handle outliers, we incorporate a
reprojection error threshold to filter them out. Additionally, we enhance trajectory accuracy
at the centimeter-level by including GCPs in the BA process.

(1) Visual Odometry

(2) Two-step Keypoint Adjustment on raw keyframes

coarse-to-fine

local
 keypoint adjustment

featuremetric 
keypoint adjustment

Result

initial

refinedsparse feature matches

4×
 down
sample

view graph

keyframes

video frames

keyframe poses and point cloud

Rotation Averaging
Rotaion Averaged

Bundle Adjustment

(3) Global Pose Refinement

ref ref
𝑅1

𝑅31

𝑅3

𝑅23

𝑅2
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𝑅
′
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𝑅
′
12

𝑅
′
31 𝑅

′
23

Figure 1. System overview. (1) The initial scene structure is obtained from 4× downsampled video
using visual odometry. (2) Keypoints are refined on full-resolution keyframes by a two-step keypoint
adjustment method. red: original matching points; green: matching points after coarse keypoint
adjustment; blue: matching points after sub-pixel refinement. (3) Global rotation is obtained by
rotation averaging, and scene structure is finally refined using rotation-averaged bundle adjustment.

3.2. Initial Pose Estimation

We utilize visual odometry for both keyframe selection and initial scene reconstruc-
tion. Given the high-resolution aerial video used in this study, we initially downsample
the raw video by a factor of 4. This downsampling step ensures real-time initial camera
trajectory estimation. Visual odometry involves the detection and tracking of distinctive
features in consecutive camera frames. By matching these features, it estimates the cam-
era’s relative motion and selects keyframes that represent significant viewpoints. In our
proposed pipeline, we leverage the widely used OpenVSLAM for the initial camera pose
estimation. OpenVSLAM includes three modules: tracking, local mapping and loop closing.
The tracking module is primarily responsible for estimating the camera’s pose in real time.
This module estimates the camera’s position and orientation by extracting and tracking
feature points from consecutive video frames. It also determines whether to incorporate
the current frame as a keyframe into the map based on specific rules. The local map-
ping module focuses on building and maintaining the map. It uses feature points from
keyframes, creates new map points via triangulation, and performs local optimization of
the map’s structure to enhance its accuracy. The loop closing module detects and handles
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loop closures. By recognizing revisited images and aligning them with previous map data,
the module corrects cumulative navigational errors. More details can be found in [8].

3.3. Two-Step Keypoint Adjustment

As the matched points in VSLAM are obtained from 4× downsampled images with
limited precision in point coordinates, it is necessary to adjust the keypoint coordinates
to sub-pixel accuracy on the original resolution. Inspired by the work of the keypoint
adjustment method in Pixel-SfM [20], we propose a simple yet powerful two-step keypoint
adjustment approach TS-KA.

3.3.1. Coarse Keypoint Adjustment

The coarse keypoint adjustment in Figure 2 aims to refine the keypoints within the
given search area by utilizing a rotation-invariant similarity measure. This adjustment
allows for accurate keypoint refinement over a large range. The first step involves de-
termining the reference keypoint, pr, within a track, {pi} (i = 1, . . . , N). A track refers
to a collection of N keypoints corresponding to the same 3D world point. We calculate
the accumulated matching scores for each keypoint in the track, and pr is selected as the
reference keypoint with the highest accumulated matching score. The remaining points in
the track are then adjusted and matched to pr. Second, we assign a consistent orientation
to each keypoint based on local image characteristics; the keypoint can be represented
relative to this orientation, thus ensuring invariance to image rotation. For a pixel, p,
within the search region of a keypoint, pi, we compute the gray centroid, pc, of its NCC
window. The NCC window is a circular window with a radius of 15 pixels here. To achieve
orientation invariance, we rotate the NCC window based on the angle between ppc and
prprc, where prc represents the gray centroid of pr. Finally, we obtain the best matching
points through NCC matching.

    (3) Coarse Adjustment    (2) Orientation Assignment

Reference keypoint

score = 12

score = 5

score = 7

(1) Reference Keypoint Selection

Figure 2. Coarse keypoint adjustment. (1) The reference keypoint is selected as the one having the
highest score. (2) Each keypoint is assigned with a consistent orientation. (3) Best matching points
(green ones) are obtained using NCC.

3.3.2. Sub-Pixel Refinement

The coarse keypoint adjustment primarily achieves feature matching accuracy at
the pixel level. To meet the accuracy requirements of various downstream tasks, it is
often necessary to refine keypoints to sub-pixel accuracy. For this purpose, we introduce
the feature keypoint adjustment (FKA) method [20]. We first extract a dense feature
map of 16 × 16 patches centered on the keypoints by S2DNet [53], and then we treat the
refinement of the keypoints, M(l), in a track belonging to the same landmark, l, as an
energy minimization problem, as follows:

EFKAl = ∑
(a,b)∈M(l)

ωab∥Fi(a)[pa]− Fj(b)[pb])∥γ (1)

where ωab represents the confidence between matched points pa and pb, according to the
similarity of the local features. F[.] represents the feature map.

It should be noted that the original FKA [20] lacks a coarse adjustment step, which can
result in numerous incorrect adjustments. To address this limitation, we have incorporated
a coarse adjustment step in our approach. We also add a constraint ∥pc f

best − pc
best∥ < K,



Sensors 2024, 24, 3039 6 of 14

where pc f
best denotes the position of the keypoint after fine adjustment, and K is set to be

lower than the radius, r.

3.4. Global Pose Refinement

The trajectory derived from visual odometry often suffers from the drift accumulation
problem, leading to significant deviations from the true trajectory. Inspired by [21], in order
to enhance the precision of camera pose estimation, we incorporate the global camera pose
obtained through rotation averaging as a regularizer into the BA process. Furthermore,
when available, we include the GCPs in the BA equations.

3.4.1. Rotation Averaging

Rotation averaging (RA) is a method utilized for estimating global camera poses by
simultaneously considering pairwise relative poses. The global rotation is computed by
minimizing the cost function:

min
RW

I1
,···,RW

IN

∑
(Ii ,Ij)∈E

d2
(

R
Ij
Ii

, RWT

Ij
RW

Ii

)
(2)

where d2 represents the Euclidean norm. However, RA [21] is sensitive to outliers, which
may result in inaccurate estimates.

Before performing RA, it is necessary to construct a view graph with edges being
pairs of matched images. To avoid starting image matching from scratch, we leverage the
co-visibility data derived from VO, as outlined in Section 3.2, transforming it into a view
graph with candidate edges. Then, we assign higher weight values to edges with more
visible points and a more uniform distribution of matches. Concurrently, we prune edges
within a view graph under the following conditions: (1) the number of matches falls short
of the predetermined threshold, Nm; and (2) the angular error for a given edge, denoted as

R
Ij
Ii

, is below a specified threshold, σ, as delineated by the following formula:

d2
(

RIi
Ij

R
Ij
Ik

RIk
Ii

, I3

)
≤ σ (3)

I3 represents the 3 × 3 identity matrix. σ is set as 0.01.

3.4.2. Rotation Averaged Bundle Adjustment

Rotation averaged BA is conducted to optimize camera poses, 3D points, and camera
intrinsics. Since the observations are independent, the trajectory estimated by RA does not
accumulate errors. Therefore, it can serve as a regularizer in BA to mitigate drift in the
initial trajectory. The objective function for this optimization is as follows:

∑
Ii∈I

∑
PW

l ∈P
ρ
(
∥ri,l∥2

)
+ ∑

(Ii ,Ij)∈E
ωi,j

(
∥r′ i,j∥

2
)

(4)

where ρ(·) is the loss function, and, in this paper, the huber loss function ρ(x) = x2

x2+δ2

is used. ωi,j represents the weight value for the known rotation term, r′ i,j. The objective
divides into two terms, explained as follows:

• Reprojection term: this term represents the reprojection error corresponding to all tie
points in bundle adjustment, as follows:

ri,l = π
(

RW
Ii

PW
l + tW

Ii
, C

)
− pi,l (5)

where C represents the intrinsic matrix, and PW
l is the 3D coordinate of a world point.

Additionally, GCPs can be included in the reprojection term, as follows:

PW
l = sW

G RW
G PG

l + tW
G (6)
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where PG
l denotes the position of GCP in the geodetic coordinate, and RW

G , tW
G , and

sW
G represent the rotation matrix, the translation, and the scale between the world

and geodetic coordinates. The centimeter-level accuracy trajectory can be obtained by
introducing the GCP term into BA.

• Known rotation term: this term is used as a regularizer to reduce the accumulated
error, which is given by:

r′i,j = log
(

R̂
Ij
Ii

RWT

Ii
RW

Ij

)
(7)

where log is logarithm mapping from the special orthogonal group SO(3) to Lie
algebra so(3). R̂ and R denote estimated and global rotation, respectively.

4. Experiment
4.1. Dataset and Metrics
4.1.1. Dataset

The dataset consists of two aerial video sequences captured using the DJI M300 RTK
drone with the DJI P1 camera, both manufactured by DJI in Shenzhen, China. Figure 3
illustrates the two sequences: one with a regular strip configuration and the other with
an irregular configuration. These videos were recorded at the Informatics Department of
Wuhan University at an altitude of 200 m. The recording frequency was set at 60 frames
per second (fps), with a resolution of 3840 × 2160 pixels. The average ground resolution
achieved was 0.03 m.

The regular sequence is a 1379-second video that contains evenly distributed air strips
across the area. The between-strip overlapping is set at a degree of 40%. The coverage
area of this sequence is 860 × 460 m2 and consists of buildings, trees, and playgrounds.
On the other hand, the irregular sequence is a 345-s video that follows a heart-shaped loop
trajectory. This sequence includes wooded areas, buildings, and a lake, with numerous
texture-repeated regions, making it more challenging compared with the regular sequence.

Additionally, we collected 16 GCPs that are evenly distributed throughout the dataset
area. Some of these GCPs were utilized to compute a high-accuracy trajectory, while the
remainder served as checkpoints to assess the accuracy of the trajectory. The GCPs were
measured using a high-accuracy GPS receiver and processed to achieve a localization
accuracy of 9.0 mm.

(a) (b)

Figure 3. The visualization of dataset. (a) Regular scene. (b) Irregular scene. Red lines represent the
trajectory of the drone.
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4.1.2. Metrics

We use check points error (CPE) and absolute trajectory error (ATE) for evaluation.

• Check points error: the accuracy of triangulation is evaluated by utilizing surveyed
points called check points (CPs) that were not used for georeferencing. Given a check
point with coordinate P̃l =

{
P̃l(x), P̃l(y), P̃l(z)

}
, the root mean square errors (RMSEs)

for plane (δxy), elevation (δz), and pixel (δp) in terms of m CPs are evaluated as follows:

σxy = 1
m ∑m

l

√(
P̃l(x)− Pl(x)

)2
+

(
P̃l(y)− Pl(y)

)2
,

σz =
1
m ∑m

l

√(
P̃l(z)− Pl(z)

)2
, σp = 1

mN ∑N
i ∑m

l ∥ri,l∥
(8)

• Absolute trajectory error: ATE is utilized to assess the drift in the position and rotation
of the estimated trajectory. The estimated trajectory has been aligned with the ground
truth trajectory using Umeyama’s method [54], resulting in aligned poses represented
as {TW

Ii
} = {(RW

Ii
, tW

Ii
)}. RMSEs for the position (δpos) and rotation (δrot) are evaluated

as follows:
σpos = 1

N

∥∥∥tW
Ii
− t̃W

Ii

∥∥∥, σrot = 1
N ∑Ii∈I d2

(
RW

Ii
, R̃W

Ii

)
(9)

4.2. Results

In our method, the video input is set to 6 fps, and a downsampling rate of 4× is applied.
The search radius for the two-step keypoint adjustment is set to 20 pixels. In contrast,
the other methods utilize the original-scale videos as input. However, for methods like
COLMAP and Theia that require temporally sampled keyframes, we employ two strategies.
One strategy involves sampling the video images every one second. The other strategy
involves using our method, as described in Section 3.2, which entails applying OpenVSLAM
on the 4× downsampled videos to obtain keyframes.

We evaluate our method against the incremental SfM methods, namely COLMAP [3]
and Theia [4], as well as the VSLAM method, OpenVSLAM [8], on the collected dataset,
considering scenarios both with and without GCPs.

Performance on our collected dataset: As shown in Table 1, our pipeline has demon-
strated significant improvements in accuracy when compared with COLMAP [3], Theia [4],
and OpenVSLAM [8]. Specifically, in the regular sequence, our method outperforms the
second-best method, OpenVSLAM, with improvements of 4.8 cm in δxy (a relative improve-
ment of 137%), 1.7 cm in δz (a relative improvement of 40%), 0.12 pixels in δp (a relative
improvement of 7%), as well as 0.7 m in δpos (a relative improvement of 175%), and 0.25° in
δrot (a relative improvement of 178%).

Our method also exhibits significant improvements over other methods in all metrics
for the irregular sequence. Compared with OpenVSLAM [8], the second-best performer, our
method achieves improvements of 0.7 cm in δxy (a relative improvement of 14%), 6.2 cm
in δz (a relative improvement of 293%), and 0.82 pixels in δp (a relative improvement of
103%). Additionally, our method demonstrates improvements of 0.24 m in δpos (a relative
improvement of 48%) and 0.26° in δrot (a relative improvement of 96%). These results indicate
that our pipeline effectively enhances reconstruction robustness and yields more accurate
scene structure.

It is worth noting that when COLMAP [3] and Theia [4] are initialized with our
selected keyframes, the accuracy improves across all metrics in both sequences against
using per second sampling. This suggests that SLAM-based methods can effectively
provide keyframes for subsequent SfM methods.

Table 1 presents a comparison of the efficiency of different methods. Our method
requires the least amount of time compared with other methods, yielding a remarkable
200% enhancement over COLMAP [3], a 100% to 200% enhancement over OpenVSLAM [8],
and a 50% to 100% improvement over Theia [4] for the regular sequence.
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Table 1. Trajectory error metrics and efficiency on our dataset. δxy (cm), δz (cm), δp (pixel): RMSE
error in (8). δpos (m), δrot (deg): RMSE error in (9). The 3840 × 2160 videos are 4× downsampled only
on our method. ‘*’ indicates models are initialized using per second sampling.

Method
w/ GCPs w/o GCPs

σxy σz σp σpos σrot Time (s)

(a) Regular sequence

COLMAP [3] 6.8 7.4 1.78 1.99 0.34 -
COLMAP * [3] 6.9 12 1.81 2.14 1.04 4650
Theia [4] 8.8 8.9 1.93 1.32 0.46 -
Theia * [4] 10 25 2.86 2.30 1.15 1413
OpenVSLAM [8] 8.3 6.3 1.67 1.10 0.39 1812
Ours 3.5 4.6 1.55 0.40 0.14 632

(b) Irregular sequence

COLMAP [3] 10 13 3.12 0.64 0.52 -
COLMAP * [3] 11 11 3.95 1.87 1.83 550
Theia [4] 6.6 6.2 1.97 1.33 1.08 -
Theia * [4] 10 9 3.55 1.56 1.47 648
OpenVSLAM [8] 5.8 8.3 2.59 0.74 0.53 430
Ours 5.1 2.1 1.77 0.50 0.27 316

Bold represents the optimal metrics.

Performance on the EuRoc MAV: We test our proposed method on the small-scale
and low-resolution EuRoC MAV Dataset [11], which consists of 11 sequences categorized
into easy, medium, and difficult classes based on illumination and camera motion. In our
method, we did not downsample the sequences from the EuRoC MAV Dataset since they
already have a resolution of only 752 × 480 pixels. Additionally, the search radius for the
two-step keypoint adjustment is set to 4 pixels.

In Table 2, we provide the σpos results. Given the small scale of the EuRoc sequences, our
method shows slight improvements compared with OpenVSLAM [8]. For most sequences, our
method delivers either better or comparable results to the state-of-the-art methods. Notably,
COLMAP [3] demonstrates competitive accuracy with our method, but our approach is
noticeably more efficient, as seen in Table 3. Our method also outperforms Theia [4] in terms
of efficiency, except for sequences V102, V103, and V203. However, it is worth noting that,
in sequences V103 and V203, Theia exhibits significantly lower accuracy compared with
our method.

Table 2. σpos on EuRoc MAV [11]. The 752 × 480 EuRoc sequences are not downsampled in our method.

Method M01 M02 M03 M04 M05 V101 V102 V103 V201 V202 V203 Mean

COLMAP [3] 0.037 0.033 0.052 0.073 0.053 0.089 0.063 0.088 0.064 0.056 0.058 0.061
Theia [4] 0.040 0.033 0.072 0.269 0.078 0.091 0.067 0.156 0.072 0.088 1.980 0.267
OpenVSLAM [8] 0.041 0.032 0.033 0.096 0.049 0.096 0.064 0.066 0.061 0.053 0.072 0.060
Ours 0.040 0.032 0.032 0.093 0.048 0.094 0.063 0.065 0.059 0.053 0.071 0.059

Bold represents the optimal metrics.

Table 3. A comparison of processing time (s) on EuRoc MAV [11]. ‘*’ indicates that in this scene Theia
produces a very rough trajectory.

Method M01 M02 M03 M04 M05 V101 V102 V103 V201 V202 V203

COLMAP [3] 534 463 279 187 226 371 63 254 202 144 564
Theia [4] 148 131 108 81 68 127 50 41 * 85 85 25 *
Ours 132 105 65 71 58 101 63 55 78 63 65

Bold represents the optimal metrics.

4.3. Ablation Experiment

We perform several ablation experiments on the collected dataset. Figure 4 illustrates
the results for all metrics under different settings.



Sensors 2024, 24, 3039 10 of 14

TS-KA: as shown in Figure 4, the incorporation of TS-KA enhances accuracy ranging
from 2 to 5 times for all metrics when keypoints are extracted from downsampled images.
Even when keypoints are obtained in the original scale, TS-KA still enhances matching
performance, particularly for σrot. This emphasizes the significance of adjusting keypoints
prior to global refinement.
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Figure 4. RMSE results. Baseline: bundle adjustment applied once at the original scale, and parameters
and keyframes are initialized with OpenVSLAM on 4× downsampled video. DS: downsample; RA: rota-
tion average; BA: global bundle adjustment; C: coarse keypoint adjustment; F: fine keypoint adjustment.

Rotation averaging: in the regular sequence, the introduction of global averaged
rotations into BA results in a slight improvement for all metrics. However, in the case of the
irregular sequence, there can be a slight decrease in accuracy for certain metrics like σpos
and σrot on the original scale. This can be attributed to the fact that the view graph of the
regular scene is denser, which necessitates the use of rotation averaging. Conversely, in the
irregular sequence, the scene may have a sparser view graph, making the global averaged
rotations less beneficial.

Accuracy vs precision: Figure 5 shows breakdown timings of each component to the
total reconstruction in the regular scene. We see the coarse adjustment takes equal time but
gain significantly more improvement in accuracy than fine keypoint adjustment, according
to Figure 4. Therefore, it is a good choice to remove the fine adjustment components [20]
instead of the coarse adjustment in an efficiency-first scenario.

VO C F RA
+BA

0% 20% 40% 60% 80% 100%

Figure 5. Breakdown timings of each component in regular sequence. RA: rotation averaging
regularizer; C: coarse keypoint adjustment; F: fine keypoint adjustment; BA: bundle adjustment.

TS-KA vs FKA [20]: we further compare our TS-KA with the featuremetric keypoint
adjustment (FKA) [20] for SfM tasks in six outdoor sequences from the ETH3D bench-
mark [15]. This benchmark provides ground-truth camera poses, intrinsic parameters,
and highly accurate dense point clouds. To evaluate the matching effect, we follow the pro-
tocol introduced in [52]. We reconstruct a 3D sparse model using COLMAP [3], with fixed
camera intrinsics and poses provided by the authors. We use four different features:
SIFT [43], learning-based SuperPoint [45], D2-Net [47], and R2D2 [46] for extracting feature
points in the original scale.

The results of applying two keypoint refinement methods on different feature points
are presented in Table 4. It can be observed that our method consistently achieves better
accuracy and completeness compared with [20] across all feature points in almost all
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scenes. This consistent improvement confirms that our TS-KA method offers superior
keypoint alignment.

Table 4. Results of 3D sparse reconstruction using our TS-KA or FKA [20] on different feature point
extractors. We use metrics “accuracy” and “completeness” for threshold 1 cm, 2 cm, and 5 cm, as
defined in [55].

Features
Refinement

ETH3D Outdoor

Accuracy (%) Completeness (%)

1 cm 2 cm 5 cm 1 cm 2 cm 5 cm

SIFT [43] 62.36 71.70 86.27 0.06 0.34 2.65
FKA [20] 65.63 76.25 91.19 0.07 0.40 2.86
Ours 66.48 78.75 92.12 0.07 0.40 2.90

SuperPoint [45] 49.19 64.34 82.74 0.09 0.49 3.46
FKA [20] 67.20 79.84 90.63 0.16 0.82 4.98
Ours 68.17 80.13 90.87 0.17 0.83 4.96

D2-Net [47] 34.66 51.38 72.12 0.02 0.13 1.77
FKA [20] 64.68 79.17 90.88 0.08 0.59 5.37
Ours 65.39 80.18 91.25 0.09 0.59 5.36

R2D2 [46] 42.71 59.81 80.71 0.05 0.36 3.02
FKA [20] 64.02 77.77 90.19 0.11 0.60 4.01
Ours 64.19 77.99 90.24 0.11 0.61 4.04

Bold represents the optimal metrics.

Figure 6 provides samples of feature point refinement, showcasing the ability of our
method to adjust feature points in multi-view images to their correct positions. In com-
parison, FKA [20] is capable of correctly adjusting points under small view angle changes,
as demonstrated in the first and second row. However, when faced with significant vari-
ations in view angles, as shown in the third row, FKA tends to produce a larger number
of incorrect keypoints. This discrepancy largely contributes to the comparatively poorer
performance of FKA, as evident in Table 4.

View1

View2

View3

Case1 Case2 Case3 Case4 Case5

: original matching points : results of TS-KA : results of FKA

Figure 6. The comparison of keypoint adjustment methods. For each keypoint, we select three
views. View 1 and View 2 have similar capture angles, whereas the viewing angle of View 3 varies
significantly from them. For each view, we demonstrate the matching positions using different
keypoint adjustment methods.

5. Conclusions

This paper introduces an efficient SfM pipeline for processing high-resolution, large-
size videos. The pipeline utilizes visual odometry to select keyframes and obtain initial
camera poses and reconstruction results efficiently by operating on downsampled video
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data. A two-step keypoint adjustment method, TS-KA, is proposed to efficiently reuse
and adjust the keypoints extracted during visual odometry, resulting in improved stability
for subsequent global bundle adjustment. Experimental results demonstrate the superior
performance and efficiency of our method compared with state-of-the-art SfM and VSLAM
methods. Additionally, we have curated and introduced an outdoor high-resolution, large-
size video dataset with high-accuracy GCPs, serving as a valuable supplement to existing
public video datasets and offering considerable benefits to SfM and VSLAM research.

In this article, we focus exclusively on video-based SfM. With the increasing availability
of onboard sensors, we plan to integrate our method with data from other sensors, such as
IMU and GNSS, to further enhance the accuracy and robustness of our algorithm.
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