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field analysis was carried out. The proposed numerical modeling was based on the extended iterative
homogenization method (IHM) developed by the authors. The achieved calculation results were
validated by the corresponding values obtained experimentally, and a reasonably close agreement
was obtained.
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1. Introduction

Many electrical devices were built using cores made of soft ferromagnetic materials.
These cores were mainly manufactured either as laminated or as magnetically soft compos-
ites [1]. The soft magnetic materials are characterized by main parameters such as magnetic
flux density B, magnetic field intensity H, and core losses P, as well as the magnetic per-
meability. Due to their application in many branches of industry, their properties can be
significantly different [2–4]. In 2019, oriented steel was mainly used (at 60% share) in the
global soft magnetic materials market; Figure 1 [5]. Lately, however, the sheets have been
gradually replaced by amorphous ribbons, whereas ferrites, with a 13% share of the market,
have taken second place.
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1. Introduction 
Many electrical devices were built using cores made of soft ferromagnetic materials. 

These cores were mainly manufactured either as laminated or as magnetically soft com-
posites [1]. The soft magnetic materials are characterized by main parameters such as 
magnetic flux density B, magnetic field intensity H, and core losses P, as well as the mag-
netic permeability. Due to their application in many branches of industry, their properties 
can be significantly different [2–4]. In 2019, oriented steel was mainly used (at 60% share) 
in the global soft magnetic materials market; Figure 1 [5]. Lately, however, the sheets have 
been gradually replaced by amorphous ribbons, whereas ferrites, with a 13% share of the 
market, have taken second place. 

 
Figure 1. A pie graph for the global soft ferromagnetic materials market share in 2019. 

The core losses inside magnetic materials are caused by two physical phenomena—
eddy currents and hysteresis [6]. Inside the transformer’s laminated core, the magnetic 
flux density vector is perpendicular to the smallest cross-section of the single sheet in the 
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Figure 1. A pie graph for the global soft ferromagnetic materials market share in 2019.

The core losses inside magnetic materials are caused by two physical phenomena—
eddy currents and hysteresis [6]. Inside the transformer’s laminated core, the magnetic flux
density vector is perpendicular to the smallest cross-section of the single sheet in the stack;
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Figure 2. Under these operating conditions, the eddy current component of the losses can
be found using the equation below:

Pec =
∫ E2

R
dV (1)

where E is the rms value of the electromotive force, R is the resistance of the single sheet,
and V is the volume of the sheet.
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Calculation of the formula above leads to a well-known analytical expression for eddy
current loss determination [7].

Pec =
1
6

σ(π f Bmavd)2V (2)

where σ is the electrical conductivity of the sheet, f is the frequency of the magnetic flux
density, Bmav is the maximum value of the flux density in the cross-section of a sheet, and d
is the thickness of the sheet.

Equation (2) concerns the linear model, which has been derived from the saturation-
wave concept (SWM) by Wolman and Kaden [8]. In the literature [9,10], it has been proved
that it is valid in the case where Bp = Bm. Thus, we have used it for the linear part of the
magnetization curve.

The second phenomenon, i.e., hysteresis, has been investigated for many years. It
can be described by two models: the Preisach and the Jiles–Atherton. The first model is
described using an infinite set of simplest hysteresis operators ŷαβ, which represent the
hysteresis nonlinearities. Each of these operators can be represented by the rectangular loop
shown in Figure 3, [11]. Along with the set of operators ŷαβ, we use an arbitrary weight
function µ (α, β).

Using the presented above quantities, the so-called Preisach hysteresis operator Γ̂ is
defined as

Γ̂u(t) =
∫

α≥β
µ(α, β)µ̂αβu(t)dαdβ (3)

Applying this model in the numerical analysis of magnetic fields in ferromagnetic
materials is widely described in the literature [12,13].

The second model of hysteresis described in the literature is the Jiles–Atherton model.
It is based on the total differential susceptibility given in the below equation [14]:

dM
dH

= 1 − c
Man − Mirr

kδ − α(Man − Mirr)
+ c

dMan

dH
(4)
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where Man—anhysteretic magnetization; Mirr—irreversible magnetization; δ—a directional
parameter (+1, –1); k—coercivity; Hc—parameter; and α—coefficient of interdomain cou-
pling in the magnetic material.
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Some parameters in this model, like α, k, and c, are obtained from the experimental data
expressed through the form of a hysteresis loop [15]. This model is still used to calculate
hysteresis in soft ferromagnetic materials [16]. Below are shown quite simple analytical
formulas based on available measurement coefficients, i.e., Richter’s and Steinmetz’s
approaches for hysteresis loss calculation [17]:

PhS = η f B1.6
mavm (5)

PhR = ε
f

100
B2

mavm (6)

where η, ε—empirical coefficients; f —frequency of the flux change; Bmav—maximal average
value of the flux density in the magnetic core; and m—the mass of the core.

There is a significant difference between the core loss values measured and those
calculated with numerical field analysis and the analytical expressions. That difference is
called the excess (auxiliary) losses component, Pex. Thus, the total losses can be assumed
to consist of three components: eddy current losses (Pec,), hysteresis ones (Ph), and those
Pex. The first interpretation of the excess losses was given by Pry and Bean who have taken
into account the ratio 2 L/d of the domain size (L) and the lamination thickness (d) [18].
However, their relationship includes too many simplifications and does not give reasonable
accuracy. Below a more precise analytical expression is given in which the coefficients
obtained from measurements can be applied. It is related to so-called active magnetic
objects (MOs) of ferromagnetic materials [18,19].

Pax =
8·Bmav· f ·m

ρ

(√
σ·G·S·Bmav· f ·V0 −

∼
n0·V0

4

)
(7)

where Bmav—the maximal average value of the flux density in the core; S—the cross-
sectional surface perpendicular to the flux direction in the core; G—the dimensionless
coefficient (usually equal to 0.1356); ñ0—the limiting number that characterizes the magnetic
objects which are statistically independent when f→0; and V0 is dependent on the (Hax, ñ)
function when f → 0.

Nowadays, many electrical devices operate under medium frequencies, i.e., in the
range of tens of kilohertz, which is much higher than the technical frequencies of 50 or
60 Hz. This results in smaller dimensions of the magnetic core geometry. However, for
a medium-frequency core, the losses significantly increase. Thus, the proper values of
appropriate loss must be predicted for these operating conditions when designing medium-
frequency transformers.



Sensors 2024, 24, 3228 4 of 11

For medium-frequency transformers, the analytical expressions concerning the core
losses either do not exist or are given for selected frequency values only [2,3]. They are also
inconvenient for direct use in numerical analysis, especially in 3D modeling, where instead
of core lamination we should consider a solid structure of the magnetic circuit. Thus, in this
paper we describe a 3D numerical analysis, based on our IHM [20,21], to calculate the total
core losses inside the laminated core of the 1-phase transformer (Figure 4). In this method,
the laminated core has been modeled as a solid structure with equivalent parameters such
as conductivity σeq and relative magnetic permeability µreq. In this method, the core is
treated as a solid geometry with equivalent parameters (relative magnetic permeability
and electrical conductivity). In the literature so far, the homogenization method mainly
concerns simply laminated packages of grain-oriented silicon steels without measurement
verification [22,23]. A significant part of this research concerns the numerical analysis of
losses that occur in the transformer windings. For example, the paper in [24] numerically
investigates the copper loss of a three-phase transformer dry-type 300 kVA under various
geometry designs.
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2. Numerical Models
2.1. Analyzed Objects

This paper presents the results of our research concerning 1-phase transformers with a
laminated “C”-type core made of two soft ferromagnetic materials; Figure 4.

The core of transformer T1 is made of the grain-oriented silicon steel OS-110 Cut “A”
(GOSS), and the core of transformer T2 is made from amorphous ribbons of iron-based
METGLAS® 2605SA1 [25,26]. For the 3D field analysis, a Cartesian coordinate system
was assumed, as presented in Figure 4. According to it, the main dimensions of both
transformers are given in Table 1.

Table 1. Main dimensions of the transformers (in [mm]).

Symbol Transformer 1 Transformer 2

a 24 16
b 40 40
d 75 52
h 128.6 102
e 1.35 1.35
g 29 29

To facilitate the calculations, instead of the layered core, we considered its modular
structure, in the “C” letter form, of two solid parts. Additionally, to avoid losses in the
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transformer windings (coils), we used Litz wire. Both windings, with the same number of
turns (N = 21), were connected in series.

2.2. Numerical Model

Our numerical analysis used the Maxwell 3D module from the commercial Ansys
simulation package. In this package, the Finite Element Method is implemented using
automatic mesh generators. Therefore, interference in the density of the discretization
mesh is limited. However, within the Maxwell 3D package, it is possible to refine the mesh
on the boundaries of the object and subareas by specifying the length of the elements. In
Figure 5a,b, the finite element grids generated for the two transformers are shown. The
total number of elements in the grid is equal to 39,158 for the transformer T1 (with GOSS)
and 16,497 for the T2 amorphous one. The correctness of the simulations is achieved after
obtaining the previously assumed energy error. They were executed in four passes for the
first transformer and three passes for the second one.
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For the 3D calculation, we investigated the eddy current models with the frequency
domain. The algorithm of the solver is based on the T–Ω formula, where T is an electric
vector potential and Ω is a magnetic scalar potential [27,28]. Obviously, the non-conducting
regions hold the below equation:

div(gradΩ) = 0 (8)

In the regions with non-zero conductivity, where eddy currents flow, the below equa-
tion must be solved:

∆T = jωµσeq(HS + T − gradΩ) (9)

where σeq is the equivalent conductivity of the solid core and µ is the magnetic permeability
of it; HS is magnetic field strength excited by the coils.

Below are given, implemented in Ansys software, version R1 from 2020 the relation-
ships for each component of the losses:

Pec = Kec f 2B2
mav (10)

Ph = Kh f B2
mav (11)

Pax = Kax f 1.5B1.5
mav (12)
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To calculate the total core losses based on the proper value of each coefficient, Kec for
eddy currents, Kh for hysteresis and Kex for excess losses, our modified IHM was applied.
A simplified flow chart of that algorithm is given in Figure 6.
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Firstly, the PTotD, i.e., total losses of the transformer, and BmD, i.e., the magnetic flux
density maximal average value, are assumed. These values, inside the core, are related
to the operating conditions of the transformer. At the start of the solver execution, the
transformer’s operating conditions and maximal number n of iterations are assumed. The
algorithm starts with assumed initial values for each coefficient Kec, Kh, and Kax. After
the magnetic field analysis, we verified the value of magnetic flux density inside the core.
When its estimation is correct, i.e., the relative error of the magnetic flux density εBm is
lower than the assumed one, the value of the total loss is checked. When this value is
appropriate, i.e., the relative error of the total core losses εBm is lower than that assumed,
the algorithm stops the iterative process. Finally, when the calculations reach the n number
of iterations, it will be also stopped to prevent continuous looping.

Our numerical model extends the application of the IHM method described in [16]. In
this model, we have assumed the equivalent conductivity of the core (at σeq = 700 S/m).
This value was valid for the entire core, in which an almost constant value of the magnetic
flux density was maintained (Figure 7a,b). It gives a good approximation to the real
laminated cores, where each single sheet has a similar Bmav value inside the core. On the
other hand, the equivalent relative permeability µreq was selected in an iterative process to
make it possible to obtain the same average value of the magnetic flux density Bmav in the
cross-sectional plane halfway up the transformer column.
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transformer T2.

3. Calculation Results and Measured Verification

In our numerical analysis, the investigated transformer was powered by sinusoidal
current waves of frequencies ranging from 50 Hz to 400 Hz.

Due to the overheating of the core during measurements at the increased frequency,
the tests were carried out for relatively low values of flux density. The presented calculation
results of the core losses were given at the value of Bmav = 0.6 T and the excitation current
wave frequency of f = 400 Hz. The magnetic flux density B module is presented in
Figure 7a,b by the color bitmaps used for the B module distribution inside the core’s XZ
plane (Figure 4). Note that the maximum values of B are in the subregions near the corners
of the transformer window. In contrast, the minimum ones are in the outer part of the core
corners. In the columns and yokes, the B values are almost equal. For the transformer T1,
the Pec component has been included in the total losses. Thus, in Figure 8, the eddy current
J distribution is presented inside the XZ plane.
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Figure 9a,b show components of the total losses for transformer (GOSS) T1 vs. fre-
quency. In Figure 9a the percentage share for each component of the total losses is presented,
whereas Figure 9b gives the values of each component. As can be seen, for the frequency
equal to f = 50 Hz, the components caused by the eddy currents dPec and hysteresis dPh
phenomena have the same percentage share, which equals approximately 30% of the total
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losses. For the gradually increased value of the frequency, the component dPec significantly
increases until its percentage share achieves about 80%.
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Figure 9. Components of the total losses for transformer T1 vs. frequency: (a) percentage share of the
total losses components; (b) values of each component.

Although the total losses in transformer T2 are determined correctly, their division for
the amorphous package seems to be slightly erroneous. Due to the narrow hysteresis loop
of amorphous materials in the considered frequency range, the hysteresis losses in the T2
transformer are much lower than those in transformer T1 (from GOSS). Moreover, the losses
from eddy currents, calculated by Equation (2), constitute approximately 1% of the total
losses [29]. However, the measurement results give higher values. Additionally, the loss
components defined by Formulas (10)–(12) also contribute to the power share components
imprecisely. These calculations show that auxiliary losses account for almost all of the total
ones, which seems slightly strange and will be the subject of our further research.

Figure 10a,b present the measured core losses for the entire scope of our tests. For
the frequencies from 50 up to 400 Hz and the magnetic flux density from 0.1 up to 1.2 T,
calculations are included for the transformer T1 (with GOSS core), and the flux density
from 0.1 up to 1.0 T for the amorphous object for the transformer T2 was obtained. It can
be noticed that the maximum value of the losses for the amorphous core is about three
times lower.
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Figure 10. Relationship PTotMe = f(f, Bm): (a) for transformer T1; (b) for transformer T2.

As mentioned above, the total core losses in transformer T1 (with GOSS) consist of
all three components, whereas in amorphous transformer T2, the Pax component seems to
be a decisive part of the total losses. Thus, Figure 11a,b give the coefficients, calculated
with the IHM algorithm, occurring in Equations (10)–(12). However, the measurement
results for transformer T2 give higher values of the hysteresis and eddy current losses
than the calculated ones. Moreover, the loss components defined by Formulas (10)–(12)
also contribute to the power share components imprecisely. These calculations show that
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auxiliary losses account for almost all of the total ones, which seems slightly strange and
will be the subject of our further research.
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amorphous transformer T2.

The linearity of the Kec characteristic results from analytical Equation (2) and from that
implemented in (10). From the relationships, it is visible that the frequency f exponent and
the magnetic flux density Bmav are the same value and equal to 2. The decreasing values of
the other coefficients result from the fact that the component losses have a lower share in
the total losses (Figure 9). Moreover, the values of the frequency f exponent and the flux
density Bmav differ in the analytical and the numerically implemented equations. Similarly,
in the amorphous transformer (T2), the graph of the Kax values results from the fact that the
total losses versus the frequency values increase due to the linear approach (Figure 10b),
whereas using Equation (12), the losses change non-linearly due to the exponent number,
which is equal, i.e., 1.5, vs. the frequency function.

Our numerical analysis was verified by the measurement tests with the 8-bit digital
oscilloscope Tektronix MSO 2024B. The simplified diagram of the measurement system
is given in Figure 12. Figure 13a,b show the calculated and measured values of the iron
losses versus frequency values f. Our calculations give the possibility to determine the
losses for other frequencies, where the material parameters of solid cores were determined
based on the approximation between the nodes of the interactive process, where the total
discrepancy between measurements and loss calculations is visible. Figure 13a,b show a
comparison of the calculated and measured values of the total losses for both analyzed
transformers. The small differences of about 10% between the values given in these figures
validate our modeling of the losses in the laminated core.
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4. Conclusions

In the currently published approaches, the design of electromagnetic devices is sup-
ported by 3D numerical field analysis. Proper modeling for each separate sheet, or a strip
of it, in the laminated core is almost impossible. Therefore, in this paper, we describe
calculation models with solid core geometry. Our iterative numerical approach is based
on mathematical modeling with the equivalent parameters, such as the conductivity σeq
and the relative magnetic permeability µreq, of the core. In our analysis, described herein,
the proper values of the coefficients (Kec, Kh, and Kax) for each component of the core
losses have been calculated. The correctness of the presented models has been validated by
the measurements, and a satisfying convergence of results for both models was reached
(Figure 13a,b). Consequently, we recommend the proposed IHM method as applicable in
calculations of both GOSS sheets, with their domain structure, and amorphous ribbons.
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