
Citation: Wang, T.; Chen, K.; Zheng,

Z.; Guo, J.; Zhao, X.; Zhang, S.

PrivShieldROS: An Extended Robot

Operating System Integrating

Ethereum and Interplanetary File

System for Enhanced Sensor Data

Privacy. Sensors 2024, 24, 3241.

https://doi.org/10.3390/s24103241

Academic Editors: Wenbing Zhao and

Pan Wang

Received: 17 April 2024

Revised: 6 May 2024

Accepted: 11 May 2024

Published: 20 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

PrivShieldROS: An Extended Robot Operating System
Integrating Ethereum and Interplanetary File System for
Enhanced Sensor Data Privacy
Tianhao Wang 1, Ke Chen 1, Zhaohua Zheng 1,2,* , Jiahao Guo 3, Xiying Zhao 1 and Shenhui Zhang 4

1 School of Cyberspace Security (School of Cryptology), Hainan University, Haikou 570228, China;
wangtianhao@hainanu.edu.cn (T.W.); chenk@hainanu.edu.cn (K.C.); zhaoxiying@hainanu.edu.cn (X.Z.)

2 College of Intelligence and Computing, Tianjin University, Tianjin 300134, China
3 College of International Tourism and Public Administration, Hainan University, Haikou 570228, China;

20223008041@hainanu.edu.cn
4 School of Cyberspace Security, Shanghai Jiao Tong University, Shanghai 200240, China;

freak01716@sjtu.edu.cn
* Correspondence: zhengzhaohua@hainanu.edu.cn

Abstract: With the application of robotics in security monitoring, medical care, image analysis, and
other high-privacy fields, vision sensor data in robotic operating systems (ROS) faces the challenge
of enhancing secure storage and transmission. Recently, it has been proposed that the distributed
advantages of blockchain be taken advantage of to improve the security of data in ROS. Still, it has
limitations such as high latency and large resource consumption. To address these issues, this paper
introduces PrivShieldROS, an extended robotic operating system developed by InterPlanetary File
System (IPFS), blockchain, and HybridABEnc to enhance the confidentiality and security of vision
sensor data in ROS. The system takes advantage of the decentralized nature of IPFS to enhance
data availability and robustness while combining HybridABEnc for fine-grained access control. In
addition, it ensures the security and confidentiality of the data distribution mechanism by using
blockchain technology to store data content identifiers (CID) persistently. Finally, the effectiveness of
this system is verified by three experiments. Compared with the state-of-the-art blockchain-extended
ROS, PrivShieldROS shows improvements in key metrics. This paper has been partly submitted to
IROS 2024.

Keywords: robot operating system (ROS); security of visual sensor data privacy; interplanetary file
system (IPFS); HybridABEnc; blockchain

1. Introduction

With the wide application of robot technology in various scenarios, the data security
and privacy protection of the robot operating system (ROS) becomes increasingly impor-
tant. Here, we pay particular attention to the importance of visual sensor data in ROS,
which provides ROS with a wealth of information about its surroundings, including object
recognition, navigation, and obstacle avoidance. Especially in the field of high privacy
protection needs, such as home services, personal care, security detection, and medical
assistance, the secure storage and access control of sensitive information collected by vision
sensors have become an urgent problem. However, the existing ROS framework was not
designed with sufficient consideration for the security of this data, resulting in the problem
of data being easily intercepted or tampered with during transmission and storage.

In exploring solutions to the ROS data security problem, we looked at the AuthROS
system proposed by other researchers [1]. The system proposes an innovative approach
to enhance the security of data exchange and sharing within ROS systems by integrating
Ethereum blockchain technology and the SM algorithm family. AuthROS establishes a

Sensors 2024, 24, 3241. https://doi.org/10.3390/s24103241 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1525-2342
https://doi.org/10.3390/s24103241
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103241?type=check_update&version=1

Sensors 2024, 24, 3241 2 of 25

secure data-sharing framework for ROS by implementing synchronous service-based RPC
communication, subject-based asynchronous data flow messaging, and parameter server-
based data storage. While AuthROS has successfully enhanced the security of ROS vision
sensor data sharing, it has encountered limitations in addressing more complex privacy
protection needs, especially in high-throughput application scenarios where blockchain
technology reduces data processing efficiency and increases operational costs. In addition,
AuthROS falls short in providing a detailed and flexible user authentication and authoriza-
tion mechanism, which is essential to ensure that only authorized users can access specific
sensitive information.

Therefore, we propose a new system scheme to solve the problem of data security
storage and access control of ROS vision sensor data in highly privacy-protected scenarios.
Our proposed system integrates blockchain technology, Interplanetary File System (IPFS),
and attribute-based hybrid encryption (HybridABEnc), and specifically considers the
characteristics of vision sensor data. This approach aims to strengthen the security and
privacy of vision sensor data storage, ensuring that only authorized users can access specific
sensitive information, thus effectively addressing the challenges that ROS currently faces
in a high-privacy environment. With this integrated approach, we can better protect the
sensitive data collected by vision sensors in high-privacy environments while maintaining
the efficiency and operability of the system. The comparison of PrivShielROS and AuthROS
frameworks is shown in Figure 1.

How to achieve a more secure and private
transmission and storage method of vision

sensor data in robot operating system?

PrivShieldROSAuthROS

ROS Node ROS Node

da
ta1

da
ta2

data1data2

da
ta

data

C
ID

C
ID

data

data

ROS Node ROS Vision Sensor ROS NodeROS Node

Blockchain

Blockchain

High storage costs

Figure 1. The figure on the left shows the AuthROS framework, which stores data directly on the
blockchain with significant resource consumption. Therefore, we adopted IPFS to store the data
and store the CID of the data on the blockchain, thus greatly reducing the resource overhead of the
blockchain, and the PrivShieldROS framework is shown on the right.

In this system, the application of blockchain technology not only ensures the im-
mutability and transparency of the private data in the vision sensor but also greatly reduces
the risk of data being illegally modified or leaked. This risk reduction is due to the decen-
tralized nature of the blockchain, in which data is not stored on a single server or location
but is dispersed across multiple nodes of the network. Therefore, even if part of the node is
damaged or fails, the rest of the system can still operate normally, thus ensuring the security

Sensors 2024, 24, 3241 3 of 25

and integrity of the vision sensor data. In addition, our solution utilizes the distributed
network architecture of IPFS to provide a durable and efficient storage solution for data
generated by vision sensors. IPFS is a distributed file storage system that allows users
to efficiently store and access files, applications, and data in a decentralized manner. By
decentralizing data storage across nodes worldwide, IPFS effectively overcomes the single
point of failure and scalability limitations faced by traditional centralized storage systems.
In IPFS, each piece of data is identified by a unique hash value, ensuring efficient and
accurate retrieval and access even if the data is distributed across different network nodes.

In addition, in order to achieve accurate control and protection of sensitive vision
sensor data, we also introduce key policy-based attribute encryption (KP-ABE) technology,
which enables system administrators to establish access control policies according to
user attributes so as to achieve accurate control of sensitive data. In this system, data
privacy protection and access control no longer rely on the traditional user name and
password authentication mechanism but develop attribute-based access control. This
approach provides greater flexibility and security because even if the user’s credentials
are compromised, individuals who do not meet the attribute requirements will still be
unable to access the encrypted vision sensor’s private data information. This ensures that
only users who meet certain attribute conditions can decrypt and access the encrypted
data content, thus enhancing the security and flexibility of private data access. To further
improve the security and processing efficiency of the system, we have adopted a hybrid
attribute encryption scheme that combines KP-ABE and Advanced Encryption Standard
(AES). In this scheme, KP-ABE is specifically designed to encrypt symmetric keys critical to
data access, while AES is used to encrypt the data itself. As AES is an efficient symmetric
encryption algorithm, this hybrid encryption method ensures the security of the system and
greatly improves its encryption efficiency. This strategy not only enhances data security
but also simplifies the encryption process. In this hybrid model, even if the KP-ABE
encryption attribute key is partially compromised, an unauthorized user cannot obtain
the AES key and, therefore, cannot decrypt the stored or transmitted vision sensor privacy
data. Furthermore, even if an attacker gains access to some encrypted data, they still
cannot access the actual content without the proper KP-ABE attributes, thus ensuring the
confidentiality and integrity of the data. The architecture provides robust and flexible data
protection mechanisms that transcend the limitations of traditional security models and
adapt to today’s dynamic and highly fragmented digital environment.

The advantages of our system are mainly reflected in the following aspects: it provides
a safe, efficient, and reliable storage solution for the private data of vision sensors generated
in the ROS environment; it ensures data immutability and transparency through the
recording of the CID on the blockchain; and the multilevel security protection mechanism
integrating AES and KP-ABE provides strict security protection and access control for
highly private data in ROS vision sensors.

The contributions can be summarized as follows:

(1) We propose a new framework and further develop a blockchain-extended robot
operating system that leverages distributed storage technologies (IPFS), enhanced
attribute-based encryption for fine-grained access control of private data from visual
sensors, and distributed authentication mechanisms for secure user authentication.
Enhanced security for user authentication ensures the security and privacy of data
collected by robotic vision sensors when stored and accessed.

(2) By combining blockchain technology with the Interplanetary File System (IPFS),
leveraging the content-adding mechanism of IPFS and the immutability of blockchain,
we provide a more secure and reliable storage solution for sensitive vision sensor data
in ROS environments.

(3) By integrating KP-ABE with AES, the attribute-based HybridABEnc mechanism not
only achieves fine-grained access control of vision sensor privacy data, ensuring
that only users meeting specific attributes can decrypt and access the encrypted
vision sensor data, but also enhances the encryption efficiency for processing vision

Sensors 2024, 24, 3241 4 of 25

sensor data [2]. This significantly improves the security of private data, ensuring its
protection even in complex ROS application scenarios.

The rest of this paper is organized as follows: Section 2 reviews relevant studies;
Section 3 formalizes our approach and describes our architectural design in detail; Section 4
analyzes the experimental results thus demonstrating the feasibility and benefits of the
mechanism. The paper concludes with a summary of these findings.

2. Related Work

In this section, we review the work in the literature on blockchain, the distributed data
system IPFS, and the application of attribute encryption in robotic operating systems (ROS).
These studies form the theoretical and technical basis for our proposed system.

Recent research demonstrates diverse advances and applications in robotic operating
systems (ROS) and blockchain technology convergence. Zhang et al. bridge ROS and the
Ethereum blockchain through the Ros-Ethereum tool, providing AuthROS, a new solution
for secure data sharing among robots. This solution uses smart contracts and SM encryption
technology to ensure the security of data transmission and the immutable nature of private
data flows [1,3]. Mallikarachchi et al. implemented the collaborative task management of
different types of robots through the Swarm Contracts smart contract framework, marking
the first practical application of ROS integration with the Ethereum blockchain while main-
taining interoperability and trust [4]. Roy et al. combined cloud computing and blockchain
technologies to use UAVs and unmanned ground vehicles to evaluate unmanned aerial
vehicles’ safe coordination and autonomous surveillance capabilities, highlighting the
importance of multi-robot coordination and modular robots [5]. Similarly, Salimi et al. have
proposed a multi-robot system framework built on the Hyperledger Fabric blockchain
platform. By implementing blockchain authentication and smart contracts among robots,
they ensure the security and efficiency of the collaborative process while also exploring
the potential and importance of applying blockchain technology in industrial environ-
ments [6]. Zhang et al. review current innovative architectures and technologies applicable
to robotic systems and discuss existing technical challenges and preparations for advancing
distributed robotic systems [7]. Salimi et al. describe the integration of ROS 2 with the
Hyperledger Fabric blockchain, emphasizing the importance of enabling secure data aggre-
gation and control in autonomous robotic systems [8]. Morón et al. integrated blockchain
technology with the UWB positioning system to improve the security and credibility of
multi-robot systems [9]. In the study by Fu et al., the application of Hyperledger Fabric
blockchain technology for remotely operated mobile robots was explored, with a particular
focus on integrating this technology with ROS 2 systems [10]. Through this integration, the
research demonstrates the potential of blockchain technology to improve the security and
auditability of mobile robot operations. Keramat et al. demonstrated the integration of ROS
2 with IOTA’s smart contract platform. This novel integration provides a more scalable and
partition-tolerant DLT solution for multi-robot systems with intermittent connectivity [11].
These studies not only extend the application of ROS in high-level decision-making and
secure communication but also provide new solutions for trust and security in distributed
robot systems, demonstrating the wide application and potential of blockchain technology
in robot systems.

However, existing blockchain technology may limit the performance and scalability
of multi-robot systems due to its inherent high latency and resource consumption during
implementation. To this end, we combine blockchain with IPFS to optimize multi-robot
collaboration systems. In application, IPFS can improve performance and provide better
content services. For example, Y. Chen et al. proposed research on optimizing the IPFS
structure through a triple copy and erasure code storage scheme [12]. Onwubiko et al.
proposed a blockchain-based solution to the digital twin’s information security and trust
challenges. The solution integrates smart contracts and IPFS to enhance asset data’s security
and transmission efficiency [13]. In addition, Sonkamble et al. have introduced a new type
of healthcare data management architecture based on blockchain and IPFS. By applying

Sensors 2024, 24, 3241 5 of 25

rigorous algorithms and smart contracts, they ensure secure storage, access control, and
privacy protection of electronic health records (EHRs) [14]. In a development related to
secure file sharing, M. Steichen et al. introduced aclIPFS, a system that combines IPFS
and Ethereum smart contracts. It uses Ethereum smart contracts to manage access rights
to achieve secure access rights management [15]. In the field of auto insurance claims,
Chen et al. designed a new auto insurance claims system by integrating blockchain and
IPFS technology. They used encryption technology such as ECDSA to ensure the security
and integrity of data, successfully solving the challenges of insurance fraud and data
traceability and reducing storage costs [16]. Similarly, Sangeeta et al. applied blockchain
and IPFS to road safety monitoring and significantly improved the security, data integrity,
and economic efficiency of monitoring data by persisting data hash value storage and
adding a keyword search function [17]. Additionally, Y. Chen and M. Steichen’s research
combines blockchain with IPFS to improve storage performance and interactivity. N.
Nizamuddin et al. proposed a blockchain-based solution for document sharing and version
control, enabling multi-user collaboration and tracking changes [18]. However, there is no
explicit mention of encryption protections for document content or how to manage and
control user access to documents. H. Hasan et al. ensured the originality and authorship
of online books and documents by combining IPFS and Ethereum smart contracts [19]. In
addition, R. Kumar et al. designed a blockchain storage model based on IPFS to solve the
efficiency problem of storing and accessing transactions in the blockchain network [20].
The research work of these scholars has realized solutions for specific application scenarios
based on blockchain and IPFS. Still, there is no particular emphasis on the security of the
data itself, and there is no good solution for controlling access rights.

Although existing research provides architectures for implementing specific functions
on blockchain and IPFS, most studies have yet to emphasize the security of the data itself
and the effective enforcement of permission controls. Given this, the fusion application of
attribute encryption becomes the focus of our consideration. For example, X. Chen et al.
proposed an attribute-based anti-quantum signature technology (AQ-ABS) aimed at anti-
quantum computing attacks, which is used for secure sharing of electronic medical records
(EMR) and combined with blockchain [21]. By analyzing decentralized storage and data
encryption, Van-Duy Pham et al. built a storage system that integrated the IPFS network,
attribute-based encryption (ABE), and MA-ABE encryption technology and realized the
secure storage of data by integrating Ethereum blockchain [22]. However, their approach
does not specifically explain how to revoke or modify access for specific users or entities
to address changing requirements. To address these evolving data security and privacy
needs, Kallapu et al. have developed a new, blockchain-based, attribute-aware encryption
approach. This method combines attribute encryption technology and access control
policies designed specifically for cloud data, thus significantly improving the security level
of data processing and privacy protection [23]. Tao et al. proposed a medical file-sharing
scheme that combines blockchain and decentralized attribute encryption technology to
achieve fine-grained access control and ensure data privacy and security [24]. Aiming at
the low efficiency and inflexibility of traditional attribute encryption, Guo et al. introduced
an efficient, traceable, and dynamic access control attribute encryption scheme (table-
DAC), which is supported by blockchain technology and achieves more reliable data access
management [25]. At the same time, X. Lu et al. introduced a fine-grained access control
scheme integrated with CP-ABE, designed specifically for data sharing among IoT devices,
and ensured the security and confidentiality of the information exchange process [26]. In
addition, they propose a fine-grained access control mechanism that combines symmetric
encryption and CP-ABE to ensure the security of IoT data and the effective control of
data owners over visitors. Regarding privacy protection, H. D. Hoang et al. proposed a
scheme called BABEHealth, which uses blockchain and CP-ABE technology to establish
true ownership of electronic medical records for patients [27]. However, CP-ABE, as utilized
in these studies, exhibits limitations regarding access control accuracy for data owners

Sensors 2024, 24, 3241 6 of 25

compared to KP-ABE. This is due to the direct association of the policy with the ciphertext,
which makes it challenging to manage data access flexibly.

Therefore, based on the synthesis of these research findings, our scheme highlights
the utilization of KP-ABE attribute encryption and the integration of the AES algorithm.
Through this dual-layer encryption and access control mechanism designed for vision
sensor data, we offer more secure and manageable private data storage solutions for
various robotic operating environments, particularly those with high privacy requirements
such as home automation, safety monitoring, and medical care. The KP-ABE algorithm
enables precise control by data owners over who can access specific data through defining
access policies, while the combined AES algorithm is employed to encrypt the actual data
content. Both measures reduce the risk of key exposure and establish a robust security
foundation for private information stored in ROS.

3. Materials and Methods

In our system architecture, the initial steps begin with a user interface. This interface
provides an efficient platform for human-computer interaction, enabling users to monitor
and manage the communication process between automated nodes in real-time. The
system adopts the publish/subscribe messaging model, effectively delivering theme-driven
messages across different nodes. Additionally, it boasts excellent data processing and
storage capabilities, allowing it to receive, process, and stably store data. The system can
collect multi-modal sensing data, such as environmental images, and securely store this
data on local storage devices to ensure high data security and reliability.

In the data processing stage, the system applies a hash algorithm to each collected
data sample, generating a unique and securely encrypted hash value. This hash value is
designed to ensure the data’s uniqueness, persistence, and immutability. These generated
hashes are then uploaded to the blockchain via the integrated messaging middleware
within the system, creating a permanent, immutable check code for each data piece, thus
providing additional assurance of the data’s immutability and continuous verifiability.

Regarding data confidentiality, the system employs attribute-based hybrid encryption
(HybridABEnc) to encrypt privacy data from vision sensors. This encryption mechanism
facilitates precise access control by allowing only users who meet specific attribute criteria
to access and decrypt the designated data, thereby significantly enhancing protection
against unauthorized access. The encrypted data is then uploaded to a distributed storage
solution and synchronized to the IPFS network through local IPFS nodes. IPFS employs
content addressing to ensure data consistency and resistance to tampering through content
identifiers (CID).

Finally, the CID value of vision sensor privacy data is recorded on the blockchain,
providing unequivocal evidence of the data’s originality and traceability. Hence, based
on the CID value, the state of the data at any given time can be independently verified,
ensuring that the data remains unchanged since its upload. This process ensures high
levels of security, trust, and reliability throughout the data lifecycle, encompassing storage,
sharing, and utilization. The framework of the system is illustrated in Figure 2.

3.1. Security Mechanism to Ensure Data Privacy and Integrity of ROS Nodes

In the ROS node, we introduce a symmetric encryption mechanism (AES), a key policy-
based attribute encryption mechanism (KP-ABE), a hash digest, and digital signature
technology. The Advanced Encryption Standard (AES) is a symmetric key encryption
algorithm commonly used to quickly and securely encrypt privacy data collected from
vision sensors. Key-Policy Attribute-Based Encryption (KP-ABE) is a form of attribute-
based encryption that associates access control policies with keys to implement fine-grained
access control. In KP-ABE, users possess a specific set of attributes and the corresponding
secret attribute key. The key is generated according to access control policies, which
are expressed as Boolean formulas based on attributes. This approach ensures that only
users whose attributes satisfy the access control policy can decrypt the ciphertext using

Sensors 2024, 24, 3241 7 of 25

their secret attribute key. The encryption mechanism based on key policy attributes is a
flexible tool that can adapt to various data access control requirements. The encryption and
decryption processes are detailed in Algorithms 1 and 2.

ROS Vision Sensor

2.Encrypted Data

Blockchain

ROS Node

1.Hash Summary
Digital Signature

3.
C

ip
he

rt
ex

t
C

ID

5.Service Request

7.Encrypted Data

Original
Data

HybridABEnc Encrypted
Data

Hash
Function

Original
Data

Hash
Summary

6.C
iphertext
C

ID

4.
C

ip
he

rt
ex

t
C

ID

Identity
 Authentication

②② Data ID → Hash Summary

①① Data ID → Data CID

④④ User ID → Digital Signature

Private Key Hash
Summary

Digital
Signature

③③ Data ID → Digital Signature

Message Middleware

Figure 2. The framework of the PrivShieldROS. The system includes two parts: data processing
and storage, and data acquisition and verification. Processes 1, 2, 3, and 4 involve the processing
and storage of data; Processes 5, 6, and 7 are responsible for data acquisition and related validation
operations. In addition, we store the mappings on the blockchain, labeled ➀, ➁, ➂, and ➃, to support
the functionality of the system. The message middleware in the figure is a component that is used
to process and deliver messages. In the distributed system, the message middleware acts as the
bridge of message passing, which enables different components to communicate with each other
asynchronously. The experimental part of rabbitMQ is a kind of message middleware.

3.1.1. Granular Access Control Based KP-ABE

In PrivShieldROS, A represents the access control structure, M is the message, γ is a
set of attributes, PK are the public parameters, MK is the master key, E is the ciphertext, and
D is the decryption key. From the perspective of the framework’s users, it can be divided
into Initialization, Encryption, Key Generation, and Decryption.

The following is the specific algorithm process:
Access tree T. Let T be the tree representing the access structure. Each non-leaf node

of the tree represents a threshold gate, described by its children and a threshold value. If
numx is the number of children of node x and kx is the threshold of node x, 0 < kx ≤ numx.
The threshold is an OR gate when kx = 1. When kx = numx, the threshold gate is an AND
gate. Each leaf node x of the tree is described by the attribute and the threshold kx = 1. The
schematic diagram of the KP-ABE algorithm is shown in Figure 3.

To facilitate the use of access trees, we define some functions. We use parent(x) to
represent the parent of node x in the tree. The function att(x) is defined only if x is a leaf
node and represents the properties associated with the leaf node x in the tree. The access
tree T also establishes the hierarchy among the children of each node, wherein the children
are sequentially numbered from 1 to num. The function index(x) returns the number

Sensors 2024, 24, 3241 8 of 25

associated with node x. Where the index value is uniquely assigned to a node in the access
structure of a given key in any manner.

Algorithm 1 Attribute-Based Encryption: Data Encryption Procedure

1: procedure ENCRYPTDATA
2: data_path← input (“Enter the data path to encrypt”)
3: access_policy← input (“Enter the attribute list”)
4: print (access_policy)
5: access_key← input (“Enter the access control policy”)
6: print(access_key)
7: pk_deserialized← Deserialize (‘pk_serialized.pkl’)
8: mk_deserialized← Deserialize (‘mk_serialized.pkl’)
9: sk← KeyGen (pk, mk, access_key)

10: SerializeAndSave (sk, ‘sk_data’)
11: data← Readdata (data_path)
12: encrypted_data← Encrypt (pk_deserialized, data, access_policy)
13: SerializeAndSave (encrypted_data, ‘encrypted_data’)
14: print (“Encryption complete, encrypted data path”)
15: DeleteData (data_path)
16: print (“Original data deleted”)
17: end procedure

Algorithm 2 Attribute-Based Encryption: Data Decryption Procedure

1: procedure DECRYPTDATA
2: encrypted_data_path← input (“Enter the data path to decrypt”)
3: encrypted_data← Deserialize (‘encrypted_data’)
4: sk← Deserialize (‘sk_data’)
5: decrypted_data← Decrypt (encrypted_data, sk)
6: SaveToData (decrypted_data, ‘decrypted_data’)
7: print (“Decryption complete, decrypted data path: ‘decrypted_data’”)
8: end procedure

Let G1 be the bilinear group of prime order ’p’ and ’g’ be the generator of G1. In addi-
tion, let e: G1 ×G1 → G2 represent bilinear mappings. The safety parameter κ determines
the size of the group. At the same time, define the Lagrange coefficient ∆i,S for i ∈Zp and
the set S of elements in Zp:∆i,S(x) = ∏j∈S,j ̸=i

x−j
i−j . Associate each attribute with a unique

element in Z∗p.

(1) Initialization. Define the property field U = {1, 2, . . . , n}. Now, for each attribute i ∈ U ,
a number ti is selected uniformly at random from Zp. Finally, y is uniformly randomly se-
lected in Zp. The published public argument PK is T1 = gt1 , . . . , T|u| = gt|u| , Y = e(g, g)y.
The master key MK is as follows:

t1, . . . , t|u|, y (1)

(2) Encryption (M, γ, PK) . To encrypt the message M ∈ G2 under a set of attributes γ,
select a random value s ∈ Zp and publish the ciphertext as follows:

E = (γ, E′ = MYs, {Ei = Ts
i }i∈γ) (2)

(3) Key generation (T, MK). The algorithm produces a key that allows the user to decrypt
messages encrypted under a set of attributes γ only if T(γ) = 1. First select the
polynomial qx for each node x (including the leaves) in the tree T. These polynomials
are selected from the root node r in a top-down manner in the following way.

Sensors 2024, 24, 3241 9 of 25

Key Authority

Setup

Master public
Key

Master Private
Key KP-ABE Key

Genaration

Access
Structure

User Private
Key

Key Authority Key Authority

Master public
Key

KP-ABE Encryption

Expected
Attributes

Message Cipher

Master public
Key

User Private
Key

KP-ABE Decryption Message

Figure 3. Schematic diagram of KP-ABE algorithm.

For each node x in the tree, set the degree dx of the polynomial qx to be one less than
the threshold kx for that node, namely the dx = kx − 1. Now, for the root node r, set
qr(0) = y and randomly set the other points dr of the polynomial qr to fully define it. For
any other node x, set qx(0) = qparent(x)(index(x)) and select dx other points at random to
fully define qx. Once the polynomial is determined, for each leaf node x, the user obtains
the following secret values:

Dx = g
qx(0)

ti where i = att(x) (3)

The set of the above secret values constitutes the decryption key D.

(4) Decryption (E, D). The decryption process is specified as a recursive algorithm. First,
a recursive algorithm DecryptNode(E, D, x) is defined. This algorithm takes as input
the ciphertext E = (γ, E′, {Ei}i∈γ), the private key D (assuming the access tree T is
embedded in the private key), and the node x in the tree. It outputs group elements of
G2 or ⊥. Let i = att(x). If node x is a leaf node, then

DecryptNode(E, D, x) =

e(Dx, Ei) = e(g
qx(0)

ti , gs·ti) = e(g, g)s·qx(0), i f i ∈ γ

⊥, otherwise
(4)

Let us discuss the scenario where x is a non-leaf node in the recursion case. For all x
child nodes z, it calls DecryptNode and stores the output as Fz. Let Sx be the set of children
z of any kx size such that Fz ̸=⊥. If no such set exists, then the node is not satisfied and the

Sensors 2024, 24, 3241 10 of 25

function returns ⊥. Otherwise, the following calculations should be performed and the
results returned:

Fx = ∏
z∈Sx

F
∆i.S′x

(0)
z , wherei=index(z)

S′x={index(z):z∈Sx}

= ∏
z∈SX

(
e(g, g)s·qz(0)

)∆i,s′x
(0)

= ∏
z∈Sx

(
e(g, g)s·qparent(z)(index(z))

)∆i,s′x
(0)

(by construction)

= ∏
z∈Sx

e(g, g)s·qx(i)·∆i,s′x
(0)

= e(g, g)s·qx(0) (using polynomial interpolation)

(5)

Now that the function DecryptNode has been defined, the decryption algorithm just
needs to call the function at the root of the tree. If and only if the ciphertext satisfies the
tree, DecryptNode(E, D, r) = e(g, g)ys = Ys. Because E′ = MYs, the decryption algorithm
simply splits out Ys and recovers the message M.

3.1.2. The Integrity and Credibility of the Data

Although HybridABEnc provides the flexibility to encrypt and decrypt privacy data
collected from vision sensors according to access control policies, its mechanism is confined
to the encryption and decryption processes and does not directly provide a means to verify
the integrity and authenticity of the data. We introduce a hash digest as a validation mech-
anism to address this limitation. After the original data is encrypted with HybridABEnc,
we hash the original data and store the resultant hash value on the blockchain as proof of
integrity. The immutable property of the blockchain adds an extra layer of assurance for
the authenticity of the hash value. After decryption, we can recalculate the hash value and
compare it to the hash value stored within the ciphertext, thereby ensuring the integrity of
the original data. Furthermore, we incorporate digital signatures to confirm the sender’s
identity and enhance the system’s security. Digital signatures are commonly used to verify
the identity of the sender of data. They are created by encrypting the summary hash of the
data with the data owner’s private key. This secures not only the integrity and authenticity
of the information but also confirms the sender’s identity and ensures the non-repudiation
of the data sender.

3.1.3. RBE Exchange Framework (ROS-Ethereum)

We have utilized an exchange framework called ROS-Ethereum to bridge ROS and
the blockchain for potential security vulnerabilities in the interaction between ROS and
the blockchain. ROS does not inherently provide the capability to interact directly with the
blockchain. Therefore, through RBE, we have endowed ROS with the ability to interface
with the Ethereum blockchain. RBE employs UDP communication mechanisms, integrates
Ethereum, utilizes the Web3 framework, and incorporates the SM algorithm family to
provide secure and reliable communication capabilities. Furthermore, the framework
allows users to monitor node activity, preprocess messages, and interact with Ethereum
through the Web3 interface, ensuring the reliability and security of data exchange. With
RBE, users can effortlessly invoke smart contracts on Ethereum to facilitate interactions
with the blockchain.

In the ROS node, the system administrator initially generates and discloses system
parameters during the initialization phase. This includes security parameters and the
algorithm parameters used in the encryption mechanisms. Secondly, each user creates a
private key based on their unique attributes. The private key generation algorithm leverages
the user’s attributes and the system’s algorithm parameters to produce the corresponding
private key. Subsequently, the system randomly generates a symmetric key and uses

Sensors 2024, 24, 3241 11 of 25

the symmetric encryption algorithm (AES), along with the key, to encrypt the privacy
data collected from vision sensors, thereby generating the symmetric ciphertext. Before
encryption, the ROS node hashes a summary of the original data to verify its authenticity
and integrity. The system encrypts the symmetric key in policy encryption according to the
attribute set. This attribute set can be composed of attributes such as the user’s age, job
title, organization, etc. Finally, the system encapsulates the encrypted symmetric ciphertext
and encrypted symmetric key into a complete ciphertext packet. Therefore, the final policy
ciphertext consists of the plaintext after encryption and the symmetric key after encryption.
The execution process is illustrated in Figure 4.

ROS Vision Sensor

Access Policy
Attribute Set

Encryption
System

Decrypt Private Key

Symmetric
EncryptionOriginal Data Original

Data

Symmetric
Ciphertext

Symmetric
Key

Hash
Function

System
Parameter

Hash
Summary

H
ash

F
unctionO

ri
gi

na
l

D
at

a

Encryption
Strategy

Symmetric Key

Ciphertext C2

Attribute Set

Ciphertext

Digital
Signature

Ciphertext C1

Figure 4. ROS node part flow chart.

3.2. Blockchain Smart Contracts Integrate with ROS

The integrity and immutability of encrypted files rely on blockchain technology, which
establishes a decentralized distributed ledger shared among all network participants based
on a consensus mechanism. This design eliminates the need for third-party validators,
making the overall system more secure and decentralized. In the ROS-integrated blockchain
system, smart contracts play a central role. They are self-executing contracts deployed on
the blockchain that can operate independently on the network nodes. These contracts are
programmed to self-execute and validate preset conditions and terms automatically. The
associated smart contract is activated when a ROS-based application initiates a transaction
to an Ethereum address and provides the corresponding input parameters. Ethereum
is an open-source, distributed computing platform that supports the development of
decentralized applications (DApps) through its robust smart contract capabilities. It enables
ROS developers to write code directly on the blockchain, allowing for the customization of
decentralized applications for robots or automated systems. Each node in the Ethereum
network possesses a unique Ethereum address (EA) for interactions. In this architecture,
the Ethereum blockchain serves as an immutable data repository and the execution layer
for smart contracts, while the ROS system manages routine robot control tasks, such as
processing sensor data, making decisions, and executing control commands. The smart
contract component of the system is illustrated in Figure 5.

Sensors 2024, 24, 3241 12 of 25

Blockchain

Hash Summary Data CIDDigital Signature

Smart
Contract

Figure 5. Smart contract part diagram.

3.2.1. Consensus Mechanism

Consensus algorithms play a crucial role in ensuring the immutability, automation,
and support for anonymous transactions of blockchain-distributed ledgers. Without these
algorithms, blockchains would be reduced to inefficiently distributed ledgers. Consensus
algorithms are fundamental to the core meaning and value of blockchain technology.
Common consensus algorithms currently include Proof of Work (PoW), Proof of Authority
(PoA), Proof of Stake (PoS), and Practical Byzantine Fault Tolerance (PBFT). Ethereum
is presently utilizing the PoW consensus algorithm, but with the upcoming launch of
ETH2.0, it is poised to transition to the PoS algorithm. The most significant difference
between PoW and PoS lies in their validation methods for blocks. PoW requires mining
operations to validate blocks, which does not guarantee block time, while PoS can achieve
a more predictable block time without the need for mining operations. On the other hand,
PoA validates blocks through pre-authorized nodes without involving mining, facilitating
predetermined block times.

The consensus algorithm aims to solve the problem of maintaining data consistency
among nodes in a distributed system. According to CAP theory, two of the three re-
quirements can be satisfied at most: consistency, availability, and partition fault tolerance.
Therefore, the choice of consensus algorithm must take into account the specific require-
ments of practical application scenarios, as well as the uniqueness of different types of
blockchains. The PoW algorithm obtains the accounting right by competing for computing
power, which ensures that the blockchain network security is mainly mastered on the
nodes with large computing power. This mechanism improves the decentralization and
security of the network to a large extent but at the corresponding cost of sacrificing a certain
transaction processing efficiency. However, for application scenarios with high privacy
requirements, ensuring the system’s security is far more important than pursuing the ulti-
mate efficiency. In contrast, the PoS algorithm determines the accounting right through the
proof of stake, which greatly improves the system’s efficiency but may introduce security
risks due to the concentration of wealth. On the other hand, the PBFT algorithm can ensure
a certain percentage of fault tolerance and performs better than PoW. However, its high
communication cost limits the scalability of the system.

Considering that our system is oriented to large-scale application scenarios with high
requirements for privacy and security, in most cases it does not have extremely strict
requirements for real-time transactions. The PoW consensus algorithm is obviously a more
appropriate choice. Although a part of the efficiency is sacrificed, it greatly improves the

Sensors 2024, 24, 3241 13 of 25

ability of the system to resist attacks and malicious behaviors. It ensures the stable operation
of the system and the security of user privacy information. Therefore, the adoption of the
PoW algorithm is appropriate for our system.

3.2.2. Interactive Program

Interaction mechanisms: The blockchain end automatically retrieves messages for
processing and interaction. Interactions with Ethereum are primarily facilitated through
smart contracts developed using Solidity, a programming language specifically designed
for Ethereum contract development. On the Ethereum platform, after obtaining the CID
value of encrypted data, one employs Solidity to write smart contracts and define structures
for storing data details, such as ‘data ID: data CID’, ‘data ID: data hash summary’, etc. The
functions of these contracts encompass adding and querying data. Upon composing the
contract, we utilize Ethereum’s tool, Remix, to compile and deploy the contract, acquiring
the contract address after deployment. We use Web3.js to connect to the Ethereum network
via the client, employing the contract’s Application Binary Interface (ABI) and address to
instantiate the contract object. We then invoke the contract function to execute a transaction.
Permission control settings ensure only the contract creator or data owner can update data
information. After the transaction is dispatched, it is monitored until confirmation; upon
confirmation, the CID value of the encrypted data is recorded on the Ethereum blockchain.
The relevant algorithms are described in detail in Algorithm 3. The gas consumption of
smart contract deployment is shown in Table 1. The table illustrates the deployment process
of the smart contract and the gas consumption required for three ’store’ function calls. The
differences in gas consumption between the three functions are attributed to the amount
and type of data they process and store and the complexity of the operations involved in
processing these data. The storeDataIdToHashAndSignature function is the most complex
processing data, performs the most complicated operations, and leads to the highest gas
consumption. The storeDataIdToCid function handles the simplest data and uses the least
gas. The storeUserIdToSignature function is in the middle regarding data complexity and
gas consumption. Additionally, three ’read’ functions in the smart contract solely access
local data and thus do not incur any gas consumption. The generation of the hash function
uses the SHA256 algorithm.

Algorithm 3 Smart Contract Algorithm Pseudo-code

1: mapping (uint256⇒ string) dataIdToCid
2: mapping (uint256⇒ string) dataIdToHashAndSignature
3: mapping (uint256⇒ string) userIdToSignature
4: function STOREDATAIDTOCID(dataId, cid)
5: dataIdToCid[dataId]← cid
6: end function
7: function STOREDATAIDTOHASHANDSIGNATURE(dataId, hashandsignature)
8: dataIdToHashAndSignature[dataId]← hashandsignature
9: end function

10: function STOREUSERIDTOSIGNATURE(userId, signature)
11: userIdToSignature[userId]← signature
12: end function
13: function GETDATACID(dataId)
14: return dataIdToCid[dataId]
15: end function
16: function GETDATAHASH(dataId)
17: return dataIdToHashAndSignature[dataId]
18: end function
19: function GETUSERSIGNATURE(userId)
20: return userIdToSignature[userId]
21: end function

Sensors 2024, 24, 3241 14 of 25

Table 1. Smart contract gas consumption.

Name Index Value

Smart contract deployment Gas used 735,980 (0xb3aec)
storeDataIdToCid function Gas used 84,297

storeDataIdToHashAndSignature function Gas used 434,466
storeUserIdToSignature function Gas used 95,174

3.2.3. Formal Verification of Smart Contracts

In this section, our core discussion focuses on ensuring the accuracy and reliability of
smart contract behavior and interactions in the Ethereum blockchain environment. Our
smart contracts are designed to manage data content identifiers (CID), data hashes, and
access to users’ electronic signatures, covering key operations such as adding data records
and querying existing records (See Table 2).

Table 2. Smart contract function abstraction.

Feature State Conversion

storeDataIdToCid Associate the data ID with the
corresponding CID store

Init, Storing, Success,
Fail

Init to Storing: Starts
processing the storage request.
Storing to Success: CID storing

to success.
Storing to Fail: Storing to fail.

storeDataId To-
HashAndSignature

Associate data ID with their
corresponding hash and

signature stores

Init, Storing, Success,
Fail

Init to Storing: Starts
processing the storage request.

Storing to Success: The hash and
signature are successfully stored.

Storing to Fail: Storing to fail.

storeUserIdToSignature Associate the user ID with the
corresponding signature store

Init, Storing, Success,
Fail

Init to Storing: Starts processing
the storage request.

Storing to Success: The signature
is successfully stored.

Storing to Fail: Storing to fail.

getDataCid Retrieve the corresponding CID
based on the data ID

Init, Fetching,
Retrieved, NotFound

Init to Fetching: This starts
the retrieval request.

Fetching to Retrieved: The CID is
successfully retrieved.

Fetching to NotFound: The CID
is not found.

getDataHash Retrieve the corresponding hash
and signature based on the data ID

Init, Fetching,
Retrieved, NotFound

Init to Fetching: This
starts the retrieval request.
Fetching to Retrieved: The

hash and signature
are successfully retrieved.

Fetching to NotFound: The
hash and signature are not found.

getUserSignature Retrieve the corresponding
signature based on the user ID

Init, Fetching,
Retrieved, NotFound

Init to Fetching: This
starts the retrieval request.
Fetching to Retrieved: The

signature is successfully retrieved.
Fetching to NotFound: The

signature is not found.

We adopted a methodology based on the Behavior-Interaction-Priority (BIP) frame-
work to expand the formal verification of smart contracts [28]. As a powerful system design
tool, the BIP framework allows for the construction of complex system models by inte-

Sensors 2024, 24, 3241 15 of 25

grating behavioral models, interaction patterns, and priority rules, thus providing a solid
theoretical foundation for formally verifying smart contracts. In the specific application,
we followed the theoretical guidance of T. Abdellatif and K. Brousmiche [29].

(1) Atomic component definition

Each component function of the smart contract is abstracted as an independent ’atomic
component’ wherein each component defines a clear set of states and the transition con-
ditions between states. For example, the storeDataIdToCid function links data identifiers
with their corresponding CIDs through multiple state phases, such as initialization, pro-
cessing, and successful or failed storage. Similarly, other functions, such as storeDataId-
ToHashAndSignature and getUserSignature, follow a similar logic structure, ensuring
accurate data storage and retrieval. The relevant function abstraction is shown in Table 2.

(2) Interaction model

The interaction model emphasizes the close relationship between storage and retrieval
operations and points out that the normal execution of retrieval functions depends on the
success of previous storage steps. In addition, detailed error-handling logic is integrated
into the model to ensure that when illegal input or permission problems are encountered,
the error situation can be properly fed back to maintain the system’s robustness.

Storage and retrieval: All the retrieval functions (getDataCid, getDataHash getUserSig-
nature) are dependent on the corresponding storage function (storeDataIdToCid store-
DataIdToHashAndSignature, storeUserIdToSignature) successfully executed. After success-
ful storage, the relevant data can be retrieved.

Error handling: All storage and retrieval functions include error handling logic to
ensure that error states are correctly fed back when input is invalid or access is insufficient.

(3) Verify execution

The contract behavior is simulated and verified by constructing exact properties and
logical expressions. We establish four categories of key properties that comprehensively
cover functional verification of smart contracts, error-coping mechanisms, idempotence
guarantees, and system resilience after transaction failure. This includes but is not limited
to verifying the consistency of retrieval results after storage, avoiding misinformation in the
event of storage failure, ensuring the stability of repeated storage operations, and system
resilience in the face of transaction anomalies.

Defining concrete properties and logical expressions, we have defined four categories
of properties that express aspects ranging from basic functional guarantees to error handling
and system recovery:

(1) Store and Retrieve consistency: Ensure that every store operation followed by a search
operation returns the correct stored value.

Attribute A1: After each successful execution of storeFileIdToCid (dataId, cid), the call
to getDataCid (dataId) returns the same cid immediately.

Attribute A2: For every successful execution, storeDataIdToHashAndSignature (dataId
hashAndSignature), call getDataHash (dataId) of the same hashAndSignature return im-
mediately.

Attribute A3: After each successful execution of storeUserIdToSignature (userId,
signature), the call to getUserSignature (userId) returns the same signature immediately.

(2) Storage failure Handling: This ensures that no error or inconsistent data is returned in
the event of a storage failure.

Attribute A4: If the storeFileIdToCid operation fails, subsequent getDataCid calls do
not return the previous cid.

(3) Idempotence of store operations: Determining that repeated operations do not result
in errors or state anomalies.

Sensors 2024, 24, 3241 16 of 25

Attribute A5: The storeFileIdToCid operation on the same dataId keeps the result
consistent even if repeated.

(4) Transaction failure Resilience: Ensures that the system can handle it correctly and
recover consistently if an operation fails.

Attribute A6: If the storeFileIdToCid or storeDataIdToHashAndSignature operation
fails for any reason, the effective operating system does not collapse or prevent further.

After a strict verification process and attribute inspection, the smart contract performs
up to the standard on all the preset attributes A1 to A6. This means that the contract not
only ensures the consistent matching between storage and retrieval operations but also
properly handles the storage failure, effectively realizes the idempotence operation, and
maintains the continuous operation and stability of the system when the transaction is
frustrated, which indicates the reliability and security of the contract. The pseudocode of
the relevant algorithm is shown in Algorithm 4.

Algorithm 4 Formal Verification of Smart Contract

1: enum State {IDLE, STORING, RETRIEVING, SUCCESS, FAILURE}
2: function PERFORMACTION(actionType, key, value)
3: switch (actionType)
4: case STORE_CID:
5: if currentState == IDLE then
6: currentState = STORING
7: storedData[key] = value
8: if storedData[key] == value then
9: currentState = SUCCESS

10: else
11: currentState = FAILURE
12: end if
13: end if
14:
15: case RETRIEVE:
16: if currentState == SUCCESS then
17: currentState = RETRIEVING
18: if storedData.contains(key) and storedData[key] == value then
19: else
20: currentState = FAILURE
21: end if
22: end if
23: currentState = IDLE
24: end function

3.3. IPFS Integration with ROS

When evaluating the cost-effectiveness of blockchain technology at the storage level,
particularly for large-scale data and digital content storage, we introduced the Interplane-
tary File System (IPFS) as a more efficient storage solution. IPFS is a distributed storage
protocol designed to maximize data storage efficiency and minimize file storage redun-
dancy. When integrated with ROS features, the system enables ROS nodes to utilize the
decentralization offered by IPFS. This allows these nodes to share, store, and retrieve files
independently of a central storage server. Consequently, each ROS node becomes not only
an agent executing its assigned tasks but also an IPFS node responsible for storing and
providing data services. This integrated architecture offers several advantages: (a) IPFS
significantly reduces data storage space by storing only one unique instance of a file with
identical content; (b) designed for long-term storage, the IPFS protocol mitigates issues
related to single points of failure and temporary data loss, thereby enhancing the robustness
of robotic systems; (c) for frequently requested data, IPFS improves local data accessibility

Sensors 2024, 24, 3241 17 of 25

by caching requests along previous paths, substantially lowering data retrieval latency and
accelerating response times of robotic systems. Therefore, IPFS has been demonstrated to
be more suitable as a storage platform for data compared to traditional servers. Within this
system, ROS nodes collaborate as part of the IPFS network, ensuring efficient data sharing
and access. The ROS nodes not only collaborate to execute robotic tasks but also provide
mutual support in terms of data storage and retrieval. This facilitates data transfer through
peer-to-peer networking protocols, thereby significantly improving the overall system’s
flexibility, scalability, and decentralization. The relevant algorithms are described in detail
in Algorithm 5.

Algorithm 5 Receive and Publish Data to IPFS

1: procedure RECEIVEANDPUBLISHDATA
2: sock← SOCKET(AF_INET, SOCK_STREAM)
3: BIND(sock, (server_ip, server_port))
4: LISTEN(sock, 1)
5: Print “Waiting for data upload . . . ”
6: while true do
7: connection, address← ACCEPT(sock)
8: data_name← RECEIVE(connection)
9: if not data_name then

10: break
11: end if
12: Print “Received data name: ‘data_name’ ”
13: save_path← JOINPATH(save_directory, data_name)
14: data← OPEN(save_path, ‘wb’)
15: while true do
16: data← RECEIVE(connection)
17: if not data then
18: break
19: end if
20: WRITE(data)
21: end while
22: CLOSE(data)
23: Print “Data ‘data_name’ received successfully”
24: CLOSE(connection)
25: data← OPEN(data_name, ‘rb’)
26: response← POSTTOIPFS(data)
27: if response.status_code = 200 then
28: cid← response.json()[‘Hash’]
29: PUBLISHCID(cid)
30: Print “CID uploaded successfully!”
31: else
32: Print “Failed to upload data.”
33: end if
34: end while
35: end procedure

In a ROS system, we first store the encrypted data collected from vision sensors in
the local data system at the ROS node. Then, employing socket programming, we acquire
the IP address and port number of the IPFS node to establish a TCP connection between
the ROS node and the IPFS node. Once the encrypted data is accessed, it is divided into
appropriately sized chunks to ensure successful transmission over the TCP connection.
These data chunks are then sequentially transmitted to the IPFS node using the TCP
connection and the socket’s send data API. After each data chunk is received by the IPFS
node and its data integrity is confirmed, these chunks are integrated into the IPFS network

Sensors 2024, 24, 3241 18 of 25

through API calls provided by IPFS software (version 0.14.0). This process continues
until all data blocks are sent, received, and stored within the IPFS network. Subsequently,
the TCP connection between the ROS endpoint and the IPFS node is terminated to free
resources. In this manner, the encrypted data collected from vision sensors is successfully
uploaded to the IPFS network and assigned its unique data hash value (CID), facilitating
subsequent data access and sharing.

4. Results

We assess the practicality of the system through three key metrics: the rate of message
sending and receiving in RabbitMQ, the efficiency and stability of HybridABEnc encryption
and decryption processes, and a comparative analysis with the AuthROS system based
on experimental data. The software information for the experimental simulation test is
detailed in Table 3.

Table 3. Configuration information.

Name Version

CPU 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30 GHz (Intel,
Santa Clara, CA, USA)

Memory 16.0 GB
Hard disk NVMe SAMSUNG MZVL2512HCJQ-00BH1

System environment Ubuntu22.04
Programing language Python3.7, 3.10

4.1. Comparison of Functional Features

We carefully analyze and compare the functional characteristics of many related
privacy-sensitive data storage systems in recent years and show our analysis results in
detail in Table 4. It is evident from these comparative data that our system demonstrates
significant advantages in multiple key functional features. This not only proves the effi-
ciency and advancement of our system but also highlights its uniqueness in dealing with
privacy-sensitive information.

Table 4. Comparison of co-energy characteristics of different schemes.

Project Proposal Blockchain-Based
(Decentralized) Based on IPFS Fine-Grained Access

Control Privacy Protection

ref [1] ✔ ✘ ✘ ✔

ref [30] ✘ ✘ ✔ ✔

ref [31] ✔ ✔ ✘ ✔

ref [32] ✘ ✘ ✔ ✔

Proposed scheme ✔ ✔ ✔ ✔

4.2. RabbitMQ Message Sending and Receiving Rate

The RabbitMQ experiments focus on the rates at which messages are sent and received.
To make the experimental results more adaptable, we wrote a Python program to simulate
the process of sending and receiving messages. The sender dispatches 10,000 messages
to RabbitMQ because RabbitMQ addresses the issue of unsynchronized production and
consumption rates through asynchronous calls. Therefore, after sending, the Python
program that receives messages is run to test the rate at which messages are received.
The results obtained from the test and analysis of these 10,000 sets of data are displayed
in Table 5.

Sensors 2024, 24, 3241 19 of 25

Table 5. rabbitMQ test result.

Characters Message Total Total Time (s) Average Processing Rate
(Messages per Second)

producer 10,000 1.105 9049.77
Consumer 1 3750 4.825 777.20
Consumer 2 3750 4.461 840.62
Consumer 3 2500 4.675 534.76

Total 10,000 4.825 2072.54

In our performance test, the producer node sent 10,000 messages to the RabbitMQ
message queue, completing the task in 1.105 s. This demonstrates RabbitMQ’s capacity to
push messages at an exceptionally high rate on the producer side, with an average send rate
of 9049.77 messages per second. This outcome indicates that RabbitMQ producer nodes are
capable of pushing a significant volume of messages to queues within a short timeframe,
suggesting that the system maintains robust performance under high-load conditions.

During the test, we simulated three consumer nodes (Consumer 1, Consumer 2, and
Consumer 3) at the blockchain end to handle the message processing tasks. Throughout the
test period, the three consumer nodes processed 3750, 3750, and 2500 messages, respectively,
with corresponding processing times of 4.825, 4.461, and 4.675 s. Analysis of the test data
reveals average message processing rates for Consumer 1, Consumer 2, and Consumer 3 of
777.20 messages/s, 840.62 messages/s, and 534.76 messages/s, respectively. Collectively,
the three consumer nodes processed 10,000 messages within a span of 4.825 s, achieving an
overall processing rate of 2072.54 messages per second.

In RabbitMQ usage scenarios, the high send rate of the producer stands out as a signif-
icant advantage, enabling the system to receive and queue tasks for processing large-scale
data swiftly. Despite slight variations in processing rates among consumer nodes, the
overall level is maintained at a balanced level, ensuring smooth and efficient message
handling. A detailed analysis of these test data illustrates that our system, which integrates
RabbitMQ, exhibits high throughput and stability in message processing, particularly in
high-concurrency scenarios. This confirms the system’s suitability for high-concurrency
messaging situations. Furthermore, RabbitMQ’s stability and scalability provide a mecha-
nism for our system to adjust resources dynamically in response to fluctuations in message
traffic. For instance, additional consumer nodes can be deployed as necessary to accom-
modate an increased message load, or cluster configuration can be utilized to enhance
redundancy and fault tolerance.

4.3. HybridABEnc Algorithm’s Encryption and Decryption Efficiency and Stability

In this paper, we evaluate the performance of the HybridABEnc algorithm as the fun-
damental privacy protection mechanism within our system. In the experiments, we utilized
a dataset consisting of image and video files, totaling 656 files, with the average length
of each video ranging between 6 and 7 min [33,34]. To facilitate testing, we use the same
attribute list and access policy for the data to perform experimental testing of encryption
and decryption. The time complexity of the encryption and decryption algorithm can be
expressed as O(n · f(m)) and O(n · g(m)), where n represents the number of files to be
processed and m represents the average data size of the file. In the representation, f(m) and
g(m) represent the time complexity required to perform encryption and decryption opera-
tions on a single file, respectively. The specific form of these two functions depends on a
number of factors, including the detailed implementation of the encryption and decryption
algorithm, the size of the data attribute set, the complexity of the access control policy,
and the size of the file data itself. The experimental results indicate that the HybridABEnc
algorithm achieved a robust encryption rate of 61.70 MB/s in our setup, ensuring the
system can uphold an efficient data processing workflow while safeguarding privacy. This
underscores its capability to manage substantial data volumes efficiently. Furthermore, we

Sensors 2024, 24, 3241 20 of 25

observed an overall encryption latency of 30.11 s, underscoring the algorithm’s ability to
expedite the encryption process and thereby providing substantial evidence of the system’s
swift response capability. The study also delves into the decryption performance. The
decryption throughput recorded was 38.63 MB/s, which while lower than the encryption
rate, remains adequate for the needs of typical application scenarios. Moreover, the average
decryption time was remarkably short at 0.0733 s, providing users with nearly instanta-
neous access to the decrypted data. This emphasizes the system’s efficiency and quick data
retrieval capability. The pertinent experimental results are compiled in Table 6.

Table 6. Encrypting and decrypting performance data results.

Performance Index Value

Total number of encrypted and decrypted bytes 1,947,913,076 bytes
Total number of encrypted and decrypted files 656 documents

Encryption throughput 64,692,152.89 bytes/s
Average single file encryption latency 0.0459 s

Total encryption time 30.11 s
Decryption throughput 40,508,382.55 bytes/s

Average single file decryption delay 0.0733 s
Total decryption time 48.09 s

In the work of Hujare R et al., file storage security relies on the integrity of Solidity
smart contracts, the persistence and immutability of the blockchain, etc. However, no
specific encryption scheme is provided to ensure file security [35]. While our system uses
IPFS, blockchain, and other technologies to guarantee the security of system permissions,
the HybridABEnc encryption scheme guarantees the security of the data itself, adding
another layer of security. In the study by L. Li et al., the traditional AES+RSA encryption
scheme offers basic security and demonstrates specific performance metrics [36]. For
example, the average times for the AES algorithm to encrypt and decrypt fire IoT data are
24.98 ms and 24.78 ms, respectively. The average time for RSA to generate user accounts
is 21.22 ms. However, our HybridABEnc solution offers more significant advantages
across various measurement dimensions. The HybridABEnc encryption scheme achieved
a throughput of 61.70 MB/s, significantly surpassing the performance of AES + RSA, an
important metric for processing large data volumes and enabling efficient real-time data
streaming. Although the overall latency for encryption is 30.11 s, this is acceptable for non-
real-time data processing. It is especially beneficial given its additional privacy protection
and access control advantages.

Furthermore, our solution offers a more advanced and flexible approach than RSA for
private data sharing and role definition by establishing access control policies based on user
attributes. This enhanced level of access control renders the system more suitable for highly
customized data rights management needs. In terms of decryption performance, although
the decryption throughput (38.63 MB/s) is lower than the encryption rate, it is acceptable
because the access policy used for decryption is complex in the list of attributes used for
encryption. At the same time, our solution still provides a very low average decryption
latency (0.0733 s), and the decryption rate is lower than the encryption rate. Users can
access and process the decrypted data almost instantly, further validating the utility of
our solution.

4.4. Performance Comparison of PrivShieldROS on ROS Nodes and AuthROS

It can be seen from the experimental data that in the face of large-scale and complex
data type transmission tasks, our system adopts a security scheme based on hybrid attribute
encryption (HybridABEnc), which can effectively ensure security and show extremely high
encryption efficiency. Our system effectively utilizes the stability and reliability of the
TCP protocol to perform large-scale and complex data transmission tasks. To verify the

Sensors 2024, 24, 3241 21 of 25

performance and efficiency of the system, we conducted a comprehensive test using a
dataset of 10,000 images (totaling 1,274,678,532 bytes) as a test object. Through careful
measurement and analysis, we found that the average time of the encryption process
reached 0.0146 s, the longest time was only 0.0496 s, and the shortest time was 0.0090 s.
This result accurately reflects the high-performance level of our system in the encryption
step and fully proves the encryption efficiency of our scheme. At the same time, the system
demonstrated an average encryption rate of 8,730,114.83998 bytes/s. In terms of upload
rate, the average upload rate of our system is 1.4112 MB/s, which verifies the efficient
data transmission capability at the network level. In contrast, the AuthROS system uses
connectionless User Datagram Protocol (UDP) and SM4 symmetric encryption algorithms
to process 10,000 messages (i.e., simple string data). Although their test data showed that
with SM4 encryption supported, the average response time was 0.852 ms, with peak times
between 0.50 ms and 1.23 ms. However, due to the connectionless transmission, the packet
loss rate is 0.14%, which leads to shortcomings in data integrity and transmission stability.
In particular, the prominent problem of packet loss rate is an inherent drawback of UDP
transmission methods, which is undoubtedly a big problem for systems that must ensure
data integrity. The relevant experimental data are shown in Table 7.

Table 7. ROS node data sending experiment results.

Performance Index Value

Total number of uploaded files 10,000
The total size of all files in the folder 1,274,678,532 bytes

Total encryption time 146.00911 s
Average encryption time 0.0146 s

Maximum encryption time 0.0496 s
Minimum encryption time 0.0090 s

Average encryption rate 8,730,114.83998 bytes/s
Average upload rate 1.4112 mb/s

By comparing our system with the AuthROS system, we can find several key advan-
tages of our system compared with the AuthROS system. First, using TCP rather than
UDP is a wise choice for the stable transfer of large data sets. As a reliable transmission
control protocol, TCP ensures that data is not lost or corrupted during transmission. Second,
the HybridABEnc encryption scheme provides stronger security for data encryption and
supports flexible access control mechanisms, which is essential to support multi-user web
applications. Third, our system has shown impressive efficiency in performance tests, not
only in the encryption rate, which has a prominent performance but also in the upload rate,
which shows superior performance at the network level. In addition, our system introduces
more novel concepts than the AuthROS system, such as attribute-based encryption (ABE),
which allows users to gain access to data based on their attributes rather than just their
identity. This encryption mechanism makes data sharing more efficient. It provides a
solution for complex rights management needs, thus showing outstanding application
potential in areas where security and data personalization are more demanding.

Therefore, the comparison with the AuthROS system has confirmed that our sys-
tem, which is based on the mixed attribute encryption scheme, performs efficiently and
reliably in large-scale and complex data environments. Our system not only improves
the security and access control mechanism but also strengthens the integrity and stability
of the data transmission process. It has shown better performance when compared to
the existing scheme. As the demand for greater security and more efficient data transfer
continues to grow, our systems are expected to play an increasingly important role in
data-intensive applications.

Sensors 2024, 24, 3241 22 of 25

5. Conclusions

In this paper, we propose a privacy-sensitive data storage system for ROS vision
sensors, which aims to solve the data security challenges encountered in various application
fields with high privacy protection. This system provides an innovative solution for
secure storage and reliable sharing in the ROS environment by integrating decentralized
blockchain technology and interplanetary file system IPFS. By taking advantage of the
immutability of blockchain and the highly distributed storage characteristics of IPFS,
we significantly enhance the anti-tampering ability, reliability, and retrieval efficiency
of data. In addition, combined with the HybridABEnc solution, KP-ABE’s fine-grained
attribute-based access control mechanism for sensitive privacy data and the efficiency of
symmetric encryption were integrated, thereby increasing the efficiency and flexibility of
data transmission processing.

The design of this system has a wide range of application prospects, especially suitable
for scenarios with high privacy protection requirements. For example, in industrial automa-
tion, systems can ensure the secure storage of sensitive information during production and
support efficient data sharing and processing. In autonomous transportation and smart
city applications, the system can realize the protection of location data and user personal
information and ensure real-time information circulation. The system can record and store
medical data and patient information in the healthcare domain to ensure privacy protection
while supporting efficient data access. These potential practical applications highlight
our system’s broad applicability and effectiveness for processing and protecting vision
sensor data.

Although the system has demonstrated significant advantages, its practical deploy-
ment and application process may face several challenges. Firstly, technical compatibility
issues may become a major obstacle, especially the complexity of integrating the existing
ROS environment with this system. At the same time, resource constraints, including the
limitations of computing resources and storage capacity, may affect system performance,
especially in resource-constrained environments. In addition, user acceptance is also a
factor that cannot be ignored. The successful implementation of the system depends on the
user’s acceptance and trust in the new technology.

In response to the above challenges, our future research will be devoted to further
optimizing the design and implementation of the system. Specifically, the research will
focus on enhancing the compatibility and performance of the system and reducing the
requirements of computing and storage resources through algorithm optimization to adapt
the system to a wider range of application scenarios. At the same time, we will also work
to improve the system interface and user experience to promote user recognition and
adoption of the technology. In addition, with the improvement of computing power and
the evolution of attack methods, further enhancing the security of existing encryption
schemes is necessary. Therefore, we will explore the potential integration of advanced
encryption techniques, not limited to systems with integrated attribute-based encryption
schemes, to enhance data security further.

Therefore, we considered the following directions to enhance the data protection
mechanism of the existing system:

(1) Integration of homomorphic encryption techniques: Considering the power of homo-
morphic encryption, it is possible to operate on encrypted data without decryption,
which is particularly important for protecting user privacy. In future work, we will con-
sider evaluating how homomorphic encryption works with the current HybridABEnc
scheme, especially in guaranteeing efficient data processing.

(2) Add zero-knowledge proofs: Zero-knowledge proofs provide a mechanism for one
party to prove to another that it has certain information without revealing it. In
future applications, we would like to consider using this technique to enhance user
authentication and data access control without revealing unnecessary personal or
sensitive information.

Sensors 2024, 24, 3241 23 of 25

While exploring these advanced encryption technologies, we are also aware of the
challenges in the integration process, including algorithm performance, system compatibil-
ity, and user acceptance. Therefore, our future research will not be limited to the selection
and experimental validation of technologies but will also include how efficiently these tech-
nologies can be integrated into existing architectures and the evaluation of the combined
impact on system performance, security, and user experience.

Therefore, the data storage system based on blockchain and IPFS technology proposed
in this study provides an innovative solution for secure storage, real-time sharing, and
privacy protection of visual sensor data in the ROS environment. Implementing this system
can significantly enhance the protection ability of existing application scenarios for sensitive
visual data and improve the flexibility and efficiency of data processing and application.
Future optimization and research will further improve the adaptability and practicality of
this system in different fields and provide solid technical support for robotics applications
requiring high privacy protection. In addition, in order to ensure the practicality and wide
applicability of this system, we will consider cooperating with industry partners in the
future to actually deploy and verify the system in various robotic applications, providing
solid technical support for robotic application fields requiring high privacy protection
through continuous research and cooperation, and further optimizing the system to adapt
to different usage scenarios. While contributing to data security and privacy protection
in the future ROS environment, this work also has potential value in other fields such as
cloud or edge robotics [37–41].

Author Contributions: Conceptualization, T.W.; methodology, T.W.; software, T.W., K.C., J.G. and
X.Z.; validation, T.W.; formal analysis, T.W.; investigation, T.W. and K.C.; data curation, T.W. and S.Z.;
writing—original draft preparation, T.W.; writing—review and editing, Z.Z. and S.Z; visualization,
T.W.; supervision, Z.Z.; project administration, Z.Z.; funding acquisition, Z.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by Hainan Province Science and Technology Special Fund (Grant No.
ZDYF2024GXJS008) and Hainan Provincial Natural Science Foundation of China (Grant No. 622RC616).

Data Availability Statement: The codes and datasets involved in this study are available at
https://github.com/qwertynji/PrivShieldROS.git (accessed on 21 March 2024).

Acknowledgments: The authors would like to thank Lulu Pang from the School of Business, Univer-
sity of New England, Australia, as well as the reviewers and editors for their suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, S.; Li, W.; Li, X.; Liu, B. Secure data sharing among robot operating systems based on ethereum. In Proceedings of the

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS), Guangzhou, China, 5–9 December
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 147–156.

2. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of encrypted data. In
Proceedings of the 13th ACM Conference on Computer and Communications Security, New York, NY, USA, 30 October–3
November 2006; pp. 89–98.

3. Zhang, S.; Tang, M.; Li, X.; Liu, B.; Zhang, B.; Hu, F.; Ni, S.; Cheng, J. Ros-ethereum: A convenient tool to bridge ros and
blockchain (ethereum). Secur. Commun. Netw. 2022, 2022, 7206494. [CrossRef]

4. Mallikarachchi, S.; Dai, C.; Seneviratne, O.; Godage, I. Managing collaborative tasks within heterogeneous robotic swarms using
swarm contracts. In Proceedings of the 2022 IEEE International Conference on Decentralized Applications and Infrastructures
(DAPPS), San Francisco Bay, CA, USA, 15–18 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 48–55.

5. Roy, S.; Vo, T.; Hernandez, S.; Lehrmann, A.; Ali, A.; Kalafatis, S. IoT security and computation management on a multi-robot
system for rescue operations based on a cloud framework. Sensors 2022, 22, 5569. [CrossRef] [PubMed]

6. Salimi, S.; Morón, P.T.; Queralta, J.P.; Westerlund, T. Secure heterogeneous multi-robot collaboration and docking with hyperledger
fabric blockchain. In Proceedings of the 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), Yokohama, Japan,
26 October–11 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7.

7. Zhang, J.; Keramat, F.; Yu, X.; Hern, D.M.; Queralta, J.P.; Westerlund, T. Distributed robotic systems in the edge-cloud continuum
with ros 2: A review on novel architectures and technology readiness. In Proceedings of the 2022 Seventh International Conference
on Fog and Mobile Edge Computing (FMEC), Paris, France, 12–15 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

https://github.com/qwertynji/PrivShieldROS.git
http://doi.org/10.1155/2022/7206494
http://dx.doi.org/10.3390/s22155569
http://www.ncbi.nlm.nih.gov/pubmed/35898074

Sensors 2024, 24, 3241 24 of 25

8. Salimi, S.; Queralta, J.P.; Westerlund, T. Hyperledger fabric blockchain and ROS 2 integration for autonomous mobile robots. In
Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023;
IEEE: Piscataway, NJ, USA, 2023; pp. 1–8.

9. Morón, P.T.; Salimi, S.; Queralta, J.P.; Westerlund, T. UWB role allocation with distributed ledger technologies for scalable
relative localization in multi-robot systems. In Proceedings of the 2022 IEEE International Symposium on Robotic and Sensors
Environments (ROSE), Abu Dhabi, United Arab Emirates, 14–15 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

10. Fu, L.; Salimi, S.; Queralta, J.P.; Westerlund, T. Event-Driven Fabric Blockchain-ROS 2 Interface: Towards Secure and Auditable
Teleoperation of Mobile Robots. In Proceedings of the 2023 20th International Conference on Ubiquitous Robots (UR), Honolulu,
HI, USA, 25–28 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 536–543.

11. Keramat, F.; Queralta, J.P.; Westerlund, T. Partition-tolerant and byzantine-tolerant decision-making for distributed robotic
systems with iota and ROS 2. arXiv 2023, arXiv:2208.13467.

12. Chen, Y.; Li, H.; Li, K.; Zhang, J. An improved P2P file system scheme based on IPFS and Blockchain. In Proceedings of the 2017
IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 2652–2657.

13. Onwubiko, A.; Singh, R.; Awan, S.; Pervez, Z.; Ramzan, N. Enabling Trust and Security in Digital Twin Management: A
Blockchain-Based Approach with Ethereum and IPFS. Sensors 2023, 23, 6641. [CrossRef] [PubMed]

14. Sonkamble, R.G.; Bongale, A.M.; Phansalkar, S.; Sharma, A.; Rajput, S. Secure Data Transmission of Electronic Health Records
Using Blockchain Technology. Electronics 2023, 12, 1015. [CrossRef]

15. Steichen, M.; Fiz, B.; Norvill, R.; Shbair, W.; State, R. Blockchain-based, decentralized access control for IPFS. In Proceedings
of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada,
30 July–3 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1499–1506.

16. Chen, C.L.; Zheng, Y.M.; Huang, D.C.; Liu, L.C.; Chen, H.C. A Blockchain and IPFS-Based Anticounterfeit Traceable Functionality
of Car Insurance Claims System. Sensors 2023, 23, 9577. [CrossRef] [PubMed]

17. Sangeeta, N.; Nam, S.Y. Blockchain and interplanetary file system (IPFS)-based data storage system for vehicular networks with
keyword search capability. Electronics 2023, 12, 1545. [CrossRef]

18. Nizamuddin, N.; Salah, K.; Azad, M.A.; Arshad, J.; Rehman, M.H. Decentralized document version control using ethereum
blockchain and IPFS. Comput. Electr. Eng. 2019, 76, 183–197. [CrossRef]

19. Nizamuddin, N.; Hasan, H.R.; Salah, K. IPFS-blockchain-based authenticity of online publications. In Proceedings of the
Blockchain—ICBC 2018, First International Conference, Held as Part of the Services Conference Federation, SCF 2018, Seattle,
WA, USA, 25–30 June 2018; Proceedings 1; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 199–212.

20. Kumar, R.; Tripathi, R. Implementation of distributed file storage and access framework using IPFS and blockchain. In Proceedings
of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, 15–17 November 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 246–251.

21. Chen, X.; Xu, S.; Qin, T.; Cui, Y.; Gao, S.; Kong, W. AQ-ABS: Anti-quantum attribute-based signature for EMRs sharing with
blockchain. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA,
10–13 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1176–1181.

22. Pham, V.D.; Tran, C.T.; Nguyen, T.; Nguyen, T.; Do, B.; Dao, T.; Nguyen, B.M. B-box-a decentralized storage system using ipfs,
attributed-based encryption, and blockchain. In Proceedings of the 2020 RIVF International Conference on Computing and
Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 14–15 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

23. Raghunandan; Rao, K.; Kallapu, B.; Dodmane, R.; Rao, N.S.K.; Thota, S.; Sahu, A.K. Enhancing Cloud Communication Security:
A Blockchain-Powered Framework with Attribute-Aware Encryption. Electronics 2023, 12, 3890. [CrossRef]

24. Tao, J.; Ling, L. Practical medical files sharing scheme based on blockchain and decentralized attribute-based encryption. IEEE
Access 2021, 9, 118771–118781. [CrossRef]

25. Guo, L.; Yang, X.; Yau, W.C. TABE-DAC: Efficient traceable attribute-based encryption scheme with dynamic access control based
on blockchain. IEEE Access 2021, 9, 8479–8490. [CrossRef]

26. Lu, X.; Fu, S.; Jiang, C.; Lio, P. A fine-grained IoT data access control scheme combining attribute-based encryption and blockchain.
Secur. Commun. Netw. 2021, 2021, 5308206. [CrossRef]

27. Do Hoang, H.; Duy, P.T.; Tien, N.T.; Hien, D.T.T.; Pham, V. A Blockchain-based approach and Attribute-based Encryption for
Healthcare Record Data Exchange. In Proceedings of the 2022 RIVF International Conference on Computing and Communication
Technologies (RIVF), Ho Chi Minh City, Vietnam, 20–22 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 65–70.

28. Krichen, M.; Lahami, M.; Al-Haija, Q.A. Formal Methods for the Verification of Smart Contracts: A Review. In Proceedings of
the 2022 15th International Conference on Security of Information and Networks (SIN), Sousse, Tunisia, 11–13 November 2022;
pp. 1–8. [CrossRef]

29. Abdellatif, T.; Brousmiche, K. Formal Verification of Smart Contracts Based on Users and Blockchain Behaviors Models. In
Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France,
26–28 February 2018; pp. 1–5. [CrossRef]

30. Raso, E.; Bianco, G.M.; Bracciale, L.; Marrocco, G.; Occhiuzzi, C.; Loreti, P. Privacy-aware architectures for NFC and RFID sensors
in healthcare applications. Sensors 2022, 22, 9692. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s23146641
http://www.ncbi.nlm.nih.gov/pubmed/37514938
http://dx.doi.org/10.3390/electronics12041015
http://dx.doi.org/10.3390/s23239577
http://www.ncbi.nlm.nih.gov/pubmed/38067952
http://dx.doi.org/10.3390/electronics12071545
http://dx.doi.org/10.1016/j.compeleceng.2019.03.014
http://dx.doi.org/10.3390/electronics12183890
http://dx.doi.org/10.1109/ACCESS.2021.3107591
http://dx.doi.org/10.1109/ACCESS.2021.3049549
http://dx.doi.org/10.1155/2021/5308206
http://dx.doi.org/10.1109/SIN56466.2022.9970534
http://dx.doi.org/10.1109/NTMS.2018.8328737
http://dx.doi.org/10.3390/s22249692
http://www.ncbi.nlm.nih.gov/pubmed/36560061

Sensors 2024, 24, 3241 25 of 25

31. Razzaq, A.; Altamimi, A.B.; Alreshidi, A.; Ghayyur, S.A.K.; Khan, W.; Alsaffar, M. IoT Data Sharing Platform in Web 3.0 Using
Blockchain Technology. Electronics 2023, 12, 1233. [CrossRef]

32. Singamaneni, K.K.; Nauman, A.; Juneja, S.; Dhiman, G.; Viriyasitavat, W.; Hamid, Y.; Anajemba, J.H. An efficient hybrid
QHCP-ABE model to improve cloud data integrity and confidentiality. Electronics 2022, 11, 3510. [CrossRef]

33. Tyleček, R.; Šára, R. Spatial Pattern Templates for Recognition of Objects with Regular Structure. In Proceedings of the Proc.
GCPR, Saarbrucken, Germany, 3–6 September 2013.

34. Stein, S.; McKenna, S.J.; Combining embedded accelerometers with computer vision for recognizing food preparation activities.
In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, New York, NY, USA,
8–12 September 2013; pp. 729–738.

35. Hujare, A.R.; Desai, K.S.; Devkar, V.B.; Bhadgaonkar, H.I.; Patil, P.B. Decentralized File System Using Blockchain. Int. Res. J. Mod.
Eng. Technol. Sci. 2023, 5.

36. Li, L.; Jin, D.; Zhang, T.; Li, N. A Secure, Reliable and Low-Cost Distributed Storage Scheme Based on Blockchain and IPFS for
Firefighting IoT Data. IEEE Access 2023, 11, 97318–97330. [CrossRef]

37. Liu, B.; Wang, L.; Liu, M. Lifelong federated reinforcement learning: A learning architecture for navigation in cloud robotic
systems. IEEE Robot. Autom. Lett. 2019, 4, 4555–4562. [CrossRef]

38. Liu, B.; Wang, L.; Liu, M.; Xu, C.-Z. Federated imitation learning: A novel framework for cloud robotic systems with heterogeneous
sensor data. IEEE Robot. Autom. Lett. 2019, 5, 3509–3516. [CrossRef]

39. Liu, B.; Wang, L.; Chen, X.; Huang, L.; Han, D.; Xu, C.-Z. Peer-assisted robotic learning: A data-driven collaborative learning
approach for cloud robotic systems. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation
(ICRA), Xian, China, 30 May–5 June 2021; pp. 4062–4070.

40. Liu, B.; Wang, L.; Liu, M. Roboec2: A novel cloud robotic system with dynamic network offloading assisted by amazon ec2. IEEE
Trans. Autom. Sci. Eng. 2023 , 1–15. [CrossRef]

41. Zheng, Z.; Zhou, Y.; Sun, Y.; Wang, Z.; Liu, B.; Li, K. Applications of federated learning in smart cities: Recent advances, taxonomy,
and open challenges. Connect. Sci. 2021, 34, 1–28. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics12051233
http://dx.doi.org/10.3390/electronics11213510
http://dx.doi.org/10.1109/ACCESS.2023.3311712
http://dx.doi.org/10.1109/LRA.2019.2931179
http://dx.doi.org/10.1109/LRA.2020.2976321
http://dx.doi.org/10.1109/TASE.2023.3305522
http://dx.doi.org/10.1080/09540091.2021.1936455

	Introduction
	Related Work
	Materials and Methods
	Security Mechanism to Ensure Data Privacy and Integrity of ROS Nodes
	Granular Access Control Based KP-ABE
	The Integrity and Credibility of the Data
	RBE Exchange Framework (ROS-Ethereum)

	Blockchain Smart Contracts Integrate with ROS
	Consensus Mechanism
	Interactive Program
	Formal Verification of Smart Contracts

	IPFS Integration with ROS

	Results
	Comparison of Functional Features
	RabbitMQ Message Sending and Receiving Rate
	HybridABEnc Algorithm's Encryption and Decryption Efficiency and Stability
	Performance Comparison of PrivShieldROS on ROS Nodes and AuthROS

	Conclusions
	References

