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Abstract: Industrial process monitoring is a critical application of multivariate time-series (MTS)
anomaly detection, especially crucial for safety-critical systems such as nuclear power plants (NPPs).
However, some current data-driven process monitoring approaches may not fully capitalize on
the temporal-spatial correlations inherent in operational MTS data. Particularly, asynchronous
time-lagged correlations may exist among variables in actual NPPs, which further complicates this
challenge. In this work, a reconstruction-based MTS anomaly detection approach based on a temporal-
spatial transformer is proposed. It employs a two-stage temporal-spatial attention mechanism
combined with a multi-scale strategy to learn the dependencies within normal operational data at
various scales, thereby facilitating the extraction of temporal-spatial correlations from asynchronous
MTS. Experiments on simulated datasets and real NPP datasets demonstrate that the proposed
model possesses stronger feature learning capabilities, as evidenced by its improved performance in
signal reconstruction and anomaly detection for asynchronous MTS data. Moreover, the proposed
TS-Trans model enables earlier detection of anomalous events, which holds significant importance
for enhancing operational safety and reducing potential losses in NPPs.

Keywords: anomaly detection; temporal-spatial transformer; asynchronous multivariate time series;
nuclear power plants

1. Introduction

Nuclear power, recognized as a clean and sustainable energy source, plays a crucial
role in addressing climate change and achieving carbon neutrality [1,2]. However, concerns
over potential safety risks have limited the wider expansion of nuclear power [3,4]. As
a crucial measure in routine maintenance, accurate and efficient operational condition
monitoring can detect anomalous events at an early stage and supply essential information
for subsequent maintenance actions and fault diagnosis [5,6]. This is particularly significant
for enhancing operational safety and minimizing or averting losses in safety-critical systems
such as NPPs.

With the advent of the Internet of Things (IoT) and advanced Instrumentation and
Control (I&C) technologies, a wide array of sensors have been deployed to gather real-time
operational data from NPPs. Over the years, these continual data streams have culminated
in the creation of a comprehensive MTS database. This database is highly conducive
to leveraging data-driven MTS anomaly detection techniques for condition monitoring
in NPPs [7]. The MTS data, sourced from diverse sensor observations, are subject to
temporal fluctuations and exhibit pronounced cross-channel coupling due to intrinsic
mechanistic interrelations. The application of deep learning, celebrated for its remarkable
prowess in feature dimensionality reduction and extraction [8,9], to anomaly detection of
complex, nonlinear, and intricately coupled systems like NPPs, is imbued with significant

Sensors 2024, 24, 2845. https://doi.org/10.3390/s24092845 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092845
https://doi.org/10.3390/s24092845
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0000-1087-7373
https://doi.org/10.3390/s24092845
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092845?type=check_update&version=2


Sensors 2024, 24, 2845 2 of 20

potential [10]. Nonetheless, there exist several challenges that necessitate comprehensive
consideration and resolution.

One of the primary limitations of using deep learning methods for anomaly detection
of MTS data is that many of these methods fail to fully leverage the temporal-spatial corre-
lations inherent in MTS. Some of these approaches favor exploiting the spatial correlation
features among the variables of MTS to facilitate anomaly detection. They utilize neural net-
works such as CNN, GNN, and AE to capture the cross-channel spatial correlations within
the MTS [11–13]. These spatial correlations can be recognized as the associations among
different sensor variables. An anomaly is considered to have occurred when these associ-
ations deviate from the normal pattern. However, similar to statistics-based approaches
such as PCA, these methods neglect the temporal dependencies of MTS, which may result
in the inability to detect certain types of anomalies, such as contextual anomalies.

Certain other approaches place a greater emphasis on capturing temporal dependen-
cies. They employ networks such as Temporal Convolutional Networks (TCNs), Recurrent
Neural Networks (RNNs), Long Short-Term Memory (LSTM), or transformers to capture
the sequential correlations across various time steps [14–17]. Notably, the transformer
model [18], with its efficient parallel processing capabilities to handle long-range temporal
dependencies and its robust capacity for modeling sequential data, has achieved remark-
able success in fields such as Natural Language Processing (NLP), Computer Vision (CV),
and speech processing [19]. However, for analyzing strongly coupled MTS, the vanilla
transformer, may not fully leverage the inter-variable spatial correlations [20]. This may be
attributed to the fact that the vanilla transformer model treats multivariate observations at
a time step as an embedding and then employs a self-attention mechanism to establish con-
nections across different time steps. However, this approach does not sufficiently explore
the correlations between variables. Particularly in real-world scenarios like nuclear power
plants, MTS data are collected from various sensors that may exhibit time-delay correlations
(asynchronous correlations) [21] owing to disparities in sensor locations, noise levels, and
parameter response times. Under such circumstances, models that utilize point-wise em-
bedding based on synchronous timestamps may struggle to accurately capture the correct
cross-channel spatial correlations. This shortcoming becomes even more pronounced in
states of transient conditions where data are sparse.

In this paper, we introduce a temporal-spatial transformer-based model designed
for anomaly detection of nuclear power operational data. The proposed model utilizes a
channel-independent patch-wise embedding technique to achieve embedding representa-
tions of the input data. A two-stage temporal-spatial attention mechanism is employed
to capture more extensive temporal dependencies and cross-channel spatial correlations
within the MTS data. In this two-stage attention framework, the output derived from the
temporal attention mechanism is fed as input into the subsequent spatial attention com-
putation. Such an approach facilitates the establishment of temporal-spatial correlations
across different time steps and channels, offering advantages for analyzing asynchronous
time series with time-delay correlations. Moreover, incorporating a multi-scale strategy
allows the model to discern information across different resolutions, and the innovative
use of the Averaged Window Reconstruction (AWR) technique not only stabilizes the
model’s reconstruction but also augments its ability to learn local data features thoroughly.
Tests on the simulation dataset validate the efficacy of the proposed model in detecting
accident conditions generated by the simulator. Further experiments on real nuclear power
data demonstrate the effectiveness of the proposed model in capturing more extensive
temporal-spatial correlations within the asynchronous MTS data, as evidenced by its supe-
rior anomaly detection performance. It can detect the occurrence of anomalous events at an
earlier stage, which is crucial for early warning and prompt intervention in case of faults.

2. Related Works

As a pivotal component of condition-based maintenance for NPPs, automatic anomaly
detection techniques are employed to assist the operator in promptly evaluating the current
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operational status and providing vital information for subsequent decision-making and op-
erations. They are crucial for ensuring the safe and economical operation of NPPs. Anomaly
detection methods applied to the process monitoring of NPPs can be mainly categorized
into model-based or data-driven approaches. Model-based methods offer the advantage
of seamlessly integrating mechanistic knowledge, thus providing strong interpretability.
However, they are constrained by the requirement for comprehensive prior knowledge.
Additionally, modeling complex systems poses significant challenges, and assumptions
made to simplify modeling may significantly deviate from real-world conditions.

With the advancement of I&C and the industrial Internet, data-driven approaches
have demonstrated enormous potential for achieving intelligent and automatic monitoring
in NPPs. In particular, methods based on deep learning have emerged as a hot research
topic in the current landscape. Deep learning techniques have demonstrated remarkable
potential in extracting feature representations from complex nonlinear datasets, including
high-dimensional MTS data [22].

The process monitoring of NPPs could be considered an issue of anomaly detection
for MTS data to some extent. Among previous research on deep learning-based anomaly
detection approaches, some methods primarily focus on leveraging the coupling relation-
ships between variables to achieve anomaly detection of MTS. The essence of GDN [12]
lies in learning the relationships between sensors and detecting deviations from normal
patterns. This method capitalizes on the complex inter-sensor relationships by employing a
graph-based attention mechanism. It establishes dependencies between sensors through
embedding representations and a learned graph structure and identifies and explains
anomalies via graph deviation scoring. DAGMM [13] is an unsupervised anomaly detec-
tion method that integrates a deep autoencoder with a Gaussian Mixture Model (GMM). It
employs the deep autoencoder for feature extraction to obtain a compressed representation,
which is then merged with the reconstruction error to form a composite feature vector. This
composite feature vector is utilized by the Gaussian Mixture Model to perform anomaly
scoring based on probabilistic distributions. Somehow, these kinds of methods neglect the
sequential associations over time or only preserve very limited local temporal correlations
through mechanisms such as sliding windows.

In contrast, another category of methods places a stronger emphasis on the importance
of learning temporal dependencies. This is achieved by leveraging networks with sequential
modeling capabilities to capture the contextual dynamics over time. As the most widely
applied solutions for sequential modeling tasks, Recurrent Neural Networks can process
variable-length time-series inputs and capture contextual temporal dynamics. RNN-based
models such as LSTM-NDT [15] use Long-Short-Term Memory (LSTM) to predict data of
the next timestamp. The prediction residuals are evaluated with a non-parametric dynamic
thresholding approach to detect anomalies. The LSTM-VAE [16] framework effectively
projects multimodal observations along with their temporal dependencies into a latent
space, utilizing a sequential arrangement of LSTM and VAE layers. This framework is adept
at estimating the expected distribution of multimodal inputs from their representations
in the latent space. Anomaly detection is accomplished by evaluating the log-likelihood
of real-time observations against this expected distribution. TranAD [17] leverages an
encoder–decoder architecture supplemented with a self-attention mechanism to effectively
capture contextual temporal dependencies. Additionally, an adversarial training strategy
is implemented to enhance performance. Anomalies are identified with anomaly scores
based on reconstruction errors. It is well known that transformer-based models, such as
TranAD, are skilled at learning global relevance representations among various timestamps
by utilizing temporal attention mechanisms. However, the spatial correlations between
variables may not be captured comprehensively. The means of point-wise embedding
for observations at the same timestamps, combined with the temporal-only attention
mechanism, may not be able to extensively capture temporal-spatial correlations within the
MTS data. Therefore, these methods are not suitable for handling asynchronous MTS data
with time-delay correlations.
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Recently, increased attention has been paid to enhancing spatial-temporal feature ex-
traction in various transformer-based methods. For instance, PatchTST [23] demonstrated
the advantages of patch-wise embedding for time-series embedding representation. Cross-
Former [24] applied a two-stage attention mechanism, including a cross-time stage and a
cross-dimension stage, to achieve stronger MTS prediction capabilities. iTransformer [25],
on the other hand, revised the original transformer’s mechanism by utilizing MLP to
capture temporal correlations and employing self-attention mechanisms to grasp spatial
correlations, resulting in commendable outcomes. These approaches have made significant
advancements over the vanilla transformer in terms of capturing temporal-spatial correla-
tions. However, they do not focus on anomaly detection tasks and lack investigation into
asynchronous MTS, which is the focus of this study.

In summary, deep learning-based methods have shown significant promise in anomaly
detection for MTS data, which is suitable for industrial process monitoring [26,27]. How-
ever, there has been no targeted solution for addressing the issue of strong temporal lag
correlations among sensors, which commonly exist in real industrial settings like nuclear
power plants. This gap potentially hinders the model’s ability to effectively establish
correlations between sensors, thus impacting anomaly detection performance. Motivated
by this, we attempt to capture extensive spatial correlations and temporal dependencies
through a temporal-spatial transformer architecture, thereby addressing the challenge of
extracting features from asynchronous MTS data.

3. Problem Setup
3.1. Reconstruction-Based Method

Nuclear power plants incorporate thousands of diverse sensors tasked with monitor-
ing various operational parameters, thereby assessing the operational status of nuclear
power units. The SCADA (Supervisory Control and Data Acquisition) system [28] collates
and archives real-time measurement data from these sensors, forming an MTS dataset of
NPPs’ historical operational data. Consequently, the condition monitoring of NPPs can
be considered an anomaly detection task for MTS data. The MTS dataset derived from
N sensors over a designated time sequence of length T can be conceptualized as matrix
D ∈ RN×T . Here, each column signifies the observations collected from sensors at a distinct
timestamp, whereas each row encapsulates the measurements recorded by a specific sensor
throughout the given period. The matrix D ∈ RN×T can be expressed as:

D =

∣∣∣∣∣∣∣∣∣
x1,1 x1,2 · · · x1,T
x2,1 x2,2 · · · x2,T

...
...

. . .
...

xN,1 xN,2 · · · xN,T

∣∣∣∣∣∣∣∣∣, (1)

where xi,j denotes the observation of the ith sensor at the jth sampling timestamp.
Reconstruction-based unsupervised MTS anomaly detection methods primarily lever-
age a training set consisting of normal data to learn the data patterns and dependencies
under normal operational conditions. The reconstruction for input MTS can be regarded as
trying to seek a reconstruction function f , which can be denoted as

f (xi.j) = wTϕ(xi,j) + b, (2)

where ϕ(·) constitutes a mapping from the input space to the reconstruction feature space,
w signifies the weight matrix, and b denotes the bias term. Consequently, the reconstruction
error of xi,j in the training set can be formulated as

E(xi,j) = ( f (xi,j)− xi,j)
2, (3)
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and the objective of the training process is to develop a model capable of accurately
reconstructing normal operational data, achieved by minimizing the total reconstruction
error, which can be represented as

Etotal =
1

N × T

N,T

∑
i=1,j=1

E(xi,j). (4)

For a well-trained reconstruction model, anomaly detection can be achieved based on
the principle that normal data can be accurately reconstructed by the model, indicated by
minimal reconstruction errors. Conversely, anomalous data cannot be adequately recon-
structed, resulting in significantly larger reconstruction errors. By selecting an appropriate
threshold for the reconstruction errors, it is feasible to discriminate between normal and
abnormal states for univariate time series. However, for anomaly identification of multi-
sensor systems, simply averaging the sum of the reconstruction errors across channels is
inappropriate due to the implicit assumption that all variables are accorded equal weight
and the neglect of inter-variable correlations. Consequently, a more suitable monitoring
indicator is required to accurately reflect the system’s state. Therefore, we utilize the Maha-
lanobis distance [29,30] of the reconstruction errors as the monitoring indicator, since its
consideration of the inter-variable covariance renders it more effective for the assessment
of multi-variable system states. The Mahalanobis distance of the reconstruction errors for
the jth sampling timestamp can be calculated as:

Mj =
√
(REj − Ē)TS−1(REj − Ē), (5)

where Mj and REj denote the Mahalanobis distance and reconstruction error of the jth
sampling timestamp in the test set, respectively, while Ē and S−1 are the mean value and
the inverse covariance matrix of the reconstruction errors in the training set (comprised of
normal data), respectively. Therefore, the occurrence of anomalous events can be identified
by the monitoring indicator with a given threshold, which is confirmed based on the
Mahalanobis distance for the reconstruction errors of the normal data.

3.2. Issues of Asynchronous Correlations

As previously mentioned, a specific issue that needs to be addressed in this study
pertains to the challenge of time-lagged correlations among related variables of real-world
nuclear power operational data. Such correlations represent a form of inter-variable cou-
pling. However, due to various factors, their changes are not synchronized over time. This
asynchronous correlation is commonly observed in actual nuclear power operational pa-
rameters, although the extent of the time lag can vary significantly. Generally speaking, the
causes of asynchronous correlations can primarily be attributed to the following reasons:

(1) Differences in the locations of sensors. Sensors of various types are placed in different
locations to measure corresponding physical quantities, leading to differences in
response times when changes occur. For example, during the process of power ramp-
up, the temperature of the coolant within the reactor core rises rapidly. Temperature
sensors located in the Reactor Coolant Pump (RCP) system promptly detect this
change. However, sensors situated in the auxiliary cooling system or somewhere
at further distances might only register the corresponding temperature variations
after a delay of several minutes or even hours. Thus, although these variables are
strongly correlated due to their underlying mechanisms, there is a significant time lag
in their responses.

(2) Differences in response rates among variables. For instance, the current and vibration
signals of the main pump are transient variables, with changes occurring almost
instantaneously during pump shutdown, whereas temperature is a gradual variable
that changes slowly. This leads to the time-lagged correlations between variables with
different response rates.
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(3) Differences in noise levels. Different levels of noise also exert a certain influence on the
correlation among variables. In nuclear power data, the noise levels associated with
various variables can vary significantly. For example, signals such as vibration and
flow rate often exhibit higher noise levels and greater fluctuations, while signals like
temperature are almost devoid of noise. These variations in noise levels can impact
the analysis of correlations between variables.

Many existing deep learning-based approaches treat multidimensional observations
at the same time step as a token to conduct point-wise embedding, followed by extracting
features from the embedding vectors. This process restricts models to only learning
synchronous cross-channel spatial correlations, rendering them incapable of capturing
the asynchronous correlations mentioned earlier. As shown in Figure 1a, signals 1–4
represent four sine signals with asynchronous correlations, presenting a fixed phase
difference between adjacent signals. However, when multi-dimensional observations at
the same time step are treated as tokens for point-wise embedding, the resultant vector
representations fail to capture these strong asynchronous correlations. This limitation
is evident from the Pearson correlation heatmap in Figure 1b, where the originally
strong correlations among the four signals demonstrate significant variance under this
approach. Consequently, these approaches are not able to fully exploit the dependencies
between variables for modeling, thereby impacting the model’s reconstruction and
anomaly detection performance.

(a) Channel-dependent point-wise embedding (b) Pearson correlation heatmap for signals 1−4

Figure 1. A brief schematic diagram illustrating the issues caused by time-lagged correlations for
many current approaches.

4. Proposed Approach
4.1. Anomaly Detection Strategy

Figure 2 illustrates the workflow of the proposed anomaly detection model based on a
temporal-spatial transformer.
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Figure 2. Workflow diagram of the proposed temporal-spatial transformer-based anomaly detec-
tion model.

As shown in Figure 2, the initial step consists of data cleansing of the raw historical
operational data from NPPs. This process encompasses timestamp alignment, imputa-
tion of missing values, and identification and correction of erroneous data. After that, the
data under normal conditions are subjected to channel-wise normalization to mitigate
the impact of amplitude level differences among various parameters. Subsequently, the
MTS data are transformed into a series of sequences using a sliding-window technique,
serving as the input data for model training. The training dataset, after undergoing
reconstruction through the temporal-spatial transformer model, yields reconstructed
signals. The widely used Mean Squared Error (MSE) loss function is employed, and the
model parameters are updated through the gradient descent backpropagation process.
The trained model can then distinguish abnormalities based on the principle that normal
data can be accurately reconstructed, whereas abnormal data exhibit significant recon-
struction errors. It is noteworthy that univariate anomalies are more aptly identified
using the reconstruction error or anomaly scores from individual channels. In contrast,
for anomalies in multi-sensor systems, a monitoring indicator constructed from the
Mahalanobis distance of the reconstruction errors is utilized. It should be mentioned that
the threshold for anomaly detection is determined based on the statistical distribution of
the reconstruction errors and Mahalanobis distances in an anomaly-free validation set,
following a certain criterion (such as the three-standard-deviation rule). This approach
effectively distinguishes between normal and abnormal data while minimizing false pos-
itives due to the larger reconstruction errors of the normal data in the test set compared
to the training set.

4.2. Temporal-Spatial Transformer Model

To address the above-mentioned issues of asynchronous correlations, we employed a
two-stage temporal-spatial attention mechanism to capture more extensive temporal-spatial
correlations between different time steps and variables.
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As depicted in Figure 3a, the vanilla transformer can only establish associations
between tokens across different time steps through the temporal-attention mechanism. Our
proposed method begins by employing a channel-independent patch-wise embedding
technique for input data embedding representation, followed by applying a temporal
attention mechanism to each variable along the temporal dimension. As shown in Figure 3b,
the outputs thus generated serve as inputs for the subsequent stage, where spatial attention
scores across channels are computed. Through the utilization of a two-stage attention
mechanism, we facilitate the acquisition of more extensive temporal-spatial correlations
across different time steps and variables.

(a) Vanilla transformer (b) Proposed temporal-spatial transformer

Figure 3. Comparison of embedding representations and attention mechanisms between the vanilla
transformer and the proposed temporal-spatial transformer.

The network architecture of the proposed temporal-spatial transformer-based anomaly
detection model is illustrated in Figure 4. Similar to the vanilla transformer, the proposed
temporal-spatial transformer also adopts an encoder–decoder structure to extract features
and reconstruct signals. Its distinctions from the vanilla transformer model can be summa-
rized as follows:

(1) Channel-Independent Patch-Wise Embedding. As previously mentioned, the model
proposed in this article employs channel-independent patch-wise embedding instead
of the traditional embedding representation method utilized in the original trans-
former model. By this means of embedding, the input MTS segments are embedded
into a vector through a linear projection and then added with position encoding. This
embedding method offers several advantages. Primarily, compared to point-wise em-
bedding, patch-wise embedding can capture richer and more stable local association
information. Furthermore, channel-independent embedding representations align
better with the use of temporal attention mechanisms in the initial phase.
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(2) Two-Stage Temporal-Spatial Attention Mechanism. In the vanilla transformer, the self-
attention mechanism is only used to capture temporal dynamics over time, and the
spatial correlations are not fully exploited. The two-stage temporal-spatial attention
mechanism involves first calculating the temporal attention scores for each channel’s
data, followed by using the temporally associated channel data as input for the second-
stage spatial attention mechanism to establish cross-channel spatial correlations. This
approach facilitates a more comprehensive capture of deep temporal-spatial associ-
ations, including the aforementioned asynchronous associations. With the help of
a two-stage temporal-spatial attention mechanism, we can model the correlations
among observations of different channels and time steps within the MTS data, which
is key to addressing the issue of asynchronous time-delay correlations.

(3) Multi-scale feature fusion strategy. As is widely known, NPPs’ operational data
encompass a diverse array of variables, such as current, temperature, flow rate,
pressure, etc. Due to differences in the data characteristics of these variables, it is
challenging to determine a fixed window size that can be universally applicable to all
variables. Considering this, we have adopted a multi-scale feature fusion approach in
our research. By employing sliding windows of varying sizes, our model is capable of
extracting features at different scales. These features are then integrated to enhance
the model’s performance. The use of a multi-scale mechanism allows the model to
extract and integrate features of MTS data from different scales, thereby obtaining
more stable multi-scale feature representations. In the process of signal reconstruction,
features of various scales are fused, as shown in Figure 4.

(4) Averaged Window Reconstruction. As is widely known, the input MTS data are
transformed into a multiple-window sequence as the model’s input through a sliding-
window process. Therefore, the output of the temporal-spatial transformer model is
still a sequence of reconstructed windows. To obtain the reconstruction signal of the
original MTS data, a typical resolution involves using the mean value or a specific
value of the window (the first or the last value) to represent the reconstructed signal
corresponding to that time step. Here, we propose a new approach called Averaged
Window Reconstruction (AWR). Utilizing AWR, the sliding step is set as 1, and the
sliding window size is K. Therefore, every single time step is reconstructed by a series
of windows of number K. In the proposed AWR method, we take the average of the
corresponding data points from all reconstructed windows that contain a particular
timestamp t as the reconstruction data R(t), as shown in the equation below:

R(t) =
RW1(t) + RW2(t) + · · ·+ RWn(t)

n
, n ∈ [1, K], (6)

where RWn(t) denotes the reconstruction value of timestamp t from the nth recon-
structed window. In terms of computational complexity, the proposed AWR approach
is nearly equivalent to using the mean value of a single reconstructed window as
the reconstructed data point; therefore, it will not result in a decrease in efficiency.
Furthermore, in the context of real-time data-stream processing, the data point for a
given time instance t is determined by the n reconstruction windows, n ∈ [1, K]. The
reconstruction value for time t is updated as the window slides, rather than providing
the reconstruction value for t after all K windows have been reconstructed. This is
done to meet the response time requirements for real-time monitoring. Thus, the
proposed AWR approach can achieve more stable reconstruction and better local
feature capture without increasing the computational complexity or response time.
Notably, at the start and end of the MTS, the average of existing reconstruction values
is utilized for padding. A detailed schematic is illustrated in Figure 5.
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Figure 4. The architecture of the proposed temporal-spatial transformer anomaly detection model.

Figure 5. A schematic diagram of the proposed Averaged Window Reconstruction (AWR) technique.

5. Experiments and Results Discussion

This section primarily encompasses two categories of experiments: one involves exper-
iments conducted on a public simulation dataset [31] generated by the PCTRAN simulation
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software [32], and the other involves experiments conducted on a dataset of a specific fault
case derived from real nuclear power plant data. This design is motivated by the fact that,
on the one hand, severe accident conditions are extremely rare in real-world NPP opera-
tions, while typical accident conditions can be generated by the PCTRAN simulator. On
the other hand, the data characteristics of real operational data may differ from simulated
data to some extent, such as a higher noise level. Therefore, conducting experiments on
both a simulation dataset and a real NPP dataset is necessary for validating the model’s
effectiveness in detecting typical accident conditions and handling asynchronous MTS
anomaly detection tasks.

5.1. Experiments on Simulation Dataset
5.1.1. Simulation Dataset and Metrics

The simulation dataset employed in this work is an open dataset generated by the
Personal Computer Transient Analysis simulator (PCTRAN, developed by the Micro-
simulation Technology Corporation, Montville, NJ, USA. ), which is a PC-based simulator
that is widely used to simulate various kinds of accident and transient conditions in
NPPs. The simulation dataset used in this experiment encompasses six types of accident
conditions and normal conditions of a pressurized water reactor nuclear power plant. The
six types of accident conditions include Loss of Coolant Accident in Hot Leg (LOCA),
Loss of Coolant Accident in Cold Leg (LOCAC), Load Rejection (LR), Steam Generator
Tube Rupture (SGTR), Steam Line Break Inside Containment (SLBIC), and Steam Line
Break Outside Containment (SLBOC). Each accident condition dataset spans 300 s, with
a sampling interval of 1 s. The dataset comprises 70 variables reflecting the operational
status of NPPs, including various kinds of signals, such as temperature, flow rate, pressure,
liquid level, and power. The initiation time for the accident conditions is uniformly set at
the 150th second. The statistics of the simulation dataset are presented in Table 1.

Table 1. The statistics of the simulation dataset.

Dataset
Basic

Operational
Status

Accident
Type

Accident
Severity Total Size Anomalies

Training Set 100% FP Normal / 1800 0

Test Set 100% FP

LOCA 0.01 300 150
LOCAC 0.01 300 150

LR 0.01 300 150
SGTR 0.01 300 150
SLBIC 0.01 300 150
SLBOC 0.01 300 150

To verify the anomaly detection performance of our approach, comparative experi-
ments were carried out between the proposed temporal-spatial transformer model and four
other representative models: DAGMM [13], LSTM-VAE [16], TranAD [17], and PCA [33]. To
compare the performance of the above-mentioned anomaly detection models quantitatively,
we utilized precision, recall, and the F1 score as the evaluation metrics. The calculation
formula for each metric is as follows:

P =
TP

TP + FP
, (7)

R =
TP

TP + FN
, (8)

F1 =
2 × P × R

P + R
. (9)

Precision measures the true-positive rate, with higher precision implying a lower false-
alarm rate. Conversely, recall quantifies the fraction of accurately detected anomalies out
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of all abnormal samples, with higher recall translating to a lower missed-alarm rate. The
F1 score, a commonly utilized metric for assessing model performance, offers a balanced
evaluation of precision and recall.

5.1.2. Results and Analysis

The models utilized for comparative experiments were trained using data under nor-
mal conditions and subsequently validated on the six different accident datasets to assess
their detection performance. Figure 6 presents a comparison of the reconstructed signals
with the original signals for the temporal-spatial transformer model on the LOCAC accident
dataset. It can be seen that nearly all signals could be accurately reconstructed with minimal
reconstruction errors before the fault insertion. However, after the fault is introduced (after
150 s), the reconstruction error for some variables related to the fault condition significantly
increases, whereas for others unaffected by the fault condition, the error remains nearly
unchanged. Given that all six accident conditions represent multivariate severe faults,
the Mahalanobis distance of the reconstruction errors serves as the monitoring indicator.
Figure 7 illustrates the Mahalanobis distances of the reconstruction errors for the different
models in response to the LOCAC accident conditions.

Figure 6. Experimental results of temporal-spatial transformer model on LOCAC accident condition
dataset. (horizontal axis: time index; vertical axis: normalized observations. The abbreviations for
the variable names in the figure can be cross-referenced with the Table A1 in Appendix A to ascertain
the corresponding variables).
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Figure 7. Mahalanobis distance of reconstruction errors across different models on the LOCAC acci-
dent condition dataset (horizontal axis: time index; vertical axis: normalized Mahalanobis distance).

It should be noted that the threshold for anomaly identification was determined based
on the statistical distribution of the Mahalanobis distance of the reconstruction errors
observed in the validation set. The anomaly onset point indicates the start of an anomalous
event identified by each model. As shown in Figure 7, LSTM-VAE and our model detected
anomalies at the timestamp that the fault condition was introduced, whereas PCA identified
the anomaly at the subsequent timestamp. This immediate detection can be attributed to
the significant data variations caused by the inserted fault condition. Additionally, the three
best-performing models exhibited relatively low reconstruction errors on the normal data
in the test set. In contrast, TranAD and DAGMM generated some false alarms due to the
reconstruction errors of the normal data in the test set exceeding the predefined thresholds.
Although the localization of the anomaly onset points was dependent on the choice of
thresholds to some extent, it can be seen from the trend curves that the inflection point of
the proposed model was located at an earlier timestamp compared to the best-performing
methods. This characteristic is helpful for the early detection of anomalous events. The
evaluation metrics of all models on the six-accident-condition dataset are shown in Table 2.
To mitigate the effects of model instability, the final metrics listed in Table 2 represent
the average values of the monitoring indicators obtained from five independent training
sessions of each model.

As depicted in Table 2, the proposed TS-Trans model achieved superior or comparable
detection performance across all six fault datasets, validating the efficacy of the proposed
model in detecting anomalies generated by the simulator. However, the performances of
the different models exhibited minimal discrepancies, and the simulation data exhibited
few asynchronous correlations. To validate the proposed method’s advantages in detecting
anomalies in asynchronous MTS data, more comparative experiments were conducted on
the real NPP operational data.
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Table 2. Evaluation metrics of the comparison experiments on six accident condition datasets. The
highest score for each metric is marked in bold.

Model
LOCA LOCAC LR

F1 P R F1 P R F1 P R

DAGMM 0.983 0.966 1 0.966 0.934 1 0.977 0.955 1
LSTM-VAE 0.955 0.913 1 0.977 0.955 1 0.961 0.926 1

PCA 0.988 0.985 0.99 0.965 0.968 1 0.802 0.963 0.687
TranAD 0.982 0.965 1 0.956 0.916 1 0.966 0.934 1
TS-Trans 0.997 1 0.995 0.984 0.968 1 0.987 0.974 1

Model
SGTR SLBIC SLBOC

F1 P R F1 P R F1 P R

DAGMM 0.946 0.898 1 0.977 0.955 1 0.983 0.966 1
LSTM-VAE 0.937 0.882 1 0.971 0.943 1 0.959 0.922 1

PCA 0.987 0.974 1 0.748 0.958 0.613 0.982 0.99 0.975
TranAD 0.966 0.934 1 0.922 0.855 1 0.974 0.95 1
TS-Trans 0.993 0.987 1 0.984 0.968 1 0.988 0.976 1

5.2. Experiments on Real NPP Dataset

It is widely acknowledged that real nuclear power data can exhibit distinct characteris-
tics compared to simulated data, which may attributed to noise and disturbances inherent
in actual operational environments, compounded by discrepancies in the response times
across various parameters. Therefore, to validate the performance of anomaly detection
models, we need a dataset comprised of real-world operational data.

5.2.1. Real NPP Dataset

As a safety-critical system, operational data under accident conditions are extremely
rare, as the vast majority of operational data are under normal conditions. Therefore, we
select data from a real instance of the main pump experiencing an emergency shutdown to
validate the effectiveness of the proposed model in capturing time-delayed correlations
and achieving anomaly detection for asynchronous MTS data.

The real NPP dataset is composed of historical observations from 30 types of sensors,
including temperature, current, flow rate, and vibration signals. It should be noted that all
the observations of the variables have undergone preprocessing, resulting in a consistent
sequence length and synchronized timestamps across the dataset, with a time interval of
1 s. Consequently, the dataset composed of real observational values can be represented
as a matrix of multidimensional time series. The real NPP dataset includes a pump trip
anomaly, with the anomalous segments being manually annotated to enable a quantitative
assessment of the anomaly detection performance. It is important to highlight that the raw
data from related sensors inherently exhibit asynchronous correlations with seconds-level
time lag. However, to extensively demonstrate the advantages of the proposed method
in capturing temporal-spatial correlations, we intentionally exaggerated this time lag by
lagging the data of 10 variables by approximately 200 s. It should be noted that this time lag
is consistently applied to both the training and testing datasets to simulate a more realistic
scenario. The statistics of the real NPP dataset are presented in Table 3.

Table 3. The statistics of the real NPP dataset.

Dataset Basic Operational Status Dimensions Total Size Anomalies Anomaly Rate

Training Set 85% FP Steady-State 30 30,000 / /
Test Set 85% FP Steady-State 30 18,000 859 4.77%
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5.2.2. Results and Discussion

The real nuclear power plant dataset, constituted by the historical operational data
from sensors associated with the main pump, was divided into training, validation, and
testing sets in a ratio of 5:2:3. The training and validation sets did not contain any abnormal
operational conditions, whereas the testing set encompassed data from abnormal pump
shutdown periods. All five models utilized for comparative experiments were trained,
tested, and validated on this dataset. Given that the dataset primarily comprised steady-
state operational data, segments with anomalies were relatively easy to label, allowing for
manual annotation of data across each channel. Figure 8 showcases the comparative results
of the reconstructed signals and residual errors of the five models. For visual comparison,
a temperature signal and a current signal, without the inserted time delay of 200 s, were
selected. In Figure 8, the left portion illustrates the comparison between the reconstructed
signals and the actual signals of the various models, and the right portion displays the
corresponding models’ reconstruction errors. Additionally, the actual anomaly labels for
these signals were annotated to compare the models’ detection outcomes with the actual
abnormal conditions. As depicted in Figure 8a, it can be seen that the anomalous areas
with significant reconstruction errors identified by our model essentially coincide with
the actual intervals of the anomalies. In comparison, the anomaly onset points identified
by the other models are located ahead of the true anomaly regions, leading to a certain
proportion of false alarms in univariate anomaly detection. Observations of the current
signal in Figure 8b indicate that the intervals of these false alarms largely coincide with
the pump shutdown periods. Thus, it can be concluded that the TS-Trans model proposed
in this study possesses a superior capacity to capture the temporal-spatial characteristics
of asynchronous time series, resulting in more accurate detection of univariate anomalies
in the temperature signal. In contrast, the other models primarily extract synchronous
temporal features, which come with inadequate learning of temporal-spatial correlations
within asynchronous time series, leading to more false alarms. The evaluation metrics for
each dimension were averaged to serve as the overall indicator for univariate anomaly
detection, and the results are presented in Table 4.

Table 4. The univariate anomaly detection performance of the 5 models on the real NPP dataset. (The
final evaluation metrics are taken as the mean value of the metrics from each channel, the highest
score for each metric is marked in bold).

Model Window Size F1 P R

DAGMM 60 0.711 0.6 0.873
LSTM-VAE 60 0.907 0.877 0.939

PCA / 0.877 0.867 0.886
TranAD 60 0.768 0.624 0.999
TS-Trans 60 0.962 0.928 0.998

For monitoring overall system state deviations, we continued to employ the Ma-
halanobis distance based on the reconstruction errors as the monitoring indicator. Fur-
thermore, the threshold was determined by examining the statistical distribution of the
reconstruction errors on the validation set. This approach was necessitated by the ob-
servation that the level of reconstruction errors in the test set typically exceeded that in
the training set, even for the normal data present within the test set. Additionally, the
distribution of the reconstruction errors within the validation set was more closely aligned
with that of the normal data in the test set. The multivariate anomaly detection performance
of the models is presented in Table 5.
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(a) Experimental results on temperature signal

(b) Experimental results on current signal

Figure 8. Comparison of univariate anomaly detection performance on the real NPP datasets.
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As depicted in Table 5, the TS-Trans model achieved the best metrics for multivariate
anomaly detection. Meanwhile, the performances of LSTM-VAE, DAGMM, and PCA
were also excellent and similar to each other. TranAD exhibited suboptimal reconstruction
performance on the normal data of certain variables within the test set, leading to some
false negatives, which, in turn, reduced the recall of the model. The trend curves of the
Mahalanobis distance based on the reconstruction errors are shown in Figure 9.

Figure 9. The Mahalanobis distance of reconstruction errors across different models on the real NPP
dataset. (Horizontal axis: time index; vertical axis: normalized Mahalanobis distance).

Table 5. The multivariate anomaly detection performance (based on the Mahalanobis distance of
reconstruction errors) of the five models on the real NPP dataset. The highest score for each metric is
marked in bold.

Model F1 P R

DAGMM 0.913923 0.97775 0.857918
LSTM-VAE 0.915176 0.968254 0.867615

PCA 0.920541 0.984887 0.864088
TranAD 0.854501 0.966527 0.765746
TS-Trans 0.979798 0.995439 0.964641

From Figure 9 combined with the evaluation metrics above, we can make the following
conclusions:

• All five models successfully detected the occurrence of an anomalous event.
• The anomaly onset points identified by the models, except for TranAD, occurred after

the true anomaly onset point and before the pump shutdown.
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• Among these four models, the proposed TS-Trans model detected the system state
deviations at an earlier stage.

In summary, the proposed temporal-spatial transformer-based anomaly detection
exhibits advantages in feature extraction of asynchronous MTS data and early detection of
anomalous events, which is favorable for subsequent maintenance and actions.

6. Conclusions

In this paper, a novel anomaly detection model based on a temporal-spatial trans-
former is proposed to address the challenge posed by the time-lag correlations among
different sensors in real nuclear power plant scenarios. The model accomplishes the embed-
ding representation of input data through a channel-independent patch-wise embedding
approach, then harnesses a two-stage attention mechanism to capture more comprehen-
sive temporal-spatial correlations within the MTS data. Enhanced model stability and
performance are achieved through the implementation of a multi-scale strategy and the
application of the averaged window reconstruction method. Experiments conducted on a
simulated dataset validate the model’s effectiveness in detecting six types of accident condi-
tions. Further experiments on a real NPP dataset, with magnified time delays, demonstrate
the model’s effectiveness in detecting more complex real anomaly events, showcasing its
superior capability in capturing temporal-spatial features of asynchronous MTS. Notably,
this approach enables earlier detection of system status deviations, which holds significant
importance for enhancing operational safety and minimizing or avoiding potential losses
in NPPs.
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Appendix A

Table A1. Abbreviations for variables used in Figure 6.

Index Abbreviated Name Corresponding Variable

1 TAVG Coolant average temperature
2 THA Branch A hot-leg temperature
3 THB Branch B hot-leg temperature
4 TCA Branch A cold-leg temperature
5 TCB Branch B cold-leg temperature
6 WRCA Branch A coolant flow rate
7 WRCB Branch B coolant flow rate
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Table A1. Cont.

Index Abbreviated Name Corresponding Variable

8 PSGA Branch A steam generator pressure
9 PSGB Branch B steam generator pressure
10 VOL Coolant volume
11 LVPZ Pressurizer liquid level
12 WECS Emergency core cooling system flow rate
13 QMWT Thermal power
14 QMGA Branch A steam generator extraction thermal power
15 QMGB Branch B steam generator extraction thermal power
16 TSAT Pressurizer saturation temperature
17 LVCR Core water level
18 PWR Core thermal power
19 WCHG Top-up flow rate
20 P Primary side pressure of the reactor coolant system
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