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Abstract: Gearboxes operate in challenging environments, which leads to a heightened incidence
of failures, and ambient noise further compromises the accuracy of fault diagnosis. To address this
issue, we introduce a fault diagnosis method that employs singular value decomposition (SVD) and
graph Fourier transform (GFT). Singular values, commonly employed in feature extraction and fault
diagnosis, effectively encapsulate various fault states of mechanical equipment. However, prior
methods neglect the inter-relationships among singular values, resulting in the loss of subtle fault
information concealed within. To precisely and effectively extract subtle fault information from
gear vibration signals, this study incorporates graph signal processing (GSP) technology. Following
SVD of the original vibration signal, the method constructs a graph signal using singular values as
inputs, enabling the capture of topological relationships among these values and the extraction of
concealed fault information. Subsequently, the graph signal undergoes a transformation via GFT,
facilitating the extraction of fault features from the graph spectral domain. Ultimately, by assessing
the Mahalanobis distance between training and testing samples, distinct defect states are discerned
and diagnosed. Experimental results on bearing and gear faults demonstrate that the proposed
method exhibits enhanced robustness to noise, enabling accurate and effective diagnosis of gearbox
faults in environments with substantial noise.

Keywords: singular value decomposition; graph Fourier transform; gearbox; fault diagnosis

1. Introduction

Gearboxes, known for their smooth transmission and reliable operation, are exten-
sively employed in the primary drive chains of wind turbines [1]. However, owing to the
harsh operational environment and the cumulative effects of multiple excitation sources,
gearbox failures are inevitable, compromising the overall functionality of the equipment
and potentially leading to severe safety incidents [2]. Statistical data indicate that bearings
and gears frequently fail during gearbox operation, necessitating wind turbine downtime
for maintenance [3]. Therefore, monitoring the operational status of these components is
crucial.

However, constrained by the operational environment, the collected vibration signals
are frequently embedded in a noisy background, complicating fault diagnosis and reducing
fault identification performance in practical applications. The singular value decomposition
(SVD) algorithm, known for its heightened sensitivity to weak signals amidst noisy back-
grounds, is frequently utilized to extract subtle fault information [4,5]. Diverse singular
values within the sequence characterize different signal components and serve directly as
fault features [6], prompting numerous scholars to employ singular values in depicting
equipment fault states. For instance, Yanfeng Li et al. [7] utilized the entire sequence of
singular values from vibration signals as fault features, employing deep neural networks
as classifiers to identify rolling bearing faults. Building on this, Zhang Lizhi et al. [8] and
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Wang Fengtao et al. [9] initially decomposed the original vibration signal into multiple
intrinsic mode functions (IMFs) using the empirical mode decomposition (EMD) algorithm.
Subsequently, they selected appropriate IMFs to construct, respectively, the time–frequency
domain’s spatial state matrix or Hankel matrix, extracting the singular values of these ma-
trices as feature vectors for diagnosis via deep neural networks. Similarly, Zhong et al. [10]
constructed the vibration signal into a state matrix by employing the enhanced empirical
mode decomposition (EEMD) algorithm, utilizing the matrix’s singular values as feature
vectors.

The aforementioned methods construct the state matrix that describes the vibration
signal in various ways and utilize the singular values of this matrix to characterize the
operating state of the mechanical equipment. However, while these approaches emphasize
developing a more comprehensive state matrix, they often overlook the inter-relationships
among the singular values, thereby failing to extract holistic fault information from the
vibration signal. To address this issue, this paper introduces the graph signal processing
(GSP) technique, an extension of discrete signal processing theory within the domain of
graph-structured signal processing. This approach offers a novel perspective for process-
ing vibration signals and has been extensively applied in fault diagnosis by numerous
scholars. For instance, Lu et al. [11] constructed the original signal into a graph model
and detected changes in equipment operational status from the resultant graph signal.
Gao et al. [12] utilized the total variance of the graph signal as the characteristic indicator
of bearing faults by transforming the bearing’s vibration signal into a graphically inter-
pretable form. Wang Hao et al. [13] and Ou et al. [14] transformed the vibration signal into
a roadmap and introduced, respectively, a GFT-based impact feature extraction method
utilizing optimal weighting and a rolling bearing fault diagnosis method leveraging GFT
pulse component extraction. These studies pioneer a novel research direction by apply-
ing GSP technology, transitioning fault diagnosis from traditional time and frequency
domain processing to vertex and map domain processing, thereby enhancing application
performance. Liao X et al. [15] introduces a novel fault diagnosis method for power grids
based on the Graph Fourier Transform (GFT). The method leverages GFT to analyze the
grid’s topological structure and operational data, enabling more accurate and efficient fault
detection and diagnosis.

Drawing upon the preceding discussion, this study introduces a fault diagnosis
methodology for gearboxes that leverages SVD and GFT, incorporating GSP technology.
The method capitalizes on the sensitivity of singular values to detect faults, constructs graph
signals using these values as inputs, and explores the topological relationships among
the values via the graph structure. This approach facilitates the extraction of obscured
fault information, enabling robust fault diagnosis amidst substantial noise interference.
Experimental validations on bearing and gear faults demonstrate that the methodology
delineated in this paper effectively accomplishes gearbox fault diagnosis. Moreover, it
exhibits greater stability and reliability under noise disturbances compared to conventional
methods.

2. Theoretical Basis of the Study
2.1. Singular Value Decomposition

SVD theory, an inherent characteristic of matrices, demonstrates that singular values
exhibit minimal changes and maintain high stability when the matrix is perturbed. Con-
sequently, the principal singular values of a vibration signal exhibit negligible variations
before and after noise interference. For any real matrix, it can be decomposed into singular
vectors and singular values through a transformation involving the multiplication of or-
thogonal matrices to both its left and right sides. In this paper, the Hankel matrix is used
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to construct the vibration signal as an eigenmatrix, and for a matrix H ∈ Rm×n, there exist
orthogonal matrices U and V such that the following equation holds:

H =


x1 x2 · · · xn
x2 x3 · · · xn+1
...

...
. . .

...
xm xm+1 · · · xN

 = Um×mSm×nVT
n×n (1)

where x is the vibration signal; H is the Hankel matrix constructed using the vibration
signal; and the matrix S satisfies

Sm×n =

[
Sr×r 0

0 0

]
(2)

where Sr×r = diag (σ1, σ2, . . ., σr), where σi= (1, 2, . . ., r) is the singular value of the matrix
H and r = min(m, n). Equation (1) is the singular value decomposition process for any m ×
n matrix.

2.2. Graph Signal Processing Techniques
2.2.1. Visibility Algorithm

The Visibility Graph (VG) algorithm [16,17], a method for transforming a finite-length
discrete time series into a complex network, ensures that each network node corresponds
to an individual element of the time series. The fundamental concept of this method is
illustrated in Figure 1. In this study, a sequence of singular values serves as the input for
the visibility algorithm. To prevent the schematic from becoming overly cluttered, only
the first five singular values are demonstrated. In Figure 1b, the singular values inputted
into the visibility algorithm are depicted as histogram bars, with the height of each bar
corresponding to the magnitude of the singular values.
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Figure 1. Visibility graph of singular value sequence. (a) Singular value sequence. (b) Network of 

singular value sequence. 
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Figure 1. Visibility graph of singular value sequence. (a) Singular value sequence. (b) Network of
singular value sequence.

If the tops of two histograms satisfy visibility, the corresponding two vertices are
considered to be connected by an edge. The visibility criterion is defined as follows: if any
2 points, (ta, ya) and (tb, yb), in the input sequence have visibility, then these two points
become two connected nodes in the graph. Then for any point, (tc, yc), where ta < tc < tb,
satisfies

yc < yb + (ya − yb)
tb − tc

tb − ta
(3)

The visibility algorithm delineates the relationships between nodes and edges within
the network by defining specific connection rules among nodes. Subsequently, it transforms
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the discrete signal into a graph signal based on these rules. Moreover, it employs the
Laplacian matrix to characterize the topology of the input sequence. Then, for the viewable
signal in Figure 1b, the set of vertices is denoted as V = {v1, v2, v3, v4, v5}, the set of edges
is denoted as E = {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v2, v4)}, and the adjacency matrix is
denoted as

W =


0 1 0 0 0
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
0 0 0 1 0


The degree diagonal matrix is expressed as

D =


1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 1


The Laplace matrix is expressed as

L = D − W =


1 −1 0 0 0
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
0 0 0 −1 1


2.2.2. Graph Fourier Transform

A graph signal is a mapping defined on the set of graph vertices, denoted by a vector
f ∈ RN , where the ith component of the vector corresponds to the value of the first vertex
in the set of vertices V, which, in this paper, is the first singular value in the sequence of
singular values. The GFT [18] is an extension of the Fourier transform (FT) to the graph
signal, which extends the FT to the graph. Similar to the definition of FT, GFT performs
projection based on the eigenvectors of the Laplace matrix, with the difference that the
matrix used in FT has a fixed form and the basis function remains unchanged, while the
matrix used in GFT varies with the graph structure and the eigenvectors change with the
way the weights in the adjacency matrix are defined. GFT can be applied to analyze any
undirected, connected, weighted graph, and the GFT result f̂ (r) for the graph signal f (n)
is expressed by the definition as

f̂ (r) =
N

∑
n=1

ur(n) f (n) (4)

Then, the inversion of GFT is defined as

f (n) =
N−1

∑
r=0

f̂ (r)ur(n) (5)

where r ∈ {0, 1, · · · , N − 1} is the order of the eigenvalues and eigenvectors, and ur is the
eigenvector of the Laplacian matrix L.

The graph Fourier transform (GFT) decomposes a graph signal into a superposition of
eigenvectors, each associated with distinct eigenvalues, thereby establishing a correspon-
dence between the graph signal and its eigenvalue spectrum [13]. Similarly to how the
Fourier transform (FT) converts a vibration signal from the time domain to the frequency
domain, the GFT transforms a graph signal from the vertex domain to the eigenvalue spec-
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trum within the spectral domain, accentuating the data hidden within the vertex domain
in the spectral domain.

3. Simulated Signal Analysis

The interdependencies among singular values can be leveraged to extract higher-order
fault information for diagnostics [19], a consideration often overlooked by traditional
methods. The graph structure inherently extracts correlations between data elements
by incorporating connections among edges in node pairs. Furthermore, graph signal
processing (GSP) theory links the data’s topology with the data themselves via this graph
structure [20]. Thus, constructing visibility signals with singular values fully utilizes the
graph topology to elucidate relationships among these values, thereby effectively extracting
fault information embedded in their interdependencies to diagnose various faults.

To validate the stability of the singular value visibility signal within a noisy environ-
ment, we examined a noisy harmonic signal composed of amplitude-modulated frequency
components, cosine components, and noise elements, as delineated in Equation (6):

y(t) = y1(t) + y2(t) + noise
y1(t) = 2 sin(20πt)
y2(t) = 4(1 + sin(5πt)) cos(50πt)

(6)

where ‘noise’ denotes random noise.
In the experimental setup, the sampling frequency was established at 5000 Hz, with

a sampling duration of 1 s. Initially, the simulated signal was constructed into a Hankel
matrix, which was subsequently subjected to singular value decomposition (SVD). Given
that the sequence of singular values is arranged in descending order, with the initial values
significantly larger than those that follow, these predominant values generally represent
the primary components of the vibration signal, while the remaining values correspond to
noise. Therefore, the first eight singular values were identified as the main components
in the simulated signal, as shown in Figure 2, and subsequently, the visibility signal
underwent a graph Fourier transform (GFT). As the first eight singular values are the
principal components of the simulated signal, only these were utilized as the input for the
Visibility Graph (VG) algorithm, before the visibility signal was finally processed using
GFT. The spectral domain of the simulated signal was plotted under varying signal-to-noise
ratios of −10 dB, 0 dB, 10 dB, and 20 dB, with the corresponding results displayed in
Figure 3.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 18 
 

 

2 4 6 8 10 12 14
Order

0

2000

4000

5500

Si
ng

ul
ar

 v
al

ue

 
Figure 2. Graph spectra domain of simulated signal. 

1 2 3 4 5 6 7 8
Order

0

2000

4000

6000

8000

10,000

A
m

pl
itu

de

SNR=    0dB
SNR= -10dB

SNR=  20dB
SNR=  10dB

 

Figure 3. Graph spectra domain of simulated signal. 

An examination of Figure 3 reveals that both the amplitude and the overall fluctua-
tions in the spectral domain of the singular value visibility signal under varying signal-to-
noise ratios exhibit minimal changes and show substantial overlap, suggesting that the 
signal spectra are minimally impacted by noise. 

Consequently, singular values serve to characterize the intrinsic components of the 
vibration signal. The interdependencies among these values are discerned through the 
edge connection rules applied within the visibility algorithm, with the singular values as 
inputs. Additionally, the spectrum of the singular value visibility signal exhibits high sta-
bility and minimal noise influence. Therefore, the energy magnitude and fluctuation de-
gree of the spectrum are utilized as characteristic parameters for fault diagnosis in envi-
ronments with substantial noise. Furthermore, the standard deviation and energy of the 
spectrum are designated as characteristic parameters, as defined by Equation (7) in this 
study. 

STD ET
STD E





 (7) 

where STD is the standard deviation; E is the energy. 
When the vibration signal exhibits a periodic shock component due to a local fault or 

an amplitude increase stemming from a distributed fault, the product of the energy stand-
ard deviation of the eigenvalue spectrum of the singular value visibility signal is notably 
larger. Conversely, when the vibration signal changes smoothly, the product of the energy 
standard deviation of the eigenvalue spectrum is correspondingly smaller; therefore, this 
study employs the product of energy standard deviation to quantify the abrupt changes 
in the eigenvalue spectrum, serving as a characteristic parameter for gear fault diagnosis. 

Figure 2. Graph spectra domain of simulated signal.



Sensors 2024, 24, 3234 6 of 18

Sensors 2024, 24, x FOR PEER REVIEW 6 of 18 
 

 

2 4 6 8 10 12 14
Order

0

2000

4000

5500

Si
ng

ul
ar

 v
al

ue

 
Figure 2. Graph spectra domain of simulated signal. 

1 2 3 4 5 6 7 8
Order

0

2000

4000

6000

8000

10,000

A
m

pl
itu

de

SNR=    0dB
SNR= -10dB

SNR=  20dB
SNR=  10dB

 

Figure 3. Graph spectra domain of simulated signal. 

An examination of Figure 3 reveals that both the amplitude and the overall fluctua-
tions in the spectral domain of the singular value visibility signal under varying signal-to-
noise ratios exhibit minimal changes and show substantial overlap, suggesting that the 
signal spectra are minimally impacted by noise. 

Consequently, singular values serve to characterize the intrinsic components of the 
vibration signal. The interdependencies among these values are discerned through the 
edge connection rules applied within the visibility algorithm, with the singular values as 
inputs. Additionally, the spectrum of the singular value visibility signal exhibits high sta-
bility and minimal noise influence. Therefore, the energy magnitude and fluctuation de-
gree of the spectrum are utilized as characteristic parameters for fault diagnosis in envi-
ronments with substantial noise. Furthermore, the standard deviation and energy of the 
spectrum are designated as characteristic parameters, as defined by Equation (7) in this 
study. 

STD ET
STD E





 (7) 

where STD is the standard deviation; E is the energy. 
When the vibration signal exhibits a periodic shock component due to a local fault or 

an amplitude increase stemming from a distributed fault, the product of the energy stand-
ard deviation of the eigenvalue spectrum of the singular value visibility signal is notably 
larger. Conversely, when the vibration signal changes smoothly, the product of the energy 
standard deviation of the eigenvalue spectrum is correspondingly smaller; therefore, this 
study employs the product of energy standard deviation to quantify the abrupt changes 
in the eigenvalue spectrum, serving as a characteristic parameter for gear fault diagnosis. 

Figure 3. Graph spectra domain of simulated signal.

An examination of Figure 3 reveals that both the amplitude and the overall fluctuations
in the spectral domain of the singular value visibility signal under varying signal-to-noise
ratios exhibit minimal changes and show substantial overlap, suggesting that the signal
spectra are minimally impacted by noise.

Consequently, singular values serve to characterize the intrinsic components of the
vibration signal. The interdependencies among these values are discerned through the edge
connection rules applied within the visibility algorithm, with the singular values as inputs.
Additionally, the spectrum of the singular value visibility signal exhibits high stability and
minimal noise influence. Therefore, the energy magnitude and fluctuation degree of the
spectrum are utilized as characteristic parameters for fault diagnosis in environments with
substantial noise. Furthermore, the standard deviation and energy of the spectrum are
designated as characteristic parameters, as defined by Equation (7) in this study.

T =
STD × E
STD + E

(7)

where STD is the standard deviation; E is the energy.
When the vibration signal exhibits a periodic shock component due to a local fault

or an amplitude increase stemming from a distributed fault, the product of the energy
standard deviation of the eigenvalue spectrum of the singular value visibility signal is
notably larger. Conversely, when the vibration signal changes smoothly, the product of the
energy standard deviation of the eigenvalue spectrum is correspondingly smaller; therefore,
this study employs the product of energy standard deviation to quantify the abrupt changes
in the eigenvalue spectrum, serving as a characteristic parameter for gear fault diagnosis.

4. Fault Diagnosis Method and Experimental Verification
4.1. Fault Diagnosis Method Based on SVD and GFT

Building on the discussion above, the fault diagnosis methodology proposed in this
paper is illustrated in Figure 4 and outlined as follows:
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Step 1. Randomly select n from the original sample set as test samples and the rest as
training samples.

Step 2. Perform SVD on each sample, select the first k singular values as the input of
the viewable algorithm, and construct the viewable signal f(k).

Step 3. Perform GFT on the viewable signal f(k), transform it to the spectral do-
main, calculate the energy and standard deviation, respectively, and synthesize them by
Equation (6) as the fault characteristic parameters of the corresponding samples.

Step 4: Calculate the martingale distances between the fault characteristic parameters
of each test sample and those of the training samples for each state in sequence.

Step 5: Identify the test samples corresponding to the first n minimal values among
each set of distances. Determine the fault types for these test samples based on the state
categories of the corresponding training samples, thereby completing the fault identification
process.

4.2. Experimental Data Description

To evaluate the effectiveness of the proposed method, tests were conducted using
fault signals from both bearings and gears. The bearing fault data originated from the
rolling bearing test dataset provided by Case Western Reserve University [21]. Specifically,
the tests involved a 6203-2RS JEM SKF deep groove ball bearing under a load of 735.5 W,
at a speed of 1797 rpm, with fault dimensions of 0.1778 mm in diameter and 0.2794 mm
in depth, and a sampling frequency of 12 kHz. The dataset included various conditions
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such as the normal state, inner ring failure, outer ring failure, and rolling element failure.
Vibration signals from these conditions are shown in Figure 5.
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Gear failure experiments were conducted using a WTDS test stand provided by Spec-
tra Quest (Richmond, VA, USA). This setup included an electric motor, a speed controller, a
parallel shaft gearbox, a planetary gearbox, and a magnetic powder brake, as illustrated in
Figure 6. During the experiments, all faulty gears were first-stage active wheels with artifi-
cially created faults. The data were captured at a theoretical input shaft speed of 1000 rpm,
with a sampling frequency of 20.48 kHz. The resulting vibration signals, displayed in
Figure 7, demonstrate the impact of noise, which obscures the periodic shock components
usually visible in time-domain diagrams, with minimal variation in signal amplitude.
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tra Quest (Richmond, VA, USA). This setup included an electric motor, a speed controller, 
a parallel shaft gearbox, a planetary gearbox, and a magnetic powder brake, as illustrated 
in Figure 6. During the experiments, all faulty gears were first-stage active wheels with 
artificially created faults. The data were captured at a theoretical input shaft speed of 1000 
rpm, with a sampling frequency of 20.48 kHz. The resulting vibration signals, displayed 
in Figure 7, demonstrate the impact of noise, which obscures the periodic shock compo-
nents usually visible in time-domain diagrams, with minimal variation in signal ampli-
tude. 

 
Figure 6. Wind turbine drive system fault simulation test bench. Figure 6. Wind turbine drive system fault simulation test bench.
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5. Experiments and Analyses
5.1. Experimental Results and Analysis

For each bearing vibration signal state, 40 samples were collected, with 10 designated
as training samples and the remainder as test samples, resulting in 40 training and 120
test samples. The test sample sequence is organized sequentially: normal state samples
(1–30), inner ring failure samples (31–60), outer ring failure samples (61–90), and rolling
element failure samples (91–120). Following the methodology outlined in this paper,
the training and test samples undergo separate processing. Firstly, the vibration signal
undergoes singular value decomposition (SVD), selecting the first nine maxima from the
singular value sequence to construct the visibility signal. Subsequently, the Laplace matrix
is computed for graph Fourier transform (GFT). Following this, characteristic parameters
are computed for each sample using Equation (6). Finally, the Marxian distance is employed
to measure the similarity between test and training samples. The diagnostic results are
presented in Figure 8. In Figure 8, subplots (a) to (d) represent the Marxian distances
(MD1 to MD4) between the test sample sequence and the training samples for the normal
state, inner ring fault, outer ring fault, and rolling body fault, respectively. Each subplot
of Figure 8 exhibits noticeable distinctions between test samples of different states, with
minimal distances observed between samples of the same fault state. This suggests that the
fault diagnosis method proposed in this paper is adept at distinguishing between different
bearing faults.
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Following step 5, the first 30 test samples with the smallest distances in each subplot are
identified and deemed to share the same fault state as the training samples. Subsequently,
in Figure 8a, the martingale distances between the test samples in sequences 1–30 and the
training samples for the normal state correspond to the first 30 minimum values. Thus, the
state category is identified as the normal state. Similarly, in Figure 8b–d, the test samples in
sequences 31–60, 61–90, and 91–120 are classified as inner ring faults, outer ring faults, and
rolling body faults, respectively. The classification results obtained are entirely consistent
with the actual conditions, with a recognition accuracy of 100% for the test set.

Similar to the bearing fault diagnosis experiment, 40 samples were collected for each
state of the gear vibration signal and split into training and test sets in a 1:3 ratio. The
test samples are organized into sequences representing the normal state (1–30), wear fault
(31–60), crack fault (61–90), and missing tooth fault (91–120) conditions. The diagnostic
results obtained using the proposed method are illustrated in Figure 6. Subplots (a) to
(d) display the Marxist distances (MD1 to MD4) between the test sample sequences and
the training samples for the normal state, wear fault, crack fault, and missing tooth fault,
respectively.

Based on Figure 9a–d, the test samples in sequences 1–22, 24–30, and 120 are identified
as the normal state, with sequences 31–60 as wear fault, sequences 61–90 as crack fault, and
sequences 14, 91–101, and 103–120 as missing tooth fault. These classifications align with
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the actual conditions. The average recognition accuracy of the test set is 98.33%, suggesting
that the fault diagnosis method proposed in this paper is effective for diagnosing gear
faults.
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In the proposed method, only the quantity of singular values needs to be manually
specified. Varying the number of singular values utilized to construct the viewable rep-
resentation results in fluctuations in the recognition rate of the proposed method. This
indicates that the extraction of effective fault information is influenced by the number of
singular values employed in constructing the graph signal. The correlation between the
correct recognition rate and the number of singular values is depicted in Figure 10, derived
from an extensive series of repeated experiments.
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Analysis of Figure 10 reveals a clear trend: as the number of singular values used
increases, the recognition accuracy of gear faults gradually improves. However, this
upward trajectory peaks at 18 singular values, where recognition accuracy reaches its
zenith and remains stable. Beyond this point, further increases in the number of singular
values lead to a gradual decline in recognition accuracy. Surprisingly, even when utilizing
the first 200 singular values, the accuracy rate remains notably high. This observation
suggests a relatively loose selection criterion for the number of singular values in our
method, with only the first 18 singular values utilized in the diagnosis results depicted in
Figure 8.

Examining the characteristics of the singular value sequence, it becomes evident that
the initial larger values primarily represent the signal’s main components. Consequently,
when too few singular values are inputted into the VG algorithm, the resulting graph signal
lacks sufficient fault information to comprehensively describe the gear’s fault characteristics.
Conversely, an excessive number of singular values, particularly those representing noise
components, can saturate the graph signal with limited fault information and potentially
introduce interference, significantly increasing computational effort and time consumption.
Therefore, constructing the viewable signal with only the initial larger singular values,
which encapsulate the main feature information, ensures a comprehensive depiction of the
gear’s fault state, mitigates noise interference, and minimizes computational resources and
time consumption.

5.2. Comparison Experiment 1: Effect of Singular Value Topological Relationships on Diagnosis
Results

To evaluate the superiority of the method proposed in this paper over traditional
approaches that neglect the inter-relationship between singular values, we compare it with
two such methods. Method I [7] entails constructing the original vibration signal into a
Hankel matrix, followed by utilizing the complete sequence of singular values of the matrix
as eigenvectors. In Method II [8], the vibration signal undergoes decomposition via the
empirical mode decomposition (EMD) algorithm. Subsequently, the top k intrinsic mode
functions (IMFs) with an accumulation percentage over 90% are selected to construct the
spatial state matrix in the time–frequency domain, with the singular values of the state
matrix serving as eigenvectors.

In this comparative experiment, we employ a gear fault dataset for testing, with a
training-to-test sample ratio of 1:3. The Support Vector Machine (SVM) algorithm from
the MATLAB classification toolbox is employed to train and classify the feature vectors
constructed by the two traditional methods. The best classification among ten trials is
selected as the result. Confusion matrices of the test sets for Method I and Method II are
presented in Figures 11a and 11b, respectively.
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Figure 11. Diagnostic results of Method 1 and Method 2. (a) Method 1; (b)Method 2.

Observing Figure 11 reveals that the two traditional methods, which overlook the
topological relationship of singular values, exhibit more misclassifications in their diagno-
sis results. Compared with the method proposed in this paper, their average accuracy is
reduced by 5.83% and 10.83%, respectively. This deficiency stems from Method 1’s direct
utilization of the singular value sequence as the feature vector and Method 2’s acquisi-
tion of a more refined singular value sequence via construction of the time–frequency
domain state matrix. However, both approaches fail to fully harness the fault information
embedded within the singular value sequence. In contrast, the method proposed in this
paper incorporates the interdependence between singular values to extract hidden fault
information, resulting in a more comprehensive understanding of faults.

Furthermore, examination of Figures 8 and 10 reveals that all three methods accurately
identify wear faults and crack faults. However, misclassifications occur in diagnosing
normal conditions and missing tooth faults. Notably, the misclassification results for these
two fault types are reciprocal, as evident in Figure 10. This phenomenon is elucidated by
Figure 12, which illustrates the first 30 singular values in the sequence of singular values of
vibration signals for different gear fault states.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18 
 

 

Figure 11. Diagnostic results of Method 1 and Method 2. (a) Method 1; (b)Method 2. 

Observing Figure 11 reveals that the two traditional methods, which overlook the 
topological relationship of singular values, exhibit more misclassifications in their diag-
nosis results. Compared with the method proposed in this paper, their average accuracy 
is reduced by 5.83% and 10.83%, respectively. This deficiency stems from Method 1’s di-
rect utilization of the singular value sequence as the feature vector and Method 2’s acqui-
sition of a more refined singular value sequence via construction of the time–frequency 
domain state matrix. However, both approaches fail to fully harness the fault information 
embedded within the singular value sequence. In contrast, the method proposed in this 
paper incorporates the interdependence between singular values to extract hidden fault 
information, resulting in a more comprehensive understanding of faults. 

Furthermore, examination of Figures 8 and 10 reveals that all three methods accu-
rately identify wear faults and crack faults. However, misclassifications occur in diagnos-
ing normal conditions and missing tooth faults. Notably, the misclassification results for 
these two fault types are reciprocal, as evident in Figure 10. This phenomenon is eluci-
dated by Figure 12, which illustrates the first 30 singular values in the sequence of singular 
values of vibration signals for different gear fault states. 

0 5 10 15 20 25 30
Order

40

60

80

100

120

140

160
Normal
Wear
Crack
Missing tooth

Si
ng

ul
ar

 v
al

ue

 
Figure 12. Singular value sequence of gear vibration signal in different states. 

Figure 12 clearly demonstrates that the sequence of singular values for the normal 
state and missing tooth fault is closely aligned. This proximity contributes to the subpar 
classification performance when directly utilizing singular values as feature vectors to dis-
cern the normal state from the missing tooth fault. On the other hand, Method 2 relies on 
the decomposition quality of the EMD algorithm, which is more susceptible to noise. Con-
sequently, the phenomenon of the impact signal amplitude decaying and increasing is less 
discernible amidst the influence of noise in the missing tooth fault samples. This circum-
stance results in mixed component information within the IMF components, thereby caus-
ing a significant number of misclassifications in the diagnosis outcomes of Method 2. 

5.3. Comparison Experiment II: The Influence of the Composition Method on the  
Diagnosis Results 

The inherent graph structure effortlessly captures the correlations between data ele-
ments by establishing edges between each pair of nodes. Leveraging this feature, fault 
information characterized by singular values can be further extracted by analyzing the 
graph signals with singular values as input using the graph signal processing (GSP) tech-
nique. However, since different methods of composition yield graph signals with distinct 
structures, Comparison II will focus on the performance of utilizing various composition 
methods in fault diagnosis. 

Figure 12. Singular value sequence of gear vibration signal in different states.

Figure 12 clearly demonstrates that the sequence of singular values for the normal
state and missing tooth fault is closely aligned. This proximity contributes to the subpar
classification performance when directly utilizing singular values as feature vectors to
discern the normal state from the missing tooth fault. On the other hand, Method 2 relies
on the decomposition quality of the EMD algorithm, which is more susceptible to noise.
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Consequently, the phenomenon of the impact signal amplitude decaying and increasing
is less discernible amidst the influence of noise in the missing tooth fault samples. This
circumstance results in mixed component information within the IMF components, thereby
causing a significant number of misclassifications in the diagnosis outcomes of Method 2.

5.3. Comparison Experiment II: The Influence of the Composition Method on the Diagnosis Results

The inherent graph structure effortlessly captures the correlations between data el-
ements by establishing edges between each pair of nodes. Leveraging this feature, fault
information characterized by singular values can be further extracted by analyzing the
graph signals with singular values as input using the graph signal processing (GSP) tech-
nique. However, since different methods of composition yield graph signals with distinct
structures, Comparison II will focus on the performance of utilizing various composition
methods in fault diagnosis.

Numerous techniques exist for converting discrete sequences into graph signals. For
instance, Wen et al. [22] proposed a method of constructing singular values as complete
graphs to capture the fault characteristics of early failures in rolling bearings by encapsulat-
ing the long-term correlation between singular values. These graphs assume the existence
of edge connections between all nodes. Conversely, the road graphs employed in the prior
literature [13,14] represent a simpler class of graphs that only account for edge connections
between neighboring nodes. In the forthcoming Comparison Experiment 2, these two com-
position methods will be juxtaposed with the Visibility Graph (VG) algorithm. In Method 3,
singular values are depicted as complete graphs, with the weights of the adjacency matrix
determined by the Euclidean distance between nodes. Conversely, in Method 4, singular
values are depicted as road graphs. The remaining settings of both methods align with
those outlined in this paper. The resulting confusion matrices of the test set are illustrated
in Figures 13a and 13b, respectively.
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Upon comparing Figure 11 with Figure 13, it becomes evident that both Method
3 and Method 4 exhibit a modest improvement in diagnostic efficacy compared to the
traditional method, which overlooks the topological relationship between singular values.
However, misclassifications still predominantly occur in the normal state and missing tooth
fault categories. This observation suggests that although Method 3 and Method 4 capture
the interdependence between some singular values through the construction of complete
graphs and road graphs, respectively, they fail to fully exploit the interdependence between
singular values. This limitation arises from the simplistic edge connection rules defined
and the complete disregard for differences among the singular values. Consequently, the
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diagnostic performance enhancement achieved by these methods is inferior to that of the
approach presented in this paper.

5.4. Comparison Experiment 3: The Influence of Composition Elements on the Diagnosis Results

The viewable signal has the capability to inherit certain characteristics of the original
input sequence [23]. Consequently, employing different inputs will yield viewable signals
that capture distinct fault information. Hence, Comparison Experiment 3 will scrutinize the
impact of utilizing different inputs to construct the viewable signal on diagnosis outcomes.
Moreover, extending the application of viewable signals to the domain of fault diagnosis,
Chen et al. [24] introduced a method wherein the original vibration signal is directly
employed as a viewable signal. The information entropy of the eigenvalue spectrum is
then extracted as a fault feature for rolling bearing fault diagnosis. To this end, Method 5
was adopted as a comparative test in Comparison Experiment 3: the raw vibration signal
of the gear served as the input for the Visibility Graph (VG) algorithm, while other settings
remained consistent. The diagnosis results are delineated in Figure 14.
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Figure 14. Diagnostic results of Method 5. (a) MD1, (b) MD2, (c) MD3, and (d) MD4. 
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From Figure 14, it is apparent that Method 5 exhibits significant overlap in diagnosis
results between the normal state and missing tooth fault categories, indicating the poorest
diagnostic performance. Further analysis of this phenomenon reveals that the original
vibration signal harbors substantial noise, wherein high-frequency noise components over-
shadow the main signal components. Consequently, a considerable amount of irrelevant
noise information is incorporated into the constructed viewable signal, resulting in un-
satisfactory diagnostic efficacy. This outcome starkly contrasts with methods employing
singular values to construct the graph signal, underscoring the unsuitability of using the
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original vibration signal for constructing the viewable signal in fault diagnosis amidst a
noisy background.

For ease of comparison, Table 1 presents the comparative results of the five methods
alongside the approach proposed in this paper. Notably, the proposed diagnostic method
achieves the highest recognition accuracy across the four gear fault states. In contrast to
Method 1 and Method 2, this method leverages the graph structure to capture the topologi-
cal relationship between singular values, effectively extracting fault information embedded
within their interdependence, thus constructing more comprehensive and reliable feature
parameters. Moreover, compared with Method 3 and Method 4, the proposed approach
demonstrates superior retention of the structural features of the singular value sequence,
thereby minimizing the loss of fault information concealed within the singular values.
Finally, juxtaposed against Method 5, it is evident that constructing the viewable signal
solely from main singular values containing feature information can circumvent noise
component interference, enhancing robustness to noise and improving fault diagnosis
accuracy.

Table 1. Fault classification results based on different methods.

Fault Type Recognition Accuracy/%
Method 1 Method 2 Method 3 Method 4 Method 5 Proposed Method

Normal 86.67 83.33 86.67 90.00 60.00 96.67
Wear 100.00 100.00 96.67 96.67 100.00 100.00
Crack 100.00 100.00 100.00 100.00 100.00 100.00

Missing tooth 83.33 66.66 90.00 93.33 76.67 96.67
Average 92.50 87.50 93.33 95.00 84.17 98.33

To further validate the efficacy of the proposed method for diagnosing under condi-
tions of strong noise, white noise is introduced into the gear signal to simulate the pervasive
noise pollution prevalent in industrial environments. The outcomes of augmenting the
signal with varying signal-to-noise ratio noises (−6 dB to 9 dB) for diagnosis, utilizing
the method presented in this paper alongside the two compared methods, are depicted in
Figure 15. It is noteworthy that the experimental setup maintains a consistent ratio of 1:3
for the training set to the test set.
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Figure 15 illustrates a decline in accuracy across all three methods as the signal-to-
noise ratio diminishes, exhibiting a notable reduction compared to pre-noise addition
conditions. However, the proposed method consistently outperforms the comparison
methods, maintaining a superior performance. Even at a signal-to-noise ratio of −6 dB, the
proposed method achieves a recognition accuracy of 87.5%, surpassing the comparison
methods by 7.5% and 17.5%, respectively. This underscores the robustness of the method
presented in this paper, which retains its efficacy in ensuring accurate diagnosis even under
conditions of pronounced noise.

6. Conclusions and Future Works

To accurately discern the operational state of wind turbine gearboxes, this study
presents a novel gearbox fault diagnosis approach founded upon singular value decompo-
sition (SVD) and graph Fourier transform (GFT), augmented by the integration of graph
signal processing techniques. Addressing the limitations of conventional methods, which
overlook the inter-relationships between singular values and consequently fail to extract
comprehensive fault information from vibration signals, our method constructs viewable
signals from the singular value sequences of gearbox vibration signals. Leveraging the in-
herent graph structure, the approach adeptly captures the topological relationships among
singular value nodes, thereby uncovering hidden fault information.

Experimental evaluations conducted on two distinct datasets affirm the efficacy of the
proposed method in gearbox fault diagnosis, achieving recognition accuracies exceeding
98% in both bearing and gear fault diagnoses. Comparative analyses against traditional
methods underscore the superior accuracy in identifying fault types, validating the superi-
ority of our proposed approach. Furthermore, under varying signal-to-noise ratios, our
method consistently demonstrates higher recognition accuracy and robustness compared
to traditional methods, affirming its efficacy and generalizability.
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