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Abstract: Drug-resistant bacteria constitute a big barrier against current pharmacotherapy. Efforts
are urgent to discover antibacterial drugs with novel chemical and biological features. Our work
aimed at the synthesis, evaluation of antibacterial effects, and toxicity of licochalcone C (LCC),
a naturally occurring chalcone. The synthetic route included six steps, affording a 10% overall
yield. LCC showed effects against Gram-positive bacteria (MIC = 6.2–50.0 µg/mL), Mycobacterium
species (MIC = 36.2–125 µg/mL), and Helicobacter pylori (MIC = 25 µg/mL). LCC inhibited the biofilm
formation of MSSA and MRSA, demonstrating MBIC50 values of 6.25 µg/mL for both strains. The
investigations by fluorescence microscopy, using PI and SYTO9 as fluorophores, indicated that LCC
was able to disrupt the S. aureus membrane, similarly to nisin. Systemic toxicity assays using Galleria
mellonella larvae showed that LCC was not lethal at 100 µg/mL after 80 h treatment. These data
suggest new uses for LCC as a compound with potential applications in antibacterial drug discovery
and medical device coating.

Keywords: licochalcone; chalcone; Glycyrrhiza; membrane; biofilm; antibacterial; drug-resistant;
Galleria mellonella

1. Introduction

Antimicrobial resistance (AMR) is a challenge to human health, resulting in alarming
numbers of deaths around the world. According to predictive statistical models performed
by AMR collaborators, there was an estimate of 4.95 million (3.62–6.57) deaths associated
with bacterial AMR in 2019 [1]. The discovery of new effective agents against multidrug-
resistant bacteria is an urgent topic in global public health. The World Health Organization
(WHO) indicated a human pathogen priority list, which included Pseudomonas aeruginosa
(critical), Staphylococcus aureus and Helicobacter pylori (high), and Streptococcus pneumoniae
(medium) [2]. Additionally, bacterial biofilms are barriers against current pharmacotherapy,
which are constituted by cellular communities able to adhere to abiotic and biological
surfaces, blocking the antibacterial drug penetration and diffusion into their complex
extracellular matrix [3].

Natural products from plants are successful sources of antimicrobial drugs [4,5]. Out
of 162 new antibacterial agents approved between 1981 and 2019, 55% are natural products
and their derivatives, highlighting their relevance to modern drug discovery [6]. Among the
promising bioactive natural products are retrochalcones, which are rare plant compounds
and restricted to Glycyrrhiza genus. This taxon is constituted by several medicinal plants
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with evidenced antibacterial properties, including Glycyrrhiza glabra, popularly named
licorice [7].

Licochalcones are C-isoprenylated retrochalcones and have demonstrated remarkable
antimicrobial activity [8]. Licochalcone A (LCA, Figure 1) is the most investigated retrochal-
cone and displayed a broad spectrum of effects against Gram-positive and Gram-negative
species [9–11]. The effects of LCA on macromolecules of bacterial pathogens involved the
inhibition of secretion of staphylococcal enterotoxins A and B, reduction of hemolysis by
inhibiting the secretion, and production of staphylococcal α-toxin and inhibition of the
release of suilysin by Streptococcus suis [12–14]. On the other hand, few biological studies of
licochalcone C (LCC, Figure 1) were performed by former literature, which was strongly
focused on its antitumor activity.
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Figure 1. Structure of licochalcones A (LCA) and C (LCC).

As part of our ongoing search for antibacterial drugs based on licochalcones from G.
glabra, we first selected LCC due to its few synthesis, antibacterial, and toxicity studies
in comparison to other licochalcones [15,16]. In this context, our aims were to provide
evidence of the chemical and biological features of LCC as a rare plant active principle. In
order to reach our perspectives, we synthesized LCC and tested its activity against a panel
of Gram-positive, Gram-negative, and Mycobacterium species. In addition, studies on the
effects of LCC against MSSA and MRSA biofilm formation and its mode of action on S.
aureus membrane, as well as toxicity in Galleria mellonella larvae, were carried out.

2. Results and Discussion
2.1. Synthesis and Identification of Licochalcone C

According to the literature data, few approaches to the synthesis of LCC have been
reported to date. The LCC synthesis was described by Wang and collaborators, who
achieved LCC (6% overall yield) and its regioisomer licochalcone H (LCH, 20% overall
yield), using β-resorcylaldehyde (1) and 1,1-dimethylallyl alcohol as starting materials [17].
Kim and coauthors described the synthesis of LCC in six steps (7% overall yield), starting
from 1 and isoprenyl bromide [18]. Dovhaniuk and colleagues developed a regioselective
and scalable (up to 30 g) synthesis of LCC, using the direct ortho-metalation of resorcinol,
allowing for the introduction of the isoprenyl group at C-3 [19]. Herein, we proposed a new
route for the synthesis of LCC, which was based on previous approaches. We used a set of
six steps, including non-regioselective C-isoprenylation at C-3 (step a), MOM-protection at
O-4 (step b), O-methylation at O-2 (step c), Claisen–Schmidt condensation (step d), as well
as MOM- deprotection of hydroxyl groups of rings A and B (step e), affording LCC with a
10% overall yield (Scheme 1).

The structure of LCC was confirmed by 1H and 13C nuclear magnetic resonance
(NMR) and mass spectrometry (MS) spectral data analyses and comparison with former
literature [20]. Two doublets (δH 7.99, 1H, J = 15.6 Hz for H-β; δH 7.68, 1H, J = 15.6 Hz
for H-α) and δC 187.4 for carbonyl, δC 119.5 for C-α, and δC 138.4 for C-β corroborated
an α,β-unsaturated ketone bridge, confirming the trans-chalconic structure of LCC. The
1H NMR spectrum exhibited two pairs of doublets at δH 8.04 (2H, J = 8.7 Hz, H-2′ and
H-6′)/δH 6.96 (2H, J = 8.7 Hz, H-3′ and H-5′) and δH 7.65 (1H, J = 8.5 Hz, H-6)/δH 6.80
(1H, J = 8.5 Hz, H-5), which evidenced disubstituted ring A and tetrasubstituted ring B,
respectively. Values of coupling constants of 8 Hz indicated three pairs of ortho-positioned
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hydrogens in both benzene rings. The methoxy substituent was confirmed by signals at δH
3.77 and δC 61.9. A set of signals in 1H NMR (δH 5.25, 1H, m; δH 3.37, 2H, d, J = 6.90 Hz;
δH 1.78, 3H, s and δH 1.66, 3H, s) and 13C (δC 130.7, 123.0, 24.9, 22.7, and 17.1) confirmed
the presence of the C-isoprenyl (or γ,γ-dimethylallyl) substituent. The MS spectrum in
the positive mode exhibited a peak at m/z 339.17, which was attributed to the protonated
molecule ion [M + 1]+, corroborating C21H22O4 as the molecular formula of LCC.
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2.2. Antibacterial Assays

In order to assess the antibacterial activity of LCC, we tested its effects against seven
Gram-positive, four Gram-negative, and three Mycobacterium species (Table 1).

Table 1. Antibacterial activity of LCC expressed as MIC values (in µg/mL) *.

Species
MIC (µg/mL)

LCC Tetracycline # Vancomycin # Chlorhexidine # Isoniazid #

Gram-positive

Staphylococcus aureus (MSSA) 12.5 0.09 - - -

Staphylococcus aureus (MRSA) 12.5 - 0.73 - -

Staphylococcus epidermidis 6.2 >5.9 - - -

Enterococcus faecalis 50.0 3.3 - - -

Streptococcus pneumoniae 50.0 0.4 - - -

Streptococcus sanguinis 6.2 - - 1.8 -

Streptococcus sobrinus 12.5 - - 3.6 -

Streptococcus mutans 12.5 - - 0.4 -

Mycobacteria

Mycobacterium tuberculosis 31.2 - - - 0.5

Mycobacterium avium 62.5 - - - >1.0

Mycobacterium kansasii 125.0 - - - 1.0

Gram-negative

Helicobacter pylori 25.0 1.47 - - -

Pseudomonas aeruginosa >400 5.9 - - -

Klebsiella pneumoniae >400 1.47 - - -

Escherichia coli >400 0.73 - - -

* MIC values were the mean of triplicates. MSSA: methicillin-susceptible Staphylococcus aureus; MRSA: methicillin-
resistant Staphylococcus aureus. -: not tested; # positive controls.

LCC inhibited the growth of all Gram-positive bacteria, displaying minimum inhibitory
concentration (MIC) values ranging from 6.2 µg/mL to 50.0 µg/mL. Among the Gram-
positive strains, LCC was equally active against MSSA and MRSA (MIC = 12.5 µg/mL).
Staphylococcal penicillin-binding proteins (PBP) are the β-lactam targets and MRSA strains
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can express PBP2a, an extra PBP with a low affinity to β-lactam, conferring resistance by
staphylococci cells [21,22]. Thus, the identical susceptibility of MSSA and MRSA suggested
LCC may not act in the set of PBPs. Our findings were corroborated by Wu and Avila, who
identified the effects of LCC against clinical isolates of MSSA and MRSA [16,23]. Among
Gram-negative species, Helicobacter pylori was susceptible to LCC (MIC = 25 µg/mL). LCC
was inactive against P. aeruginosa, K. pneumoniae, and Escherichia coli (MIC > 400 µg/mL).
The lack of effect against Gram-negative bacteria may be explained by their effective efflux
pumps, which reduce the intracellular concentration of antibacterial compounds [24–26].
Kuete and collaborators reported that the association of an efflux pump inhibitor (EPI)
with antibacterial drugs can restore or increase the effect of the antibiotics against Gram-
negative bacteria. The efficacy of isobavachalcone (IBC), a C-isoprenylated chalcone,
was associated with EPI. IBC was weakly active against Gram-negative strains when
evaluated without EPI. On the other hand, the combination between IBC and EPI was
able to reduce the MIC values, indicating that IBC was a substrate of efflux pumps in
Gram-negative species, including E. coli, P. aeruginosa, K. pneumoniae, and Enterobacter
aerogenes and Enterobacter cloacae [27]. In contrast to other bacterial pathogens, H. pylori
has demonstrated a higher genetic heterogeneity due to the gastric adaptation. Its low
clonality has led to genetic and phenotypical cells, which can be more susceptible than other
tested Gram-negative species [28]. Finally, LCC exhibited antimycobacterial activity against
Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium kansasii, with MIC
values ranging from 31.2 µg/mL to 125 µg/mL. Altogether, our data suggested that LCC
had a narrow spectrum of antibacterial activity, focusing its effects against Gram-positive
bacteria, H. pylori, and species of mycobacteria.

2.3. Checkerboard Assay

In antibacterial pharmacotherapy, the association of drugs is an effective tool to combat
infections, enhancing the antibacterial potency as well as decreasing side effects, treatment
period, and resistance [29]. Chalcones with diverse structural patterns have exhibited
in vitro synergistic effects with antibacterial drugs. Gaur and co-authors described the
anti-MRSA and synergistic effects of an indolyl-chalcone, which was able to reduce the
MIC of norfloxacin by up to 16-fold and displayed fractional inhibitory concentration index
(FICI) values < 0.5 [30]. Bozic and collaborators described the activity of hydroxychal-
cones against a panel of MRSA clinical isolates and their potent synergistic effect with
norfloxacin, gentamicin, and trimethoprim-sulfamethoxazole [31]. LCC effects against
MSSA (MIC = 12.5 µg/mL) and MRSA (MIC = 12.5 µg/mL) encouraged us to evaluate it
combined with tetracycline (TC) and vancomycin (VAN). The checkerboard assay indicated
FICI values > 0.5, demonstrating no synergistic effect between LCC and TC and VAN
against MSSA and MRSA, respectively (Table 2).

Table 2. Effect of the combination of LCC with antibacterial drugs against MSSA and MRSA plank-
tonic cells.

MIC (µg/mL)

S. aureus
Strains Combination

Alone Combined
FICLCC FICD FICI Type of

CombinationLCC D LCC D

MSSA LCC + TC 12.5 0.09 3.12 0.18 0.25 2.0 2.25 Indifferent

MRSA LCC + VAN 12.5 0.73 6.25 0.36 0.5 0.5 1.0 Indifferent
TC: tetracycline; VAN: vancomycin; D: drug-associated (TC or VAN) to LCC against the S. aureus strain; FICLCC:
fractional inhibitory concentration for LCC (Equation (1)); FICD: fractional inhibitory concentration for the
associated drug (Equation (2)); FICI: fractional inhibitory concentration index (Equation (3)).

2.4. Antibiofilm Assay

Biofilm is a central virulence factor of S. aureus pathogenesis and is responsible for
recurrent and long-term staphylococcal infections. The high colonies-formation capacity of
Staphylococcus species provides their adherence to biological and abiotic surfaces, including
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medical devices, establishing a suitable environment for bacterial survival [32]. In this
context, biofilms act as a strong chemical and physical barrier against the penetration
and diffusion of antibiotics, which should be used in higher concentrations to furnish
satisfactory antibacterial action [33].

The antibiofilm assay showed LCC was able to inhibit the biofilm formation of MSSA
and MRSA strains in 75% and 87%, respectively, with MBIC50 values of 6.25 µg/mL.
Tetracycline (MBIC50 = 0.046 µg/mL) and vancomycin (MBIC50 = 0.737 µg/mL) were used
as positive controls and inhibited the biofilm formation of MSSA and MRSA, respectively
(Figure 2).
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2.5. Membrane Disruption Assay

Antibacterial drugs can act by well-established mechanisms of action, including the
inhibition of metabolism (sulfonamides and trimethoprim), the inhibition of cell wall
biosynthesis (β-lactams and glycopeptides), the disruption of protein biosynthesis (amino-
glycosides, tetracyclines, amphenicols and macrolides, lincosamides, streptogramins, and
oxazolidinones), and the inhibition of nucleic acid transcription and replication (quinolones
and rifamycin) [34,35]. On the other hand, few antibacterial drugs have membranes as
their target, highlighting the polymyxins. In this context, the development of antibacterial
agents that act by membrane perturbation can be a possible way to avoid common and
general resistance mechanisms [36].

We evaluated the effects of LCC on the S. aureus membrane using fluorescence mi-
croscopy to evidence its antibacterial mode of action. Bacterial cells were treated with LCC
at its MIC value (12.5 µg/mL) for 15 min, as well as nisin (positive control), an antibacterial
peptide that targets the bacterial membrane, producing pores [37]. Two fluorescent dyes
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propidium iodide (PI) and SYTO9 were added, which stain cells with disrupted membranes
(in pink) and whole membranes (in blue). Treatments with LCC and nisin exhibited pink
cells and cells treated with 1% DMSO (negative control) demonstrated blue cells. Represen-
tative fluorescence images of the treatment of LCC, positive, and negative controls were
presented in Figure 3.
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The percentages of damaged cells with permeabilized membranes were quantified
from the microscope images (Figure 4). Cultures treated with 1% DMSO had 10% of cells
with permeabilized membranes. Treatments with nisin and LCC demonstrated 95% and
75% of the cells stained with both fluorophores, respectively, indicating their abilities to
disrupt the S. aureus membrane.
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Haraguchi and collaborators investigated the effects of LCC on the respiratory chains
of S. aureus and Micrococcus luteus, indicating a blockage on membrane electron transport
between coenzyme Q (CoQ) and cytochrome c. LCC was able to inhibit two bacterial
membrane proteins NADH-oxidase (IC50 = 3.0 µM) and NADH-cytochrome c reductase
(IC50 = 29.6 µM), and no effects on NADH-CoQ reductase (IC50 > 100 µM) and NADH-FMN
oxidoreductase (IC50 > 100 µM). In addition, LCC did not inhibit the E. coli respiratory chain.
Our findings corroborated the studies of Haraguchi and collaborators, considering that the
membrane disruptor effects of LCC according to fluorescence microscope can directly cause
conformational alterations in protein complexes responsible for the respiratory chain [15].

The inhibition of the bacterial respiratory chain and membrane disruptor activity may
lead to some anxiety that LCC could affect eukaryotic electron transport and membranes,
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causing severe toxic effects. Thus, we evaluated the systemic toxicity of LCC on Galleria
mellonella larvae.

2.6. Systemic Toxicity in Galleria Mellonella Larvae Assay

G. mellonella allows for the evaluation of the systemic toxicity of compounds due
to some physiological similarities with mammalians [38,39]. In addition, G. mellonella is
an invertebrate model that is more accepted by ethical committees than mice models. G.
mellonella larvae techniques demand few resources and labor, due to their short life cycle
(7–8 weeks), furnishing a rapid screening of toxicity [40].

The larvae survival after treatments with vehicle control (saline 0.9%) and LCC at
12.5, 25, 50, and 100 µg/mL was 100% over a period of 72 h. On the other hand, the
administration of 100% DMSO caused total lethality after 40 h (Figure 5).
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Despite the non-toxic effects of LCC against G. mellonella larvae in the tested concen-
trations, some studies have reported its cytotoxic activity. LCC was able to inhibit the
proliferation of human cancer cell lines, including T24 (bladder, 68% proliferation inhibition
at 45 µg/mL), MCF7 (breast, 47% proliferation inhibition at 45 µg/mL), and A549 (lung, 40%
proliferation inhibition at 45 µg/mL) [41], HCT116 (colorectal, IC50 = 16.6 µM) [42], HepG2
(liver, IC50 = 50.8 µM) [43], HN22 (oral, IC50 = 23.8 µM), HSC4 (oral, IC50 = 27.1 µM) [44],
KYSE 30 (esophageal, IC50 = 28.0 µM), KYSE 70 (esophageal, IC50 = 36.0 µM), KYSE 410
(esophageal, IC50 = 19.0 µM), KYSE 450 (esophageal, IC50 = 28.0 µM), and KYSE 510
(esophageal, IC50 = 26.0 µM) [45]. In addition, LCC was also able to act against non-
tumorigenic mammalian cells (Vero cells), demonstrating an IC50 of 27.7 µg/mL [16]. The
cytotoxicity of LCC has been related to the regulation of some cellular signaling pathways,
including JAK2/STAT3 and ROS/MAPK, as well as the activation of caspase-mediated cell
death [44,45].

3. Materials and Methods
3.1. General Chemical Procedures

Reagents, solvents, and deuterated acetone were purchased from Merck® (São Paulo,
Brazil). Thin-layer chromatography (TLC) was performed on silica gel plates (8.0–12.0 µm,
200 µm, Supelco®

, St. Louis, MO, USA). Chromatography plates were visualized in
a UV chamber at 254 nm and 365 nm and revealed by an anisaldehyde–sulfuric acid
solution. Silica gel (230–400 mesh, Supelco®, St. Louis, MO, USA) and mixtures of hexane,
acetone, and ethyl acetate were used for the chromatography column as stationary and
mobile phases, respectively. 1H and 13C spectra were recorded on a Bruker® Avance III
spectrometer (14.1 T, 600 MHz) (Billerica, MA, USA). Low-resolution mass spectrometry
by electrospray ionization spectra was performed on Bruker ® Amazon ESI-IT (Billerica,
MA, USA).
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3.2. Synthesis of Licochalcone C

Synthesis of LCC was performed in six steps using well-established reactions in the
former literature, including C-isoprenylation, MOM-protection, O-methylation, Claisen–
Schmidt condensation, and MOM-deprotection.

3.2.1. C-Isoprenylation Reaction of Compound 1 [46]

3,3-Dimethylallyl bromide (2.08 mL, 18 mmol) was slowly added to a stirred solution
of β-resorcylaldehyde (1) (2.07 g, 15 mmol) and NaOH (0.6 g, 15 mmol) in methanol (20 mL)
at 0 ◦C. The mixture was stirred for 12 h at room temperature and washed with water,
extracted with ethyl acetate. The organic layer was dried with anhydrous magnesium
sulfate and concentrated under reduced pressure. The crude product was purified over
flash silica gel column chromatography (hexane:ethyl acetate = 10:1) to furnish 2 as a white
solid in a 31% yield.

3.2.2. Protection Reaction of Compound 2 [47]

Chloromethyl methyl ether (0.41 mL, 5.4 mmol) was slowly added to a solution of
2 (0.93 g, 4.5 mmol) and K2CO3 (1.86 g, 13.5 mmol) in dry acetone (15 mL) at 0 ◦C. The
mixture was stirred for 24 h at room temperature, washed with water, and extracted
with ethyl acetate. The organic layer was dried with anhydrous magnesium sulfate and
concentrated under reduced pressure. The crude product was purified over silica gel
column chromatography (hexane:ethyl acetate = 4:1) to afford 3 as a colorless oil in an
81% yield.

3.2.3. O-Methylation of Compound 3 [48]

Iodomethane (0.34 mL, 5.25 mmol) was added to a solution of 3 (0.87 g, 3.5 mmol) and
K2CO3 (1.93 g, 14 mmol) in dry acetone (15 mL) at 0 ◦C. The mixture was stirred for 12 h at
room temperature, washed with water, and extracted with ethyl acetate. The organic layer
was dried with magnesium sulfate and concentrated under reduced pressure. The crude
product was purified over silica gel column chromatography (hexane:ethyl acetate = 4:1) to
afford 4 as a yellow oil in a 95% yield.

3.2.4. Synthesis of Compound 5 [47]

Chloromethyl methyl ether (0.67 mL, 8.76 mmol) was slowly added to a solution of
4′-hydroxyacetophenone (1.0 g, 7.3 mmol) and K2CO3 (3.03 g, 21.9 mmol) in dry acetone
(15 mL) at 0 ◦C. The mixture was stirred for 8 h at room temperature, washed with water,
and extracted with ethyl acetate. The organic layer was dried with anhydrous magnesium
sulfate and concentrated under reduced pressure. The crude product was purified over
silica gel column chromatography (hexane:ethyl acetate = 4:1) to afford 5 as a colorless oil
in a 75% yield.

3.2.5. Claisen–Schmidt Condensation Reaction of Compounds 4 and 5 [49]

An aqueous solution of NaOH (60% w/v, 6.4 mL) was slowly added to a solution
of 4 (0.84 g, 3.2 mmol) and compound 5 (0.63 g, 3.5 mmol) in ethanol (16 mL) at 0 ◦C.
The mixture was stirred for 36 h at room temperature, washed with water, and extracted
with ethyl acetate. The organic layer was dried with magnesium sulfate and concentrated
under reduced pressure. The crude product was purified over flash silica gel column
chromatography (hexane:ethyl acetate:acetone = 7:2:1) to afford 5 as a yellow oil in a
77% yield.

3.2.6. Deprotection Reaction of Compound 6 [49]

An aqueous solution of hydrochloric acid (1 mol/L, 10 mL) was slowly added to a
solution of 6 (0.98 g, 2.3 mmol) in ethanol (10 mL) and THF (10 mL) at 0 ◦C. The mixture
was stirred for 6 h at 70 ◦C, washed with water, and extracted with ethyl acetate. The
organic layer was dried with magnesium sulfate and concentrated under reduced pressure.
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The crude product was purified over flash silica gel column chromatography (hexane:ethyl
acetate:acetone:dichloromethane = 6:2:1:1) to afford LCC as a yellow oil in a 73% yield.

3.3. Identification of Licochalcone C

The structure of LCC was identified by 1H NMR, 13C NMR, and MS spectral data
analyses. All NMR parameters, including hydrogen and carbon chemical shifts (δH and
δC), integrations, multiplicities (s = singlet; d = doublet and m = multiplet), and coupling
constants (J in Hz), corresponded to the structure, and were compared to former literature
reports [20].

1H NMR (600 MHz, acetone-d6): δH 8.04 (d, J = 8.7 Hz, 1H, H-2′ and H-6′), 7.99
(d, J = 15.6 Hz, 1H, H-β), 7.68 (d, J = 15.6 Hz, 1H, H-α), 7.65 (d, J = 8.7 Hz, 1H, H-6), 6.96 (d,
J = 8.7 Hz, 1H, H-3′ and H-5′), 6.80 (d, J = 8.5 Hz, 1H, H-5), 5.28–5.23 (m, 1H, H-2′′), 3.77 (s,
3H, OCH3), 3.37 (d, J = 6.9 Hz, 2H, H-1′′), 1.78 (s, 3H, H-5′′), 1.66 (s, 3H, H-4′′).

13C NMR (150 MHz, acetone-d6): δC 187.4 (C=O), 161.6 (C-4′), 159.7 (C-4), 158.8 (C-2),
138.4 (C-β), 130.8 (C-2′ and C-6′), 130.7 (C-3′′), 130.6 (C-1′), 126.5 (C-6), 123.0 (C-2′′), 122.1
(C-3), 120.2 (C-1), 119.5 (C-α), 115.2 (C-3′ and C-5′), 111.9 (C-5), 61.9 (OCH3), 24.9 (C-1′′),
22.7 (C-5′′), 17.1 (C-4′′).

MS (positive mode, electrospray, Mwt.: 338.40): m/z = 339.17 [M + 1]+. NMR and MS
spectra of LCC are presented in the Supplementary Material.

3.4. Antibacterial Assays

The strains were purchased from the American Type Culture Collection (ATCC)
(Manassas, VA, USA) and were maintained in the culture collection of the Laboratory
of Antimicrobial Testing in the Federal University of Uberlandia, from Minas Gerais, Brazil.

The antibacterial and antimycobacterial effects of LCC were tested against MSSA
(ATCC 6538), MRSA (ATCC BAA44), S. epidermidis (ATCC 14990), E. faecalis (ATCC 1299),
S. pneumoniae (ATCC 6305), S. sanguinis (ATCC 10556), S. sobrinus (ATCC 33478), S. mutans
(ATCC 25175), H. pylori (ATCC 43526), P. aeruginosa (ATCC 27853), K. pneumoniae (ATCC
23883), Escherichia coli (ATCC 25922), M. tuberculosis (ATCC 27294), M. avium (ATCC 25291),
and M. kansasii (ATCC 12478).

The MIC values against Gram-positive and Gram-negative species were determined
in triplicate using the broth microdilution method in 96-well microplates as previously re-
ported, using resazurin as a colorimetric indicator of cell viability [50]. LCC was dissolved
in dimethyl sulfoxide (DMSO) at 1 mg/mL, followed by dilution in brain heart infusion
(BHI) to achieve the final concentrations ranging from 400 to 0.195 µg/mL. The final DMSO
content was 5% (v/v) and a similar solution was used as a negative control. The inoculum
was adjusted for each microorganism to reach a cell suspension of 5.0 × 105 colony-forming
units per mL (CFU/mL), as preconized by the Clinical and Laboratory Standards Institute
(CLSI), with modifications in the culture medium [51]. The growth control (inoculated
well) and sterility control (non-inoculated well free of antimicrobial agent) were evaluated.
Tetracycline, vancomycin, and chlorhexidine were used as positive controls and evalu-
ated in independent assays in concentrations ranging from 0.0115 µg/mL to 5.9 µg/mL,
0.0115 µg/mL to 5.9 µg/mL, and 0.115 µg/mL to 59 µg/mL, respectively. The 96-well
microplates were sealed with plastic film and incubated at 37 ◦C for 24 h. After this period,
30 µL of aqueous solution of resazurin (0.02%) was added to the microplates and incubated
for 15 min at 37 ◦C. The MIC value was defined as the lowest concentration able to in-
hibit the microorganism growth (color change of resazurin from blue to pink), which was
expressed in µg/mL. The assay was conducted in triplicate.

The MIC values of LCC against mycobacteria species were determined according to the
protocol of Palomino and collaborators, with slight modifications [52,53]. A stock solution
of LCC was prepared in DMSO and diluted in Middlebrook 7H9 broth to achieve the final
concentrations ranging from 7.8 µg/mL to 1000 µg/mL. Isoniazid was dissolved in DMSO
and used as a positive control in concentrations ranging from 0.015 µg/mL to 1 µg/mL.
The inoculum was prepared by introducing a range of colonies grown in Ogawa–Kudoh
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in a tube containing glass beads with 500 µL of sterile water. An aliquot of 200 µL was
transferred to a tub containing 2 mL of 7H9 broth, incubated at 37 ◦C for seven days, and
compared with McFarland scale 1 (3.0 × 108 cells/mL). The inoculum was suspended in
96-well plates at a 1:25 ratio with 7H9 broth. The growth controls (without antibiotics)
and sterility controls (without inoculation) were also included. The 96-well plates were
incubated at 37 ◦C for seven days. After this period, 30 µL of an aqueous solution of
resazurin 0.02% was added to each well, which was incubated for 24 h at 37 ◦C. The MIC
value was defined as the lowest compound concentration able to inhibit the mycobacterial
growth, which was expressed in µg/mL. The assay was conducted in triplicate.

3.5. Checkerboard Assay

The combinations of LCC with tetracycline and vancomycin were evaluated against
MSSA and MRSA, respectively, using a microdilution broth checkerboard assay, accord-
ing to White and collaborators, adapted with the standard procedure established by the
CLSI [51,54]. The fractional inhibitory concentration (FIC) of the combination between
LCC and tetracycline or vancomycin was determined using Mueller–Hinton broth culture
medium into 96-well plates, with a final inoculum suspension of 5.0 × 105 CFU/mL, incu-
bated at 37 ◦C for 24 h. After incubation, an aqueous resazurin solution (0.02%) was added
to the wells and the FIC values (ratio between the MIC of the drug in combination and
the MIC of the drug alone) were determined for each drug (Equations (1) and (2)). The
fractional inhibitory concentration index (FICI) was calculated using Equation (3) [30].

FICLCC =
MIC of drug A in combination

MIC of drug A alone
(1)

FICD =
MIC of drug B in combination

MIC of drug B alone
(2)

FIC Index (FICI) = FICLCC + FICD (3)

The combination was classified as synergistic (FICI ≤ 0.5), indifferent (0.5 < FICI < 4),
and antagonistic (FICI ≥ 4) [54]. The assays were performed in triplicate in independent
experiments.

3.6. Antibiofilm Assay

The LCC inhibition against the biofilm formation of MSSA and MRSA was evaluated
using the broth microdilution methodology proposed by the CLSI (2012) [51]. The minimum
biofilm inhibitory concentration (MBIC50) was established as the concentration of LCC
able to inhibit 50% or more of biofilm formation [55]. The MBIC50 values were determined
using two protocols, including biomass and cell viability assessment by optical density
(OD) reading. Two microplates were used for each protocol. The assays were performed
in triplicate in three independent experiments. The inoculum concentration and optimal
incubation time for this assay were determined by standardizing biofilm formation. In
96-well flat-bottom microplates containing BHI broth supplemented with 2% glucose, serial
dilutions of the samples were made from the stock solution (1600 µg/mL), obtaining a
final concentration between 0.195 µg/mL and 400 µg/mL. From a 24 h culture on BHI agar
plates, the inoculum of MSSA and MRSA was prepared in BHI broth supplemented with
2% glucose, with equivalent turbidity on a spectrophotometer at 625 nm, to match 0.5 in
the McFarland scale (1.5 × 108 CFU/mL). The bacterial suspensions were diluted to the
final concentration of 1.0 × 106 CFU/mL. The microplates were incubated at 37 ◦C for
24 h. Subsequently, the contents of the wells were aspirated, and non-adhered cells were
removed by washing with a phosphate-buffered saline (PBS) buffer (pH = 7.2). The formed
biofilm was fixed with methanol for 15 min, dried at room temperature, and stained with
a crystal violet solution (0.2%) for 20 min. After removing the crystal and washing the
wells with the PBS buffer, 33% acetic acid was added to solubilize the crystal retained in
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the biofilm. The absorbance of the wells was determined in a spectrophotometer at 595 nm.
The determination of MBIC50 was performed using Equation (4) [55,56].

MBIC50 = 1 − (A595 of the test ÷ A595 of non-treated control) × 100 (4)

The evaluation of the ability of the samples to inhibit or reduce the viability of the
biofilm formed was performed as proposed by Parai et al. (2020) and Saising et al. (2012),
with modifications. Briefly, the plates intended for this evaluation were prepared in the
same way as those reserved for biomass evaluation by the crystal violet method and
incubated for 24 h. Then, the entire contents of the wells were gently aspirated, and
the wells were washed with PBS to remove non-adherent cells. Subsequently, 50 µL of
the menadione solution and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-
carboxanilide (MTT) were added with a final concentration of 0.5 mg/mL and the plates
incubated in the dark for 2 h at 37 ◦C. Then, formazan crystals (product of MTT reduction
by metabolically active cells present in the biofilm) were solubilized by adding 100 µL
of dimethyl-sulfoxide (DMSO) for 10 min, and 80 µL of each well were transferred to
another plate, wherein reading was performed in a spectrophotometer with a wavelength
of 490 nm [57,58].

Tetracycline and vancomycin were used as positive controls and were evaluated at
concentrations ranging from 0.0115 µg/mL to 5.9 µg/mL. Bacterial cells were evaluated in
the absence of the antibacterial compounds and were used as negative controls.

3.7. Membrane Disruption Assay

The assay was performed using Staphylococcus aureus (ATCC 29213), an MSSA strain.
Bacterial cells were cultivated in solid TSA broth (tryptone soya) at 36 ◦C and stirred at
200 rpm. S. aureus (106 cells) was exposed to LCC at its MIC value (12.5 µg/mL) in DMSO
for 15 min in a 1.5 mL microcentrifuge tube in a total volume of 100 µL of TSA medium.
Next, 900 µL of the TSA medium was added to the tube to dilute the compound and stop
the reaction [59]. Cells were stained with the Live/Dead BacLight Kit (Thermo-Scientific®

L7012, Carlsbad, CA, USA), which is composed of two nucleic acid dyes: SYTO9, which
stains all cells, and propidium iodide, which penetrates cells with damaged membranes [60].
The stained cells were immobilized on agarose-covered slides as described by Martins [61].
Untreated S. aureus cells with intact membranes were used as negative controls, and S.
aureus cells exposed to nisin (Sigma-Aldrich® N5764, St. Louis, MO, USA) were used as
positive controls for membrane damage [62]. Microscopic analyses were carried out using
an Olympus BX-61 microscope, equipped with a monochromatic OrcaFlash-2.8 camera
(Hamamatsu, Japan), and the software CellSens Dimension Version 11 (Olympus).

3.8. Systemic Toxicity in Galleria Mellonella Larvae Assay

The systemic toxicity assay was performed to evaluate the acute toxic effects of LCC,
following the procedures described by Megaw [63]. For the experiment, 10 healthy larvae
from G. mellonella were randomly selected for each concentration test, with a weight range
between 0.2 g and 0.3 g and without melanization aspects. The larvae were chilled on
ice for 20 min and had their prolegs cleaned with 70% ethanol. Four solutions of LCC in
DMSO were prepared with different concentrations, ranging from 25 µg/mL to 100 µg/mL.
Five microliters of the solution were injected into the hemocoel of each larva through the
last left proleg using a 25 µL Hamilton syringe. After the administration, the larvae were
incubated at 37 ◦C and their survival was monitored in selected intervals over 72 h. The
larvae unable to move when touched and showing elevated levels of melanization were
counted as dead. Experiments were performed in triplicate.

4. Conclusions

In summary, we synthesized and evaluated LCC as part of our ongoing search for
antibacterial agents. LCC demonstrated effects against Gram-positive bacteria, H. pylori,
and Mycobacterium species. The combination of LCC-tetracycline and LCC-vancomycin
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exhibited no synergistic effects against MSSA and MRSA. LCC was able to inhibit MSSA and
MRSA biofilm formation and its mode of action involved S. aureus membrane disruption.
Furthermore, systemic toxicity investigation using G. mellonella larvae indicated LCC was
not toxic. Altogether, our findings open new ways for LCC as an antibacterial agent, with
potential applications in drug discovery and medical device coatings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17050634/s1, NMR and MS spectra. Figure S1: 1H NMR spec-
trum of LCC (acetone-d6; 600 MHz); Figure S2: Amplification of 1H spectrum of LCC (1.5–8.0 ppm)
(acetone-d6; 600 MHz); Figure S3: Amplification of 1H spectrum of LCC (6.75–8.05 ppm) (acetone-d6;
600 MHz); Figure S4: Amplification of 1H spectrum of LCC (5.1–5.4 ppm) (acetone-d6; 600 MHz);
Figure S5: Amplification of 1H NMR spectrum of LCC (3.34–3.78 ppm) (acetone-d6; 600 MHz);
Figure S6. Amplification of 1H NMR spectrum of LCC (1.8–1.6 ppm) (acetone-d6; 600 MHz); Figure S7:
13C NMR spectrum of LCC (acetone-d6; 150 MHz); Figure S8: MS spectrum of LCC performed by
electrospray (positive mode).
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