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Abstract: Sensors are a key component in industrial automation systems. A fault or malfunction
in sensors may degrade control system performance. An engineering system model is usually
disturbed by input uncertainties, which brings a challenge for monitoring, diagnosis, and control. In
this study, a novel estimation technique, called adaptive unknown-input observer, is proposed to
simultaneously reconstruct sensor faults as well as system states. Specifically, the unknown input
observer is used to decouple partial disturbances, the un-decoupled disturbances are attenuated by
the optimization using linear matrix inequalities, and the adaptive technique is explored to track
sensor faults. As a result, a robust reconstruction of the sensor fault as well as system states is then
achieved. Furthermore, the proposed robustly adaptive fault reconstruction technique is extended to
Lipschitz nonlinear systems subjected to sensor faults and unknown input uncertainties. Finally, the
effectiveness of the algorithms is demonstrated using an aircraft system model and robotic arm and
comparison studies.

Keywords: sensor fault; fault reconstruction; unknown input uncertainties; linear matrix inequality;
Lipschitz nonlinear system; aircraft systems; robotic arm

1. Introduction

Increased sophisticated industrial products put higher requirements on industrial
systems, making industrial systems more complex and expensive. The components, such as
sensors, are prone to faults. If the faults are not detected at an early stage and appropriate
measures are not taken in a timely manner, the system performance will be degraded, and
the cost of industrial production will be increased. Therefore, it is important to develop
an effective fault diagnosis approach to improve the reliability and safety of industrial
systems. Over the past few decades, various diagnostic technologies based on information
redundancy have been developed [1–5] and different applications such as in aerospace area
and energy systems [6–9] were reported.

The methods of fault diagnosis can be classified from different perspectives. Accord-
ing to a recent review [10], fault diagnosis technology can be divided into model-based
methods, signal-based approaches, knowledge-based techniques, and hybrid methods. If
the model is available, model-based fault diagnosis has proved to be a powerful diagnosis
technique. A fault detection filter is a well-known diagnosis approach that makes the
residual sensitive to faults but insensitive to unknown disturbances by using optimization
methods [11,12]. Decoupling technologies, such as the differential geometry method [13,14]
and the unknown input observer technique [15,16], are alternatives to remove the effect of
the unknown disturbances on residuals to improve the accuracy of fault diagnosis. For the
case when unknown input uncertainties cannot be decoupled completely, a fault diagnosis
approach was developed in [17] by synthesizing the advantages of optimization technology
and decoupling technology.
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Fault reconstruction, or fault estimation, is an excellent method for fault diagnosis,
which can not only detect and locate faults, but also identify the type, shape, and size
of faults, which also can provide useful information for active fault-tolerant control de-
sign. The typical fault estimation approaches include the descriptor system method [18],
sliding-mode approach [19,20] augmented system method [17,21], proportional-integral
approach [22–24], and adaptive observer method [25–28]. All the above approaches have
their own merits. It is noted that [17] considered partially decoupled unknown input
uncertainties, and proposed a robustly augmented fault estimation technique, which suited
more wide engineering scenarios. The augmented UIO observers are a powerful tool for
fault reconstruction, but they could have imperfect tracking performance when the fault
signal is high-frequent. This motivates us to develop a novel UIO fault estimation technique
for dynamic systems under partially decoupled input uncertainties. The innovations and
contributions of this study are listed below:

(i) A novel sensor fault estimation approach is proposed by integrating unknown input
observer and adaptive observer techniques, which is named as adaptive unknown
input observer (UIO) approach.

(ii) An unknown input observer is used to decouple partial input uncertainties, and
the linear matrix inequality approach is employed to attenuate un-decoupled un-
known input uncertainty and the differential of the sensor fault. As a result, a robust
reconstruction of the sensor fault is achieved.

(iii) Without the aid of the well-known augmented system technique, the proposed adap-
tive observer technique can achieve a direct reconstruction of the sensor fault, which
provides a novel way for sensor fault reconstruction.

(iv) The observer gains are solved by using strict linear matrix inequalities without equality
constraints, which are more convenient for calculation.

(v) The proposed sensor fault estimation approaches are developed for both linear sys-
tems and Lipschitz nonlinear systems, which have a wide applicability.

(vi) The effectiveness of the proposed sensor fault algorithms is validated by two engineering-
oriented examples, and comparison studies are carried out to demonstrate the tracing
performance of the proposed technique.

In this paper, the following notations are used:
∥•∥2 represents the 2-norm in Euclidean space; the super-script symbol T stands for

the transpose of matrices or vectors; Rn and Rn×m denote n-dimensional Euclidean space
and the set of n × m real matrices, respectively; 0 stands for scalar zero or a zero matrix
with appropriate zero entries; I is an identity matrix with appropriate dimensionality;

∥d∥T f = (
∫ T f

0 dT(t)d(t)dt)
1
2 and

[
S1 S2
∗ S3

]
=

[
S1 S2
ST

2 S3

]
.

2. Robustly Adaptive Sensor Fault Estimation for Linear System
2.1. System Description

Consider a linear system with sensor fault as follows:{ .
x(t) = Ax(t) + Bu(t) + Bdd(t)
y(t) = Cx(t) + D fs(t)

(1)

where x(t) ∈ Rn, y(t) ∈ Rm are the state vector and measurement output vector, re-
spectively. u(t) represents input vector, fs ∈ Rls is the time-varying sensor fault vector,
d(t) ∈ Rld is a bounded vector standing for unknown input uncertainty. A, B, C, D and
Bd are the known system matrices with appropriate dimensions. For the simplicity of the

formula, the symbol of t will be omitted in the rest of this paper.
In addition, the disturbance distribution matrix and disturbance are decomposed as

Bd = [Bd1, Bd2] and d =
[
dT

1 , dT
2
]T . It is assumed that d1 ∈ Rld1 is decoupled while d2 ∈ Rld2

cannot be decoupled.
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2.2. Adaptive UIO Design for Sensor Fault Reconstruction

It is noted that both sensor faults and input uncertainties exist in system (1). A novel
unknown input observer is proposed as below:

.
z = Nz + Ly + TBu − L1D f̂s
x̂ = z + My
ŷ = Cx̂ + D f̂s

(2)

where z ∈ Rn is the observer state vector, x̂ ∈ Rn and f̂s ∈ Rls , respectively, stand for the
estimations of system state x and sensor fault fs. N ∈ Rn×n, L = L1 + L2, L1 ∈ Rn×m,
L2 ∈ Rn×m, T ∈ Rn×n, M ∈ Rn×m represent the gains of the observer (2) to be designed.

The estimation errors of the states, sensor fault and output are defined as follows:

ex = x − x̂ (3)

es = fs − f̂s (4)

ey = y − ŷ = Cex + Des (5)

The following adaptive law is used to achieve sensor fault estimation:

.
f̂ s = ΓFey (6)

where Γ ∈ Rls×ls is a constant symmetric positive definite matrix, used as the learning rate,
and F ∈ Rls×m is the gain matrix to be designed.

By using (1)–(3), one has

ex = x − x̂
= x − z − MCx − MD fs
= (I − MC)x − z − MD fs

(7)

Taking the derivative of (7) and using (1) and (2), one can derive the state error dynamic
as follows:

.
ex = (I − MC)

.
x − .

z − MD
.
f s

= (I − MC)[Ax + Bu + Bdd]−
(

Nz + Ly + TBu − L1D f̂s

)
− MD

.
f s

= (I − MC)[Ax + Bu + Bdd]− Nz − L1Cx − L1D fs − L2y
−TBu + L1D f̂s − MD

.
f s

= [(I − MC)A − L1C]ex + [(I − MC)A − L1C − N]z
+{[(I − MC)A − L1C]M − L2}y + (I − MC)Bu − TBu
+(I − MC)Bd1d1 + (I − MC)Bd2d2 − MD

.
f s − L1Des

(8)

where Bd = [Bd1Bd2]
To simplify (8), one needs the following conditions:

T = (I − MC) (9)

N = (I − MC)A − L1C (10)

L2 = [(I − MC)A − L1C]M (11)

(I − MC)Bd1 = 0 (12)

To ensure the solvability of the conditions above, the following assumption is necessary.

Assumption 1 ([17,29]).

(a) rank(CBd1) = rank(Bd1)
(b) The pair (C, A) is detectable.
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(c) rank
[

A − sI 0
C D

]
= n + ls, for all s with Re(s) ≥ 0, but s ̸= 0.

Remark 1.

(i) (a) in Assumption 1 can ensure the disturbance d1 can be completely decoupled, and one can
calculate a special solution by M = Bd1

[
(CBd1)

T(CBd1)]
−1(CBd1)

T .
(ii) (b) and (c) in Assumption 1 can ensure one can find an observer gain to make the matrix N

stable.

From (9)–(12), the state estimation error dynamic (8) becomes:

.
ex = (I − MC)

.
x − .

z − MD
.
f s

= Nex − L1Des + TBd2d2 − MD
.
f s

(13)

Using (4)–(6), the following sensor fault error dynamic can be obtained

.
es =

.
f s − ΓFCex − ΓFDes (14)

For subsequent derivation, the following lemmas are useful and necessary.

Lemma 1 [30]. For any scalar ε > 0 and given matrices of H, J and a time-varying matric S(t)
with ∥s(t)∥ < 1, we have:

HS(t)J + JTS(t)HT ≤ ε−1H
T

H + εJT J

Lemma 2 [31]. For a symmetric matrix Q =

[
Q11 Q12
∗ Q22

]
, Q < 0 is equivalent Q22 < 0 and

Q11 − Q12Q−1
22 QT

12 < 0.

It is time to give our main result.

Theorem 1. The error dynamic Equations (13) and (14) are robustly stale and satisfy ∥e∥Tf
≤

r2
∥∥∥d f

∥∥∥
Tf

, if there exists a symmetric positive definite matrix P ∈ Rn×nand matrices L̂1 ∈ Rn×m ,

F ∈ Rls×m, and scalar r such that
PTA + ATTT P − L̂1C − CT L̂T

1 + I −L̂1D − (FC)T −PMD PTBd2

∗ −FD − (FD)T + I Γ−1 0
∗ ∗ −r2 I 0
∗ ∗ ∗ −r2 I

 < 0 (15)

where r is a performance index that represents the magnitude of error compared with disturbance

and e =
[
eT

x eT
s
]T , d f =

[
.
f

T
s dT

2

]T
.The gain can be calculated via L1 = P−1 L̂1.

Proof of Theorem 1. Choosing the following Lyapunov function candidate of the error
dynamic system (13) and (14):

V(ex, es) = eT
x Pex + eT

s Γ−1es (16)

Taking the derivative of (16) and using (13)–(14), it is derived that
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.
V(ex, es) =

.
eT

x Pex + eT
x P

.
ex + eT

s Γ−1 .
es +

.
eT

s Γ−1es

= eT
x
(

PN + NT P
)
ex − 2eT

x PL1Des + 2eT
x PTBd2d2 − 2eT

x PMD
.
f s + eT

s Γ−1 .
es +

.
eT

s Γ−1es

= eT
x (PN + NT P)ex − 2eT

x PL1Des + 2eT
x PTBd2d2 − 2eT

x PMD
.
f s + 2eT

s Γ−1
.
f s − 2eT

s FCex

+eT
s

[
−FD − (FD)T

]
es

= eT
x
(

PN + NT P
)
ex − 2eT

x
[
PL1D + (FC)T]es + eT

s

[
−FD − (FD)T

]
es + 2eT

x PTBd2d2

−2eT
x PMD

.
f s + 2eT

s (Γ−1)
.
f s

=
[

eT
x eT

s
]
∆
[

ex
es

]
+ 2eT

x PTBd2d2 − 2eT
x PMD

.
f s + 2eT

s Γ−1
.
f s

(17)

where

∆ =

[
PN + NT P − PL1D − (FC)T

∗ − FD − (FD)T

]
(18)

It is noted that L̂1 = PL1 and N = TA − L1C. Therefore, we have:

PTA + ATTT P − L̂1C − CT L̂T
1 + I = PN + NT P + I (19)

The first two-row and two-column matrix of (15) can be thus written as

Ω12 =

[
PN + NT P + I −PL1D − (FC)T

∗ −FD − (FD)T + I

]
(20)

From (15) one can know Ω12 < 0 in (20) indicating ∆ < 0 in (18). Therefore from (17),
one has

.
V((ex, es)) < 0 when d2 = 0 and

.
f s = 0. It implies the estimation error dynamics

(13) and (14) are asymptotically stable when d2 = 0 and
.
f s = 0.

Then, it is time to consider the scenario when d2 ̸= 0 and
.
f s ̸= 0.

Define

Υ =
∫ T f

0 (eT
x ex + eT

s es − r2dT
f d f )dt

=
∫ T f

0 (
.

V(ex, es) + eT
x ex + eT

s es − r2dT
f d f )dt −

∫ T f
0

.
V(ex, es)dt

(21)

Using (17) and (21), one has

Υ =
∫ T f

0

( .
V(ex, es) + eT

x ex + eT
s es − r2dT

f d f

)
dt −

∫ T f
0

.
V(ex, es)dt

=
∫ T f

0

{
eT

x (PN + NT P)ex − 2eT
x
[
(PL1D) + (FC)T]es + eT

x ex + 2eT
x PTBd2d2−2eT

x PMD
.
f s

+2eT
s Γ−1

.
f s + eT

s

[
−FD − (FD)T

]
es + eT

s es − r2
.
f

T
s

.
f s −r2dT

2 d2
}

dt −
∫ T f

0

.
V(ex, es)dt

=
∫ T f

0

[
eT

x eT
s

.
f

T
s dT

2

]
Ξ


ex
es.
f s
d2

dt −
∫ T f

0

.
V(ex, es)dt

(22)

where

Ξ =


PN + NT P + I −PL1D − (FC)T −PMD PTBd2

∗ −FD − (FD)T + I Γ−1 0
∗ ∗ −r2I 0
∗ ∗ ∗ −r2 I

 (23)

Noting L̂1 = PL1 and (19) holds. Therefore, it is clear that (23) is equivalent to the
left-hand side of (15), implying Ξ < 0. Since

∫ T f
0

.
V(ex, es)d(t) ≥ 0, therefore from (22), one

has Υ ≤ 0 which indicates ∥e∥T f ≤ γ2
∥∥∥d f

∥∥∥
Tf

. Therefore, Theorem 1 is proved. □
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3. Adaptive UIO for Sensor Fault Estimation in Lipschitz Nonlinear System

In this section, we will extend the approach of Section 2 to Lipschitz nonlinear systems.
The Lipschitz nonlinear system with unknown input uncertainties and sensor additive
fault is represented as follows:{ .

x(t) = Ax(t) + Bu(t) + Bdd(t) + ψ(t, x)
y(t) = Cx(t) + D fs(t)

(24)

where ψ(t, x) is a nonlinear vector function satisfying the following inequality relationship,
and the definitions of the other symbols are the same as defined in (1).

∥ψ(t, x)∥ ≤ θ∥x∥
∥ψ(t, x)− ψ(t, x̂)∥ ≤ θ∥x − x̂∥
∀(t, x) and ∀(t, x̂) ∈ R×Rn

(25)

Then, a nonlinear adaptive unknown input observer for (24) is given as follows:
.
z = Nz + Ly + TBu − L1D f̂s + Tψ̂
x̂ = z + My
ŷ = Cx̂ + D f̂s

(26)

in which ψ̂ = ψ(t, x̂).
In terms of (3), (4) and (22)–(24), one has:

.
ex = (I − MC)

.
x − .

z − MD
.
f s

= (I − MC)[Ax + Bu + Bdd + ψ]−
(

Nz + Ly + TBu − L1D f̂s + Tψ̂
)
− MD

.
f s

= [(I − MC)A − L1C]ex + [(I − MC)A − L1C − N]z
+{[(I − MC)A − L1C]M − L2}y + (I − MC)Bu − TBu + (I − MC)ψ − Tψ̂

+(I − MC)Bd1d1 + (I − MC)Bd2d2 − MD
.
f s − L1Des

(27)

Letting
∼
ψ = ψ − ψ̂ and substituting (9)–(12) into (27), one has

.
ex = Nex − L1Des + TBd2d2 + T

∼
ψ − MD

.
f s (28)

From (6), one has
.
es =

.
f s − ΓFCex − ΓFDes (29)

Theorem 2. A robust adaptive unknown input observer for Lipschitz nonlinear system (24) can
be established satisfying ∥e∥Tf

≤ r2
∥∥∥d f

∥∥∥
Tf

, if there exists a symmetric positive definite matrix

P ∈ Rn×n and matrices L̂1 ∈ Rn×m , F ∈ Rls×m and scalars r > 0 and ε > 0, such that
PTA + ATTT P − L̂1C − CT L̂T

1 +
(
εθ2 + 1

)
I −L̂1D − (FC)T −PMD PTBd2 PT

∗ −FD − (FD)T+I Γ−1 0 0
∗ ∗ −r2 I 0 0
∗ ∗ ∗ −r2 I 0
∗ ∗ ∗ ∗ −εI

 < 0 (30)

where r is a performance index and θ is Lipschitz constant. The gain can be calculated via L1 = P−1 L̂1.
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Proof of Theorem 2. Choosing the same Lyapunov function candidate defined in (16) and
using (28) and (29), one has

.
V(ex, es) = eT

x
(

PN + NT P
)
ex − 2eT

x PL1Des + 2eT
x PTBd2d2 − 2eT

x PMD
.
f s

+2eT
x PT

∼
ψ +

.
eT

s Γ−1es + eT
s Γ−1 .

es

= eT
x (PN + NT P)ex − 2eT

x
[
PL1D + (FC)T]es + 2eT

x PTBd2d2 − 2eT
x PMD

.
f s

+2eT
s Γ−1

.
f s + eT

s

[
−FD − (FD)T

]
es + 2eT

x PT
∼
ψ

(31)

By applying Lemma 1 to the last term in (31), and using (25), one has

.
V(ex, es) ≤ eT

x (PN + NT P)ex − 2eT
x
[
PL1D + (FC)T]es + 2eT

x PTBd2d2 − 2eT
x PMD

.
f s

+2eT
s Γ−1

.
f s + eT

s

[
−FD − (FD)T

]
es + ε−1eT

x PT(PT)Tex + εθ2eT
x ex

=
[

eT
x eT

s
]
Π
[

ex
es

]
− 2eT

x PMD
.
f s + 2eT

x PTBd2d2 + 2eT
s Γ−1

.
f s

(32)

in which

Π =

[
PN + NT P + εθ2 I + ε−1PT(PT)T −PL1D − (FC)T

∗ −FD − (FD)T

]
(33)

Noting that L̂1 = PL1, and from (19) and (30), one can clearly see Π < 0 in (33). As a
result, the estimation error dynamics (28) and (29) are asymptotically stable when d2 = 0
and

.
f s = 0.
Let

Υ2 =
∫ T f

0
(

.
V(ex, es) + eT

x ex + eT
s es − r2dT

f d f )dt −
∫ T f

0

.
V(ex, es)dt (34)

Using (32), one has

Υ2 =
∫ T f

0

{
eT

x
(

PN + NT P + ε−1PT(PT)T + εθ2 I + I
)
ex − 2eT

x
[
PL1D + (FC)T]es

+2eT
x PTBd2d2 − 2eT

x PMD
.
f s + 2eT

s Γ−1
.
f s + eT

s

[
−FD − (FD)T + I

]
es − r2

.
f

T
s

.
f s −r2dT

2 d2
}

dt

−
∫ T f

0

.
V(ex, es)dt

=
∫ T f

0

[
eT

x eT
s

.
f T
s dT

2

]
Ψ


ex
es.
f s
d2

dt −
∫ T f

0

.
V(ex, es)dt

(35)

where

Ψ =


PN + NT P +

(
εθ2 + 1

)
I + ε−1PT(PT)T −PL1D − (FC)T −PMD PTBd2

∗ −FD − (FD)T + I Γ−1 0
∗ ∗ −r2 I 0
∗ ∗ ∗ −r2 I

 (36)

Based on (19) and the Schur complement theory in Lemma 2, one can conclude (30) is
equivalent to Ψ < 0 in (36). It is also noted that

∫ T f
0

.
V
(

ex, e f

)
d(t) ≥ 0, therefore from (35),

one has Υ2 ≤ 0 which indicates ∥e∥T f ≤ r2
∥∥∥d f

∥∥∥
Tf

. We can conclude the estimator error

dynamics (28) and (29) are robustly stable. Therefore, Theorem 2 is proved. □

4. Design Procedures for Sensor Fault Estimation

The design procedures of the proposed adaptive sensor fault estimators in Sections 2
and 3 can be summarized as follows:



Sensors 2024, 24, 3224 8 of 18

4.1. Procedure 1. Sensor Fault Estimation for Linear Dynamic Systems

a. Select a matrix M as follows:

M = Bd1

[
(CBd1)

T(CBd1)]
−1(CBd1)

T

b. Select the adaptive learning rate Γ, which is a positive definite matrix.
c. Solve the LMI (15) in Theorem 1 to obtain appropriate matrices P, and L̂1, F, and

calculate the estimator gain by L1 = P−1 L̂1.
d. Calculate the other estimator gain matrices:

T = I − MC

N = (I − MC)A − L1C

L2 = [(I − MC)A − L1C]M

e. Implement the robust adaptive estimator in the form of (2) and (6), and the real-time
estimate of state x̂ and sensor fault f̂s can be obtained.

4.2. Procedure 2. Sensor Fault Estimation for Lipschitz Nonlinear Dynamic Systems

a. Select a matrix M as follows:

M = Bd1

[
(CBd1)

T(CBd1)]
−1(CBd1)

T

b. Select the adaptive learning rate Γ, which is a positive definite matrix.
c. Solve the LMI (30) in Theorem 2 to obtain appropriate matrices P, and L̂1, F, and

calculate the estimator gain by L1 = P−1 L̂1.
d. Calculate the other estimator gain matrices:

T = I − MC

N = (I − MC)A − L1C

L2 = [(I − MC)A − L1C]M

e. Implement the nonlinear adaptive estimator in the form of (6) and (26), and the
real-time estimate of state x̂ and sensor fault f̂s can be obtained.

All the design procedures above are off-line design, but real-time implementation. The
real-time input and output data are used when the observers are implemented.

5. Simulation Studies
5.1. Civil Aircraft

In this section, a civil aircraft model [32] is used to demonstrate the proposed adaptive
UIO technique. Considering sensor fault and partially decoupled input disturbance, the
aircraft model is described as follows:{ .

x(t) = Ax(t) + Bu(t) + Bdd(t)
y(t) = Cx(t) + D fs(t)

(37)



Sensors 2024, 24, 3224 9 of 18

where the input vector u = [u1 u2]
T is composed of the elevator deflection angle θe and

thrust T, and the state vector x = [qVtasα θ]T includes the pitch rate, true air speed, angle
of attack and pitch angle. The matrices of system (37) are as follows:

A =


0.6803 0.0002 −1.0490 0
−0.1463 −0.0062 −4.6726 −9.7942
1.0050 −0.0006 −0.5717 0
1.0000 0 0 0

,B =


−1.5539 0.0154

0 1.3287
−0.0398 −0.0007

0 0

,

Bd =
[
Bd1 Bd2

]
=


1 0.4
−1 0.6
1 0
1 − 0.4

, C =

 1 0 0 0
0 1 0 0
0 0 0 1

, D =

0
0
1

.

(38)

The unknown input disturbances are d1 = sin(10t), d2 = sin(20t). The input signals
are u1 = 2 sin(πt) and u2 = 2 and the initial state vector is x(0) = [0.1 − 5 − 0.1 0.1]T . The
sensor fault is assumed to be:

fs =


0 t < 5

0.2(t − 5) 5 ≤ t < 10
sin(2t) t ≥ 10

(39)

Selecting r = 0.12 and Γ = 10, using procedure 1, we can obtain the following
estimator parameters:

M =


0.3333 −0.3333 0.3333
−0.3333 0.3333 −0.3333
0.3333 −0.3333 0.3333
0.3333 −0.3333 0.3333

,

T =


0.6667 0.3333 0 −0.3333
0.3333 0.6667 0 0.3333
−0.3333 0.3333 1 −0.3333
−0.3333 0.3333 0 0.6667

,

L1 =


3.6706 −0.1416 −0.7720
−0.1834 2.9668 0.0010
2.2772 −1.2722 −0.4654
0.8820 −2.4025 −0.1584

× 103,

L2 =


−1.0154 1.0154 −1.0154
1.0463 −1.0463 1.0463
−1.0293 1.0293 −1.0293
−1.0431 1.0431 −1.0431

× 103,

L = L1 + L2 =


2.6552 0.8738 −1.7874
0.8629 1.9205 1.0473
1.2479 −0.2429 −1.4947
−0.1611 −1.3594 −1.2016

× 103,

N =


−3.6714 0.1416 −0.0023 0.7687
0.1834 −2.9668 −0.0035 −0.0075
−2.2764 1.2722 −0.0018 0.4621
−0.8812 2.4025 −0.0012 0.1552

× 103,

F = [−0.6781 2.5525 2.5825]× 105

By using the observer gains above and implement the robust adaptive UIO in the form
of (2) and (6). Figures 1–4 show the trajectories of four states and their estimates, which
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demonstrate the estimated curves can track the real states successfully. Figure 5 depicts
the sensor fault fs(t) and its estimate. One can see the estimated signal can well track the
sensor fault signal.
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5.2. Single-Link Flexible Joint Robot

A flexible joint robot linkage manipulator driven by DC motor can be built as a
Lipschitz nonlinear system model described as follows [33]:

.
θm = wm

wm = k
Jm
(θl − θm)− G

Jm
wm + kτ

Jm
u

.
θl = wl
.

wl =
k
Jl
(θl − θm)− mgh

Jl
sin(θl)

(40)

where θm and θl are the angular rotations of the motor and link, and wm and wl are the
angular velocities of the motor and link, respectively. Jm and Jl are the motor inertia and
connecting rod inertia, respectively. k and kτ are the torsional spring constant and amplifier
gain, and G, m and h are the viscous friction coefficient, pointer mass, and link length,
respectively. Let x =

[
θm, wm, θl , 0.1wl ]

T . (40) can be written in the form of (24), whose
system matrices are given as follows:

A =


0 1 0 0
−48.6 −1.25 48.6 0
0 0 0 10
1.95 0 −1.95 0

, B =


0
21.6
0
0

, C =

1 0 0 0
0 1 0 0
0 0 1 0

. (41)



Sensors 2024, 24, 3224 12 of 18

The distribution matrices of the disturbance and sensor fault are assumed to be

Bd =
[
Bd1 Bd2

]
=


0.5 0.2
1 0.3
0.5 0
1 −0.2

, D =

1
0
0

. (42)

The control input signal is given as follows:

u = −Kyy + 0.5 (43)

where
Ky = [0.05 0.02 0]. (44)

The unknown input disturbances are d1 = sin(4πt) and d2 = 0.5sin(πt) and the initial
state vector is given as x(0) = [2 40 10 − 0.5 ]T . The nonlinear term is:

ψ(t, x) =


0
0
0

−0.333sin(x3)

, (45)

We consider different sensor faults under various intervals shown in Table 1, which can
cover most of the existing faults in industrial practices including biased fault, incipient slope
fault, measurement effectiveness loss, low-frequency sinusoidal fault, and high-frequency
sinusoidal signal fault, and square wave signal fault.

Table 1. Sensor fault under various intervals.

(1) Biased fault : fs = 1, 0 ≤ t < 5.

(2) Incipient fault : fs = 0.1(t − 5) + 1, 5 ≤ t < 10.

(3) Measurement effectiveness loss : fs = −0.2y(t), 10 ≤ t < 20.

(4) Low − frequency sin usoidal signal fault : fs = sin (0.5t), 20 ≤ t < 25.

(5) High − frequency sin usoidal signal fault : fs = sin (12t), 35 ≤ t < 40.

(6) Intermittent fault : fs = square wave signal, t ≥ 40.

(i) The proposed adaptive UIO estimation technique

Choosing r = 0.48, ε = 40 and Γ = 10 and using design procedure 2, one can obtain
the following gains for the robotic manipulator:

M =


0.1667 0.3333 0.1667
0.3333 0.6667 0.3333
0.1667 0.3333 0.1667
0.3333 0.6667 0.3333

,

T =


0.8333 −0.3333 −0.1667 0
−0.3333 0.3333 −0.3333 0
−0.1667 −0.3333 0.8333 0
−0.3333 −0.6667 −0.3333 1

,
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L1 =


136.1849 −122.3783 184.5829
−18.7326 82.5755 24.8910
22.2723 −8.1410 97.7857
9.2067 −8.4649 214.8044

,

L2 =


−12.8223 −25.6004 −12.8223
−29.9099 −59.8278 −29.9099
−14.4396 −28.8655 −14.4396
−35.4655 −70.9080 −35.4655

,

L = L1 + L2 =


2.1864 −0.8810 2.0071
−0.3438 9.2785 0.4179
0.9955 0.4180 5.8298
−0.2849 −1.8655 3.8907

× 103,

N =


−119.9865 123.6282 −200.7812 −1.6670

2.5343 −83.3254 −8.6926 −3.3330
−6.0739 8.3909 −113.9841 8.3330
25.1449 8.9650 −249.1560 −3.3330

,

F = [2.6384 0.5372 − 1.0113]× 103.

(ii) The augmented UIO estimation technique [17]

For comparison, the augmented UIO estimation technique in [17] is simulated here.
Let

x =

 x
.
f s
fs

, system (40) can be augmented to the following:

{ .
x(t) = Ax(t) + Bu(t) + Bdd(t) + ψ(t, x)

y(t) = Cx(t)
(46)

where

A =

A 0 0
0 0 0
0 I 0

, B =

B
0
0

,Bd =

Bd
0
0

, C =
[
C 0 D

]
,ψ(t, x) =

ψ(t, x)
0
0

.

The nonlinear augmented UIO is given in the form of:{ .
z(t) = Rz(t) + TBu(t) + Tψ(t, x) + Ky(t)

x̂(t) = z(t) + H y(t)
(47)

Using Theorem 3 in literature [17] and choosing the index performance r = 0.48 and
parameter ε = 40, one can obtain the following gains of the augmented observer:

H =



0.1667 0.3333 0.1667
0.3333 0.6667 0.3333
0.1667 0.3333 0.1667
0.3333 0.6667 0.3333

0 0 0
0 0 0

,
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T =



0.8333 −0.3333 −0.1667 0 0 −0.1667
−0.3333 0.3333 −0.3333 0 0 −0.3333
−0.1667 −0.3333 0.8333 0 0 −0.1667
−0.3333 −0.6667 −0.3333 1 0 −0.3333

0 0 0 0 1 0
0 0 0 0 0 1

,

K =



24.2880 −21.8704 18.6186
−11.3007 3.6848 −4.2346

2.4013 2.9126 8.9394
7.5651 −19.8579 26.4848
−5.8728 14.7601 −23.6473
−4.6680 11.7462 −18.8244

,

R =



−5.9437 27.4187 −32.6710 −1.6670 −0.1667 −22.1420
−7.3008 −9.2433 18.0299 −3.3330 −0.3333 8.8976
16.8727 3.4902 −22.0621 8.3330 −0.1667 0.6743
27.4674 21.7249 −60.1555 −3.3330 −0.3333 −6.8842
4.7632 −16.9837 22.5377 0 0 4.7632
3.6654 −13.7550 17.8217 0 1 3.6654

,

Applying the proposed adaptive UIO estimator in the form of (6) and (26) and imple-
menting the augmented UIO in the form of (47), one can obtain the curves of the states,
sensor fault and their estimates shown in Figures 6–10. Based on the simulations, we can
have comparisons of the estimation performance of the proposed adaptive UIO technique
and the existing augmented UIO approach in Table 2. From Table 2, one can see the pro-
posed adaptive UIO estimation technique has a better tracking performance particularly
when the fault is a high-frequency fault signal.

Table 2. Performance comparison between adaptive UIO and augmented UIO.

Sensor Fault Type Proposed Adaptive UIO Existing Augmented UIO

Biased fault Track well Track well

Incipient fault Track well Track well

Measurement effectiveness
loss

Work well with a quicker
tracking Track well

Low-frequency sinusoidal
signal fault

Work well with a quicker
tracking Track well

High-frequency sinusoidal
signal fault

Better tracking performance
compared with the
augmented UIO

Tracking performance is
reduced with a
high-frequency sensor fault
signal

Intermittent square wave fault Work well with a quicker
tracking Track well
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6. Conclusions

In this paper, a novel sensor fault estimator, that is, an adaptive UIO technique, was
proposed by synthesizing an unknown input observer and adaptive observer. The robust-
ness was ensured by decoupling input uncertainties using an unknown input observer and
attenuating the un-decoupled disturbed signals via the linear matrix inequality approach.
Both line dynamic systems and Lipschitz nonlinear dynamic systems were investigated.
The proposed estimation algorithms were well-validated by two engineering-oriented sys-
tems. From the simulations, one can see the proposed adaptive UIO technique outperforms
the existing augmented UIO approach when the sensor fault signal is high-frequent. In the
future, it is of interest to investigate how adaptive observer techniques can be applied to
reconstruct multiple sensor faults, which is under way.
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