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Abstract: We present the use of interconnected optical mesh networks for early earthquake detection
and localization, exploiting the existing terrestrial fiber infrastructure. Employing a waveplate model,
we integrate real ground displacement data from seven earthquakes with magnitudes ranging from
four to six to simulate the strains within fiber cables and collect a large set of light polarization
evolution data. These simulations help to enhance a machine learning model that is trained and
validated to detect primary wave arrivals that precede earthquakes’ destructive surface waves. The
validation results show that the model achieves over 95% accuracy. The machine learning model is
then tested against an M4.3 earthquake, exploiting three interconnected mesh networks as a smart
sensing grid. Each network is equipped with a sensing fiber placed to correspond with three distinct
seismic stations. The objective is to confirm earthquake detection across the interconnected networks,
localize the epicenter coordinates via a triangulation method and calculate the fiber-to-epicenter
distance. This setup allows early warning generation for municipalities close to the epicenter location,
progressing to those further away. The model testing shows a 98% accuracy in detecting primary
waves and a one second detection time, affording nearby areas 21 s to take countermeasures, which
extends to 57 s in more distant areas.

Keywords: earthquakes; polarization; machine learning; early warnings; optical networks; sensing;
waveplate model

1. Introduction

Earthquakes represent one of the greatest natural disaster risks facing humanity.
According to plate tectonics theory, the earth’s lithosphere is divided into plates by seismic
zones that move relative to each other. The majority of earthquakes occur along these
plates’ boundaries, with seismogenic faults being the geological origins of destructive
earthquakes [1]. However, predicting earthquakes is a common scientific challenge for
researchers globally. Much of this difficulty stems from the lack of reliable precursory
indicators that meet the sufficient and necessary conditions for their occurrence, which
is often considered the primary cause of failure in earthquake prediction efforts in earth
science research. Monitoring these seismic events is an essential part in trying to predict
them and employs a range of different methods. For instance, absolute measurements of
geostress are used to assess the stress characteristics of significant faults [2], as seen in the
San Andreas Fault Observatory at Depth (SAFOD) project [3]. Li Siguang, a pioneer of
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earthquake prediction in China, pointed out that an earthquake is a process of accumulation
of stress on seismogenic faults. Real-time monitoring of geostress using tools like stress
gauges can be leveraged to track changes in fault lines, providing insights into the release
of seismic energy [4]. Crustal strain monitoring through strain gauges and GPS technology
has been developed for seismic research and prediction as well [5,6]. Additionally, infrared
monitoring methods can be used, as the infra-sound signal in the far field is found to be
strong within two to eleven days before an earthquake with a magnitude of M7.0 or higher
and its spectral characteristics are apparently different from other natural events [7].

Unfortunately, in 1988, seismologists in United States deployed a dense network of
monitoring stations focused mainly on “surface strain monitoring”, in addition to tracking
geomagnetic, geoelectric, ground-water level, and hydro-chemistry data, to predict an M6
earthquake occurring in the Park field near the San Andreas fault. Yet, the anticipated
earthquake did not occur until 2004, 16 years later than expected, and the monitoring
equipment failed to pick up any anomalies or precursors [8]. Similarly, in 1995, an M7
earthquake struck in Hanshin, Japan, killing more than 6500 people, where the high-density
GPS network in place did not capture warning signals. Consequently, the scientific com-
munity has become increasingly sceptical about earthquake prediction. In March 1997,
Robert J. Geller published a paper titled “Earthquakes cannot be predicted” in Science
magazine, which reflected the prevailing opinion on earthquake prediction [9]. Therefore,
it is crucial to address this challenge differently by adopting novel methods for widely
distributed early detection systems capable of rapidly identifying an event to activate dif-
ferent mitigation strategies and minimize humanitarian and economic impacts. According
to the International Association of Seismology and Physics of the Earth’s Interior (IASPEI),
one of the main potential earthquake precursors is changes in strain rates, which are the
rates at which the Earth’s crust stretches or compresses [10]. This is because such changes
are indicative of stress accumulation in the Earth’s crust, potentially pointing towards an
upcoming seismic event. Consequently, as optical fiber cables are buried underground,
they too experience stretching or compression in response to the strain rate changes caused
by seismic waves. The mechanical and optical properties of an optical fiber, as well as
the physical properties of the light wave propagating inside it, change due to applied
mechanical stresses and external disturbances. This trend opens the possibility of using the
optical networks as a wide distributed network of sensors for environmental sensing, such
as for earthquake detection or anthropic activity monitoring [11,12]. Essentially, there are
two types of seismic waves: body waves (primary (P) waves and secondary (S) waves) that
propagate through the earth’s interior and surface waves that propagate along the earth’s
surface. Surface waves carry the greatest amount of energy and are usually the primary
cause of destruction [13]. Detecting P waves that precede earthquake’s destructive waves
allows for the swift initiation of emergency plans. Therefore, we have recently witnessed a
rise in distributed fiber optic sensors that offer the possibility of measuring a slow-varying
environmental variable at any location along the fiber length with a given sharp spatial
resolution. This approach has been developed in the last decade to monitor dynamic
strain variations induced by external perturbations using optical fibers. Distributed optical
fiber sensors utilize the natural scattering processes arising in optical fibers, including
Brillouin, Raman, and Rayleigh scattering. Rayleigh scattering combined with Optical
Time-Domain Reflectometry (OTDR) or Optical Frequency-Domain Reflectometry (OFDR)
has allowed the development of Distributed Acoustic Sensing (DAS) [14,15]. DAS employs
an optoelectronic interrogator, which sends short light pulses into the fiber cable and
then measures the optical perturbations in the light that scatters back, thereby deriving
strain-rate signals proportional to the amount of physical stress impacting the fiber. These
systems require dedicated “dark” fibers (i.e., optical fibers used solely for sensing without
any communication channels) to operate [16–18], thus limiting the overall data-carrying
capacity in the network. Moreover, these sensing techniques are incompatible with the
inline optical amplifiers that are commonly found along optical fibers’ paths, and this is
because the optical isolators inside the amplifiers block the backscattered DAS signals.
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Although these amplifications could be removed along dark fibers, which would lead to
rampant signal attenuation, it is worth mentioning as well that the usable range of this
technology is less than 100 km and requires powerful computational, storage, and process-
ing capabilities that are generally only available in high-cost systems [19,20]. Frequency
metrology interferometric techniques were introduced to overcome DAS’s usable range
limitations. These techniques can measure the femtosecond delays experienced by the light
from an ultrastable low-phase Fabry–Pérot laser traveling through a fiber at a micrometer
scale over several thousands of kilometers [21], but they are still interferometric techniques
considered to use dedicated and expensive hardware. In this manuscript, we present a
novel technique that employs light polarization sensing. Unlike DAS and interferometric
systems, state-of-polarization (SOP) sensing based on machine learning (ML) analyzes the
integrated polarization alterations in the modulated light traveling through traffic-carrying
optical fibers [22]. Our approach aims to leverage interconnected terrestrial optical mesh
networks as a whole smart sensing grid to produce early anomaly warnings by identifying
the arrival of earthquakes’ P waves without adding expensive equipment to the network,
ensuring long-range measurements and not requiring dedicated dark fibers, thanks to the
centralized design of our smart sensing grid optical network approach, which we detail in
this work.

Due to the applied mechanical stress, the local refractive index of the fiber core
changes, giving rise to birefringence. Birefringence leads to different propagation speeds
of the optical wave along the x and y axes of the fiber core [23], which results in light
polarization changes. Hence, SOP variations are dependent on disturbances applied to the
fiber and can advantageously be used for sensing purposes, particularly because optical
fiber communication networks have become pervasive and are widely deployed around
the globe. In this paper, we aim to exploit optical networks beyond their conventional
use, integrating real ground displacement data from seven earthquakes that occurred in
the Modena region in Italy with magnitude values ranging from four to six to train and
validate an ML model. The purpose is to then test the model against an earthquake within
the same range of magnitude, utilizing interconnected optical mesh networks in three
distinct municipalities that will confirm the arrival of the earthquake’s P wave, particularly
through three sensing optical fibers placed precisely where three seismic stations were
originally positioned for data collection in these distinct areas. In Section 2, we detail
the methodology behind SOP data collection leveraging a waveplate model. Section 3
introduces the ML model training and validation, followed by Section 4, which presents
the seismic network architecture and ML model testing results. Furthermore, we aim to
showcase in Section 5 the triangulation methodology employed by the network controller
overseeing all connected networks for accurate epicenter localization and fiber-to-epicenter
distance measurements. Section 6 concludes the study.

2. Waveplate Model

In an ideal optical fiber, which is typically circular in shape, the silica glass from
which it is made is isotropic. In the weakly guiding approximation, such an optical fiber
supports the propagation of two degenerate orthogonal polarization modes. In general,
the theoretical polarization characteristic of an optical pulse is represented by these two
distinct modes. However, in reality, optical fibers are often birefringent due to construction
imperfections that disrupt the fiber’s cylindrical symmetry, thus affecting the polarization.
This means that in a fiber section that is small enough, the perturbation or the internal
birefringence stemming from construction imperfections can be assumed to be spatially
uniform [24].

Seismic waves are another form of disturbances that cause external birefringence on
the fiber and can also affect the polarization. To isolate and study the external disturbances
on the light’s polarization within the fiber, it is crucial to understand the influence of inter-
nal birefringence. Here, adopting the waveplate model is essential to accurately define the
effect of internal behavior by dividing the fiber into numerous small segments, referred to
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as ‘plates’, to ensure a uniform internal perturbed medium across each section [25]. Hence,
the effect on light polarization is well defined and can be quantitatively described by 2π
divided by the polarization beat length LB, which is the amount of internal birefringence,
defined as the propagation length over which the optical path length of the two polarization
eigenmodes differs by exactly one wavelength, supplementary material of [24]. Conse-
quently, any deviations from this established internal behavior can be attributed to external
perturbations, as they would introduce unexpected changes in the state of polarization of
light. Without considering any external effect, when linearly polarized light is injected at
a 45-degree angle with respect to the linear polarization eigenmodes, the light acquires,
after one quarter of LB, a phase shift of π

2 , transforming the linear input polarization into a
circular one, and, after one half of LB, it acquires a phase shift of π, as depicted in Figure 1.
The waveplate model theory is described in Appendix A.

Figure 1. Schematic representation of fiber sections, each with uniform internal birefringence.

However, by nature, these plates have random orientations, which cannot be con-
trolled, adding complexity to the analysis of external effects. Basically, each plate is assigned
with two random angles: ellipse of polarization or the major axis angle, and the eccentricity
of the ellipse. For simplicity, in this paper, we only consider the major axis angle, which
we present in Appendix A. In [25], the author presented the complete theory. Despite the
random orientations of the plates causing varying polarization evolution, the data should
contain invariant information linked to a specific earthquake. To overcome this complexity,
a large evolution in polarization for a given seismic event is collected, where each SOP
evolution corresponds to a different set of random plate angles, as in Figure 2, and a Monte
Carlo simulation is carried out for these different random orientations. The goal of this is
to train an ML model that can leverage this dataset to identify and understand the patterns
in polarization changes that occur with the arrival of primary earthquake waves in order to
detect the arrival of surface waves early.

Figure 2. Four SOP evolutions for the same seismic event with different sets of plate angles.

This is where the ML model becomes valuable. Instead of analyzing the changes in the
three Stokes parameters presented for each SOP evolution (S1, S2, S3), and to reduce compu-
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tational time, we propose to calculate the state-of-polarization angular speed (SOPAS) [26]
for each SOP evolution from their Stokes representations, which we detail in Appendix B.
Thus, we analyze one variable instead of three. Moreover, one of the main functions of the
Python-based waveplate model we have developed is converting earthquake ground dis-
placement values into nanostrain values coupled to the fiber according to the conventional
iDAS conversion presented in [27], where each 116 nm of ground displacement corresponds
to a nanostrain fiber deformation of 11.6.

3. Machine Learning Model Training and Validation

Through the Italian National Institute of Geophysics and Volcanology (INGV) [28], we
extracted real ground displacement data from seven local earthquakes recorded in the Mod-
ena region. The magnitudes of the chosen earthquakes were M4, M4.3, M4.5, M4.7, M5.1,
M5.3 and M5.8. The objective is to integrate strain values caused by these displacements
into fiber cables, each of 10 km, simulated with the aforementioned waveplate model. Light
polarized at 45 degrees was injected into the model to conduct 50 simulations for each earth-
quake, where each simulation was assigned to random plate orientations. The evolution
of the SOP was captured for each setting and subsequently converted into SOPAS values,
resulting in a total of 350 simulation files used for training and validating the ML algorithm
across all earthquakes. A Temporal Fusion Attention Network (TFAN) based on a neural
network architecture was utilized for ML modeling, in which we combined a Temporal
Convolution Network (TCN) [29], Long Short-Term Memory (LSTM) [30], and an attention
mechanism. The term “temporal” in the model’s name indicates the focus on temporal
data, capturing patterns and dependencies over time. “Fusion” represents features from
both TCM and LSTM layers. As for “Attention”, it highlights the utilization of attention
mechanisms to dynamically weigh the importance of different steps.

As shown in Figure 3, the model architecture is structured to process time-series
data, followed by a TCN layer designed to capture temporal patterns. An LSTM layer
is incorporated for long-term dependencies, with an attention mechanism to focus on
significant time steps. The output layer facilitates multi-class classification with softmax
activation. ML model training involves categorical cross-entropy loss, Adam optimization,
and early stopping to mitigate over-fitting.

Figure 3. ML model architecture.

Almost 60% of the SOPAS data were used for training, 20% were used for validation
and 20% were used for testing. Figure 4 shows the model training and validation accuracy.
The graph displays the accuracy over a sequence of epochs. The blue line represents the
training accuracy, which increases rapidly, indicating effective initial training. Meanwhile,
the orange line signifies the validation accuracy, assessing the model’s performance on
new unseen data. The close alignment of these curves indicates that the model has been
well generalized with minimal risk of over-fitting. As epochs progress, both curves reach



Sensors 2024, 24, 3041 6 of 13

noticeable accuracy rates, implying that further training is unlikely to yield significant
improvements. The model shows a promising predictive precision, with the training and
validation accuracy exceeding 95%.

Figure 4. ML model training and validation accuracy.

4. Smart Sensing Grid Approach: Seismic Network Implementation

To manage the challenges of swiftly evolving traffic patterns, optical networks are
evolving towards dynamically reconfigurable, autonomous systems. These systems are
managed by a centralized Optical Network Controller (ONC), which interacts with Network
Elements (NEs) by means of Application Programming Interfaces (APIs). The ONC lever-
ages various metrics tracked by each NE, constituting the streaming telemetry paradigm
for network management purposes. This setup facilitates the provision of varied services
to the higher network layers. We propose to expand the streaming telemetry paradigm
to integrate early earthquake detection services into the existing network. The streaming
telemetry paradigm entails continuous data transmission from NEs to the ONC to assist
network management and control. Devices like reconfigurable add/drop multiplexers
(ROADMs) and amplifiers include crucial information like power levels and variations
in temperature, whereas devices like coherent transceivers (TRXs) capture alterations in
the phase and SOP of optical signals. External stress affects the phase and SOP of the
transmitted signal; therefore, SOP changes carry environmental data that can be lever-
aged for sensing applications [31,32]. Furthermore, a post-processing agent within the
NEs only filters the crucial information to the ONC and analyzes the data by leveraging
machine learning algorithms. Coherent transceivers are inaccessible due to vendor lock,
yet intensity-modulated direct-detected (IM-DD) TRXs are still popular in metro and access
segments with lower data rates or function as slower Optical Supervisory Channels (OSCs)
that terminate at every amplification site [33]. Thanks to the polarized nature of OSCs, the
identification of OSC SOP alterations induced by external stress is facilitated. This can
be achieved by extracting a minor portion of power to supply a polarimeter or a simple
polarization beam splitter (PBS).

4.1. Case Scenario

For testing the model, we used the M4.3 earthquake that occurred in the region of
Modena on 23 May 2012. The objective of this is to leverage three interconnected terrestrial
optical mesh networks in the region as a smart sensing grid driven by the aforementioned
trained ML model, where we extracted the real ground motion data recorded by three
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seismic stations (T0821 at 23.14 km from the epicenter, MNTV at 47.88 km from the epicenter
and MNTV at 61.45 km far from the epicenter), as shown in Figure 5.

Figure 5. M4.3 earthquake time: 23 May 2012 21:41:18 (UTC). Region: Modena and corresponding
interconnected sensing grid in the Modena region.

Displacement values were then converted into strain values coupled along three
sensing fibers positioned to correspond to the seismic stations’ geographical coordinates in
the three distinct areas, where each fiber was divided into 2500 waveplates with a 4 m spatial
resolution. NEs in each network will continuously send information to the ONC overseeing
all mesh networks. We aim to confirm the event from three sensing areas, localize the
epicenter and determine the epicenter to station/fiber substitute distance by applying a
triangulation method that we detail in next section to generate early warnings accordingly.
The ONC will confirm the event and issue early warnings after the third confirmation.

According to the Central Italian Apennines (CIA) velocity model [34], the time window
between the primary wave and the arrival of surface wave increases with the increase in the
distance from the epicenter, as does the primary wave arrival time. The earthquake struck
at 21:41:18 UTC, and the P wave arrived at T0821 after 24 s, MNTV after 28 s and ZCCA
after 30 s, as shown in Figure 6. Consequently, the P wave arrival time is 21:41:42 UTC at
T0821, 21:41:46 UTC at MNTV and 21:41:48 UTC at ZCCA. The time window between the
arrival of the P and surface waves at T0821 is 28 s (52 − 24), 38 s at MNTV (66 − 28) and
58 s at ZCCA (88 − 30). Thus, the arrival time of the surface wave is 21:42:10 UTC at T0821,
21:42:24 UTC at MNTV and 21:42:46 UTC at ZCCA.

Figure 6. Strain evolution over the T0821 fiber (left), MNTV fiber (middle), and ZCCA fiber (right).

We introduce detailed numbers to show that the time available for early warning in
each area is as follows:

(We denote the ML P-wave detection time as MLDT and the time difference as TD)
In the T0821 area (seconds):

Time (seconds) = 21 : 42 : 10 − (21 : 41 : 42 + T0821MLDT + (P-wave TD with ZCCA − T0821MLDT) + ZCCAMLDT) (1)

In the MNTV area (seconds):

Time (seconds) = 21 : 42 : 24 − (21 : 41 : 46 + MNTVMLDT + (P-wave TD with ZCCA − MNTVMLDT) + ZCCAMLDT) (2)
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In the ZCCA area (seconds):

Time (seconds) = 21 : 42 : 46 − (21 : 41 : 48 + ZCCAMLDT + Zero knowing that ZCCA is the reference station) (3)

It is good to note that the time difference of primary wave arrivals between T0821 and
ZCCA is 6 s (30 − 24), and 2 s (30 − 28) between MNTV and ZCCA.

4.2. ML Model Testing Results

An example of one simulation for each sensing fiber substituting each seismic station
is shown in Figure 7. SOPAS data on all fibers were utilized to test the trained ML model.

Figure 7. SOPAS evolution over the T0821 fiber (left), MNTV fiber (middle), and ZCCA fiber (right).

We detail in this section the ML findings. We present in Figure 8 the confusion
matrices for each fiber substitute, which show a table to visualize the performance of the
classification model or seismic event classification system.

Figure 8. Confusion matrices over the T0821 fiber (left), MNTV fiber (middle), and ZCCA
fiber (right).

Each matrix is a measure of accuracy for predicting four categories: No EQ (no
earthquake), P wave (primary wave), S wave (secondary wave) and surface wave. For the
T0821 fiber substitute, presented on the left of Figure 8, it is shown that the system accurately
detects ‘No EQ’ most of the time, with 1048 correct detections and 19 wrongly detected
as P waves, 0 as S waves and 4 as surface waves. For P waves, it correctly identified
538 instances, missing only one as ‘No EQ’ and one as an S wave. Using this analysis
with all matrices, there were 538 correct P wave detections out of 540 events for T0821
fiber substitute, 358 correct detections out of 360 for the MNTV fiber substitute (middle of
Figure 8) and 1758 correct detections out 1760 for the ZCCA fiber substitute (right Figure 8).
Consequently, the system modeling shows low false positive rates and a high level of
efficiency with a 98% accuracy rate in detecting P waves, an essential component in early
earthquake detection and seismic analysis.

As mentioned earlier, the ML model utilizes SOPAS data as metrics for detecting and
visualizing the presence of a seismic event. Employing one SOPAS example for the T0821
fiber substitute, two for MNTV and two for ZCCA, we show in Figure 9 the results of ML
fitting for SOPAS data that demonstrate one-second of ML detection time over all fibers
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upon direct P wave arrivals, which means that if the P wave starts at t = 0, the detection
will occur at t = 1. This implies that T0821MLDT = MNTVMLDT = ZCCAMLDT = 1. As a
result, Equations (1), (2) and (3) will become for T0821, MNTV, and ZCCA, respectively:

Time (seconds) = 21 : 42 : 10 − (21 : 41 : 42 + 7) (4)

Time (seconds) = 21 : 42 : 24 − (21 : 41 : 46 + 3) (5)

Time (seconds) = 21 : 42 : 46 − (21 : 41 : 48 + 1) (6)

Figure 9. ML detection time of P waves using SOPAS data across three seismic stations/sensing
fibers: T0821 (left), MNTV (middle) and ZCCA (right).

Consequently, the time available for the T0821 area to take countermeasures is 21 s,
and it is 35 s for the MNTV area and 57 s for the ZCCA area.

5. Triangulation Method for Localization Purposes

This method is employed by the ONC to pinpoint the earthquake’s epicenter and
determine the station/fiber distance from the epicenter to generate early warnings for
the nearest area to the epicenter and progress to those further away. The simulator uses
measurements of seismic wave arrival times at different stations and their geographical
coordinates to estimate the most probable epicenter location by minimizing the differences
between expected and observed arrival times. The simulator defines the speed at which
the seismic waves propagate through the Earth’s crust, and the coordinates and the exact
time at which the wave was detected at each station are specified. The simulator then
transforms the wave arrival at each station into seconds relative to the first recorded arrival,
and a residual function is employed after to calculate the discrepancies between measured
and theoretical expected arrival times. This is achieved by measuring the distance of each
station from a hypothetical epicenter, converting these distances to expected times based on
the seismic wave velocity, and then summing the squared differences to create an objective
function for optimization. The simulator assumes an initial epicenter positioned at the
centroid of the triangle formed by the three stations. A minimization function is then
utilized to minimize the calculated residual sum.

Table 1 presents a comparative analysis between the actual seismic data recorded by
INGV and theoretical detection from the triangulation simulator. The simulator shows
almost identical measurements for both the epicenter latitude and longitude. Furthermore,
the distances from seismic stations (T0821, MNTV and ZCCA) to the estimated epicenter
location exhibit small discrepancies, and this is due to the fact that minor errors are
picked up in the peaks from the graphs, and it could also be due to the displacement-
to-strain conversion that affects the arrival times of P waves at each station. However,
the triangulation method shows efficiency in its estimation. Consequently, the T0821 area
is the first to be notified by the ONC about the upcoming seismic event, with a 21 s time
lag for an emergency response before the surface wave strikes, followed by the MNTV area
with a 35 s time lag and then the ZCCA area with a 57 s time lag.
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Table 1. Comparison of epicenter locations and distances from seismic stations.

Epicenter Location Station to Epicenter Distance (km)

Longitude Latitude MNTV ZCCA T0821

INGV Recording 11.251 44.868 47.88 61.45 23.14
Triangulation Simulator 11.2846 44.8705 49.59 63.08 20.48

6. Conclusions

In conclusion, this study shows the efficiency of using interconnected fiber optic
mesh networks as a smart sensing and localization grid, leveraging machine learning
for early earthquake detection. Real displacement data from seven earthquake events of
varying magnitudes recorded by the INGV in the Modena region, Italy, were integrated
into the model. This research showcases how the existing terrestrial fiber infrastructure
can be utilized for accurate, real-time earthquake monitoring. The machine learning model
developed and validated through this study not only improves the accuracy of earthquake
detection and localization but also manages the distribution of early warnings. These
capabilities represent a significant advancement in the geosciences area and earthquake
response strategies, potentially reducing the impact on affected communities by providing
time for critical responses.
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SAFOD San Andreas Fault Observatory at Depth
GPS Global Positioning System
IASPEI International Association of Seismology and Physics of the Earth’s Interior
P waves Primary Waves
S waves Secondary Waves
ML Machine Learning
OTDR Optical Time-Domain Reflectometer
OFDR Optical Frequency-Domain Reflectometry
DAS Distributed Acoustic Sensing
SOP State of Polarization
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SOPAS State-of-Polarization Angular Speed
INGV National Institute of Geophysics and Volcanology
CIA Central Italian Apennines
ONC Optical Network Controller
API Application Programming Interface
NE Network Element
ROADM Reconfigurable Optical Add-Drop Multiplexer
TRX Transceiver
OSC Optical Supervisory Channel
IM-DD Intensity Modulated Direct Detected
PBS Polarization Beam Splitter
LSTM Long Short-Term Memory
UTC Coordinated Universal Time

Appendix A. Waveplate Model Theory

A long telecommunication fiber is a good approximation of a concatenation of polar-
ization waveplates with a random orientation and a random external birefringence. In a
frequency interval in which the first-order approximation for the state of polarization is
valid, any fiber section or waveplate is characterized by a Jones matrix.

M(ω) = ejβ(ω)U(ω) = ejβ(ω)

(
u1 u2
−u∗

2 u∗
1

)
= ejβ(ω)R−1

outMdRin (A1)

where β is a quantity not essential for the calculation of the SOPs.

Md = DIAG
(

ejω∆τ/2, e−jω∆τ/2
)

where ω represents the difference between the generic frequency of the optical signal and
the central frequency ω0, and ∆τ is the differential group delay (DGD) of the fiber and can
be described as:

∆τ =
2π

Lb

(
1 +

∆Li
dz

)
dz (A2)

where 2π
Lb

is the internal birefringence presented earlier and ∆Li is the external birefringence
corresponding to the nanostrain value induced by an earthquake.

Md represents a rotation around a fixed axis through an angle equal to ω∆τ. Rin and
Rout are matrices depending on the state of polarization and are described as:

Rin =

(
cos θ − sin θ
sin θ cos θ

)
(A3)

Rout =

(
cos θ − sin θ
sin θ cos θ

)
(A4)

The angle θ is the major axis angle that we consider in our model and the eccentricity
of the ellipse is neglected. In [25], the full matrix representation was mentioned.

The matrix U(ω) of the cascade of two waveplates, described by U1 and U2, is

U = (U2, U1) = (R−1
out2(Md2)(Rin2))(R−1

out1(Md1)(Rin1)). (A5)

The more the fiber is segmented into waveplates the better, as this ensures small
sections and a uniform internal birefringence in each section. Consequently, the polarization
at the output of the fiber is calculated as

Sout = U × Sin (A6)
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Appendix B. State-of-Polarization Angular Speed (SOPAS) Theorem

The state of polarization is the increase in the Stokes parameters samples taken at
discrete time instants, represented by the vector k with components (S1[k], S2[k], S3[k]). The
discrete state-of-polarization angular speed (SOPAS), denoted by ω[k], and the sampling
period Ts are given by the following relationship, where (Sk, Sk−1) is the dot product
between the Stokes vectors at time k and time k − 1. This computation is analogous to the
discrete-time derivative of an angle, and the SOPAS is denoted by ω[k], where ω[k] is:

ω[k] = arccos
(

(Sk · Sk−1)

∥Sk∥∥Sk−1∥

)
· 1

Ts
(A7)

References
1. He, M.; Ren, S.; Tao, Z. Cross-fault Newton force measurement for Earthquake prediction. Rock Mech. Bull. 2022, 1, 100006 .

[CrossRef]
2. Lin, W.; Conin, M.; Moore, J.; Chester, F.; Nakamura, Y.; Mori, J.; Anderson, L.; Brodsky, E. Stress State in the Largest Displacement

Area of the 2011 Tohoku-Oki Earthquake. Science 2013, 339, 687–690. [CrossRef]
3. Hickman, S.; Zoback, M. Stress orientations and Magnitudes in the SAFOD Pilot Hole. Adv. Earth Space Sci. 2004, 31, 1–4.

[CrossRef]
4. Ishii, H.; Asai, Y. Development of a Borehole Stress Meter for Studying Earthquake Predictions and Rock Mechanics, and Stress

Seismograms of the 2011 Tohoku Earthquake (M 9.0). Earth Planets Space 2015, 67, 26. [CrossRef]
5. Gladwin, M. High-Precision Multicomponent Borehole Deformation Monitoring. Am. Inst. Phys. 1984, 55, 2011–2016. [CrossRef]
6. Wu, M.; Zhang, C.; Fan, T. Stress State of the Baoxing Segment of the Southwestern Longmenshan Fault Zone before and after the

Ms 7.0 Lushan Earthquake. Asian Earth Sci. 2016, 121, 9–19. [CrossRef]
7. Xie, J.; Xie, Z. Infrasound waves caused by earthquake on 12 July 1993 in Japan. Acta Acust. 1996, 12, 55–61.
8. Allen, R.; Kanamori, H. The Potential for Earthquake Early Warning in Southern California. Science 2003, 300, 786–789. [CrossRef]

[PubMed]
9. Geller, R.; Jackson, D.; Kagan, Y.; Mulargia, F. Earthquakes Cannot Be Predicted. Science 1997, 275, 1616. [CrossRef]
10. Jordan, T.; Chen, Y.; Gasparini, P.; Madariaga, R.; Main, I.G.; Marzocchi, W.; Papadopoulos, G.A.; Sobolev, G.A.; Yamaoka, K.; Zschau, J.

Operational Earthquake Forecasting: State of Knowledge and Guidelines for Utilization. Ann. Geophys. 2011, 54, 316–391.
11. Mecozzi, A.; Antonelli, C.; Mazur, M.; Fontaine, N.; Chen, H.; Dallachiesa, L.; Ryf, R. Use of Optical Coherent Detection for

Environmental Sensing. J. Light. Technol. 2023, 41, 3350–3357. [CrossRef]
12. Mazur, M.; Parkin, N.; Ryf, R.; Iqbal, A.; Wright, P.; Farrow, K.; Fontaine, N.; Börjeson, E.; Kim, K.; Dallachiesa, L.; et al.

Continuous Fiber Sensing over Field-Deployed Metro Link using Real-Time Coherent Transceiver and DAS. In Proceedings of the
European Conference on Optical Communication (ECOC), Basel, Switzerland, 18 September 2022.

13. Kulhánek, O. Seismic Waves. In Anatomy of Seismograms, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1990; Volume 18,
pp. 13–45.

14. Fernández-Ruiz, M.; Soto, M.; Williams, E.; Martin-Lopez, S.; Zhan, Z.; Gonzalez-Herraez, M.; Martins, H. Distributed Acoustic
Sensing for Seismic Activity Monitoring. APL Photonics 2020, 5, 030901. [CrossRef]

15. Boffi, P. Sensing Applications in Deployed Telecommunication Fiber Infrastructures. In Proceedings of the European Conference
on Optical Communication (ECOC), Basel, Switzerland, 18 September 2022.

16. Eiselt, M.; Azendorf, F.; Sandmann, A. Optical Fiber for Remote Sensing with High Spatial Resolution. In Proceedings of the
EASS 2022, 11th GMM-Symposium, Erfurt, Germany, 5 July 2022.

17. Fichtner, A.; Bogris, A.; Nikas, T.; Bowden, D.; Lentas, K.; Melis, N.S.; Simos, C.; Simos, I.; Smolinski, K. Theory of Phase
Transmission Fibre-Optic Deformation Sensing. Geophys. J. Int. 2022, 231, 1031–1039. [CrossRef]

18. Guerrier, S. High Bandwidth Detection of Mechanical Stress in Optical Fibre Using Coherent Detection of Rayleigh Scattering.
Ph.D. Thesis, Institut Polytechnique de Paris, Paris, France, 3 February 2022.

19. Dong, B.; Popescu, A.; Tribaldos, V.; Byna, S.; Ajo-Franklin, J.; Wu, K. Real-Time and Post-Hoc Compression for Data from
Distributed Acoustic Sensing. Comput. Geosci. 2022, 166, 105181. [CrossRef]

20. Lellouch, A.; Yuan, S.; Ellsworth, W.; Biondi, B. Velocity-based Earthquake Detection using Downhole Distributed Acoustic
Sensing—Examples from the San Andreas Fault Observatory at Depthvelocity-based Earthquake Detection using Downhole
Distributed Acoustic Sensing. Bull. Seismol. Soc. Am. 2019, 109, 2491–2500. [CrossRef]

21. Marra, G.; Clivati, C.; Luckett, R.; Tampellini, A.; Kronjäger, J.; Wright, L.; Mura, A.; Levi, F.; Robinson, S.; Xuereb, A.; et al.
Ultrastable Laser Interferometry for Earthquake Detection with Terrestrial and Submarine Cables. Science 2018, 361, 486–490.
[CrossRef] [PubMed]

22. Cantono, M.; Castellanos, J.; Batthacharya, S.; Yin, S.; Zhan, Z.; Mecozzi, A.; Kamalov, V. Optical Network Sensing: Opportunities
and Challenges. In Proceedings of the Optical Fiber Communication Conference (OFC) 2022, San Diego, CA, USA, 6 March 2022.

23. Barcik, P.; Munster, P. Measurement of Slow and Fast Polarization Transients on a Fiber-Optic Testbed. Optica 2020, 10, 15250–15257.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.rockmb.2022.100006
http://dx.doi.org/10.1126/science.1229379
http://dx.doi.org/10.1029/2004GL020043
http://dx.doi.org/10.1186/s40623-015-0197-z
http://dx.doi.org/10.1063/1.1137704
http://dx.doi.org/10.1016/j.jseaes.2016.02.004
http://dx.doi.org/10.1126/science.1080912
http://www.ncbi.nlm.nih.gov/pubmed/12730599
http://dx.doi.org/10.1126/science.275.5306.1616
http://dx.doi.org/10.1109/JLT.2023.3252444
http://dx.doi.org/10.1063/1.5139602
http://dx.doi.org/10.1093/gji/ggac237
http://dx.doi.org/10.1016/j.cageo.2022.105181
http://dx.doi.org/10.1785/0120190176
http://dx.doi.org/10.1126/science.aat4458
http://www.ncbi.nlm.nih.gov/pubmed/29903881
http://dx.doi.org/10.1364/OE.390649
http://www.ncbi.nlm.nih.gov/pubmed/32403556


Sensors 2024, 24, 3041 13 of 13

24. Zhan, Z.; Cantono, M.; Kamalov, V.; Mecozzi, A.; Müller, R.; Yin, S.; Castellanos, J. Optical Polarization–Based Seismic and Water
Wave Sensing on Transoceanic Cables. Science 2021, 371, 931–936. [CrossRef] [PubMed]

25. Curti, F.; Daino, B.; De Marchis, G.; Matera, F. Statistical Treatment of the Evolution of the Principal States of Polarization in
Single-Mode Fibers. J. Light. Technol. 1990, 8, 1162–1166. [CrossRef]

26. Pellegrini, S.; Rizzelli, G.; Barla, M.; Gaudino, R. Algorithm Optimization for Rockfalls Alarm System Based on Fiber Polarization
Sensing. IEEE Photonics J. 2023, 15, 7100709. [CrossRef]

27. Feigl, K. Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography
by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology. In Proceedings of the 42nd Workshop on
Geothermal Reservoir Engineering 2017, Stanford, CA, USA, 13 February 2022.

28. Italian National Institute of Geophysics and Volcanology (INGV). Available online: http://ismd.mi.ingv.it/ismd.php?tipo=lista
(accessed on 20 April 2024).

29. Li, H.; Qiu, T. Continuous Manufacturing Process Sequential Prediction using Temporal Convolutional Network. Comput. Aided
Chem. Eng. 2022, 49, 1789–1794.

30. Hochreiter, S.; Schmidhuber, J. Seismic Waves. In Long Short-Term Memory; Neural Computation; MIT Press: Cambridge, MA,
USA, 1997; Volume 9, pp. 1735–1780.

31. Bratovich, R.; Martinez, F.; Straullu, S.; Virgillito, E.; Castoldi, A.; D’Amico, A.; Aquilino, F.; Pastorelli, R.; Curri, V. Surveillance of
Metropolitan Anthropic Activities by WDM 10G Optical Data Channels. In Proceedings of the European Conference on Optical
Communication (ECOC) 2022, Basel, Switzerland, 18 September 2022.

32. Virgillito, E.; Straullu, S.; Aquilino, F.; Bratovich, R.; Awad, H.; Proietti, R.; D’Amico, A.; Pastorelli, R.; Curri, V. Detection,
Localization and Emulation of Environmental Activities Using SOP Monitoring of IMDD Optical Data Channels. In Proceedings
of the 23rd International Conference on Transparent Optical Networks (ICTON) 2023, Bucharest, Romania, 2 July 2023.

33. Straullu, S.; Aquilino, F.; Bratovich, R.; Rodriguez, F.; D’Amico, A.; Virgillito, E.; Pastorelli, R.; Curri, V. Real-time Detection of
Anthropic Events by 10G Channels in Metro Network Segments. In Proceedings of the IEEE Photonics Conference (IPC) 2022,
Vancouver, BC, Canada, 13 November 2022.

34. Herrman, R.; Malagnini, L.; Munafò, I. Regional Moment Tensors of the 2009 L’Aquila Earthquake Sequence. Bull. Seismol. Soc.
Am. 2009, 101, 975–993. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1126/science.abe6648
http://www.ncbi.nlm.nih.gov/pubmed/33632843
http://dx.doi.org/10.1109/50.57836
http://dx.doi.org/10.1109/JPHOT.2023.3281670
http://ismd.mi.ingv.it/ismd.php?tipo=lista
http://dx.doi.org/10.1785/0120100184

	Introduction
	Waveplate Model
	Machine Learning Model Training and Validation
	Smart Sensing Grid Approach: Seismic Network Implementation
	Case Scenario
	ML Model Testing Results

	Triangulation Method for Localization Purposes
	Conclusions
	Waveplate Model Theory
	State-of-Polarization Angular Speed (SOPAS) Theorem
	References

