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Abstract: Ischemic stroke triggers a complex cascade of cellular and molecular events leading to
neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting
cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the
articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain
injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular
processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell
growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective
effects of targeting these pathways in stroke models, offering insights into potential treatment
strategies. However, challenges such as off-target effects and the need for tissue-specific targeting
remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in
stroke treatment, highlighting the importance of exploring alternative approaches. Future research
directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and
translating preclinical findings into clinical practice for improved stroke outcomes.
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1. Introduction

According to the Global Burden of Disease (GBD 2019), stroke is the second leading
cause of death and the third most significant cause of both death and disability, with a sig-
nificant increase in disability-adjusted life years (DALYs) caused by risk factors, particularly
in low- and middle-income countries [1,2].

Strokes are classified into ischemic, hemorrhagic, and transient ischemic attacks (TIAs),
with ischemic strokes constituting the majority at approximately 87%. Unlike hemorrhagic
strokes, which are characterized by bleeding in the brain, ischemic strokes occur due
to blocked blood flow to the brain. TIAs, or “mini-strokes”, present brief, reversible
symptoms, acting as precursors to more severe strokes. This review included the articles
that focuses on ischemic strokes [3]. The effectiveness of revascularization treatments,
including both intravenous thrombolysis and endovascular interventions, is closely linked
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to time, highlighting the importance of research on other treatment options [4]. Typically,
ischemic stroke is identified through exclusion in the emergency setting, with non-contrast
computed tomography (NCCT) serving as the primary diagnostic tool. This preference for
NCCT is due to its broad accessibility and the relatively quick duration required for imaging,
making it a critical initial step in assessing patients suspected of ischemic stroke [5].

In addition to treatment considerations, it is imperative to understand the underlying
pathophysiological mechanisms driving ischemic stroke. Ischemic strokes arise from the
sudden interruption of blood flow to the brain, precipitating a cascade of neurological
deficits, and stands out as the predominant subtype among all stroke occurrences, con-
stituting over 80% of total cases [6]. This interruption leads to cellular damage due to
oxygen and nutrient deprivation, triggering inflammatory responses, oxidative stress, and
ultimately neuronal death [7]. Key contributors to ischemic stroke pathology include the
disruption of blood–brain barrier integrity, excitotoxicity, mitochondrial dysfunction, and
apoptotic pathways [8,9].

These pathophysiological mechanisms not only affect individual neurons but also
disrupt the intricate balance within the neurovascular unit (NVU). The NVU comprises
neurons, astrocytes, endothelial cells, pericytes, and the extracellular matrix, working in
concert to maintain brain homeostasis and regulate cerebral blood flow [10].

Despite extensive progress in understanding the ischemic cascade, an effective neu-
roprotective therapy that safeguards neurovascular units (NVUs) and significantly en-
hances neurological functions in ischemic stroke patients remains elusive [10,11]. While
intravenous thrombolysis and other recanalization therapies show potential in restoring
perfusion and improving clinical outcomes if administered promptly after ischemic stroke
onset [12], the ultimate aim of preserving NVU integrity and optimizing neurological
recovery remains a pressing challenge in stroke care [13].

While numerous cellular signaling pathways contribute to ischemic stroke pathology,
this review concentrates on the RhoA kinase pathway and mTOR (mammalian target
of rapamycin) as promising therapeutic targets, as well as secretome-based treatments,
which have the potential to modulate multiple aspects of stroke pathology and potentially
complement existing therapeutic approaches.

The Rho kinase pathway has been associated with the pathophysiology of diverse
central nervous system (CNS) disorders and has garnered attention as a promising ther-
apeutic target for ischemic stroke treatment [14]. ROCK (Rho-associated protein kinase),
a principal downstream mediator of RhoA activation, participates in a spectrum of in-
tracellular signaling cascades, encompassing the modulation of endothelial nitric oxide
synthase (eNOS) expression, blood–brain barrier (BBB) integrity, neuronal apoptosis, and
astrogliosis [15]. Moreover, mTOR, a highly conserved protein kinase, plays a central role in
various signaling pathways critical for fundamental cellular processes such as cell growth
and metabolism [16]. A thorough understanding of the molecular mechanisms activated
in response to cerebral ischemia holds significant potential for the identification of novel
therapeutic targets. In this context, mTOR emerges as a compelling candidate for inclusion
in intervention strategies aimed at ameliorating ischemic stroke pathology [17].

Additionally, we explore the emerging concept of the “secretome”, comprising the
bioactive molecules secreted by mesenchymal stromal cells (MSCs), and its potential
implications for ischemic stroke treatment. Through an in-depth analysis of these signaling
pathways and their modulation, we aim to provide insights into novel therapeutic strategies
aimed at attenuating neuronal injury, promoting tissue repair, and enhancing functional
recovery following ischemic stroke.

2. Search Strategy

A comprehensive literature search was performed across various electronic databases,
such as PubMed, Web of Science, Scopus, and Google Scholar, to identify studies relevant for
our topic. The search strategy employed a combination of keywords and phrases related to
ischemic stroke, molecular mechanisms, pharmacological treatments, RhoA/ROCK, mTOR
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pathways, MSCs, EVs, and secretome. Boolean operators (AND, OR) were applied to refine
the search results. For example, search terms included “stroke OR cerebral ischemia AND
RhoA/ROCK”, “MSC OR EVs OR secretome AND stroke”, and “mTOR AND stroke OR
cerebral ischemia AND treatment”.

3. The Neurovascular Unit and Ischemic Cascade

The ischemic cascade denotes a sequence of intricate biochemical and molecular pro-
cesses that occur in the brain after an abrupt cessation of blood circulation, commonly
caused by an ischemic stroke or other cerebrovascular incidents. This sequence of events
takes place as a result of the lack of oxygen and glucose, which are vital for the brain’s en-
ergy metabolism and cellular activities [18,19]. Energy depletion causes the malfunction of
ion pumps, specifically the sodium–potassium ATPase pump, leading to the depolarization
of neurons [20]. The depolarization initiates an excessive release of excitatory neuro-
transmitters, such as glutamate, resulting in the overstimulation of glutamate receptors,
specifically N-methyl-D-aspartate (NMDA) receptors [21,22].

Excitotoxicity and energy failure result in the entry of calcium ions into neurons
through several channels, such as NMDA receptors [23] and voltage-gated calcium chan-
nels [24]. The excessive buildup of calcium within cells triggers the activation of several
enzymes and pathways that lead to cellular destruction, such as proteases, lipases, and
nitric oxide synthase [25]. This results in the generation of reactive oxygen species (ROS)
and free radicals [26,27], highly reactive compounds that cause oxidative harm to lipids,
proteins, and DNA in brain cells, increasing neuronal damage [28,29].

Ischemic brain injury triggers a series of processes characterized by the activation
of microglia [30–32], astrocytes [33–35], and immune cells that infiltrate the brain [36].
The inflammatory reaction triggers the release of cytokines, chemokines, and other sub-
stances that promote neuroinflammation and cause more tissue harm [37]. Simultaneously,
oxidative stress and inflammation [7] caused by ischemia weaken the blood–brain bar-
rier (BBB), increasing its permeability and enabling the infiltration of chemicals from the
bloodstream into the brain tissue [8]. This breach of BBB integrity promotes neuronal
damage and inflammation, and together with the combination of excitotoxicity, oxidative
stress, and inflammation leads to secondary damage to neurons and tissues, which spreads
beyond the original area of reduced blood flow into the surrounding region known as the
penumbra [9,38]. This additional insult exacerbates the advancement of ischemia damage,
intensifying neurological impairments and compromising results [39] (Figure 1).
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Figure 1. Neurovascular unit changes secondary to ischemia (created with BioRender.com (accessed
on 10 March 2024)).

4. Targeting Cellular Pathways in Ischemic Stroke Treatment
4.1. RhoA/ROCK Pathway

RhoA is a small GTPase protein that serves as a molecular switch in intracellular
signaling [40], crucial for controlling a range of cellular activities, such as cytoskeletal
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dynamics, cell adhesion, movement, and growth [41]. RhoA transitions from an inactive
GDP-bound form to an active GTP-bound form [42], with its activation being carefully
controlled by guanine nucleotide exchange factors (GEFs) [43,44] and GTPase-activating
proteins (GAPs) [45]. When triggered, RhoA influences its impact by engaging with down-
stream effector proteins like ROCK (Rho-associated protein kinase). ROCK functions as a
key downstream effector of RhoA, operating as a serine/threonine kinase [46]. It plays a
crucial role in various cellular reactions triggered by RhoA activation, such as rearrang-
ing the actin cytoskeleton, causing cell contraction, and promoting cell movement [47].
Controlling these processes involves the phosphorylation of different target proteins by
ROCK, including myosin light chain (MLC) and LIM kinase (LIMK), which then impact
actomyosin contractility and cytoskeletal dynamics [48].

The RhoA/ROCK pathway is an essential signaling path involved in multiple bi-
ological processes such as cell proliferation, migration, and contraction [49–51]. The
RhoA/ROCK pathway is important in regulating various pathophysiological processes
that lead to ischemic brain damage in stroke [52].

The impact of the pathway on cerebral ischemic injury is multifaceted and intricate [53].
Activation of the RhoA/ROCK pathway in the vascular endothelium following ischemic
stroke may lead to decreased phosphorylation of nitric oxide synthase 3 (NOS3), resulting
in reduced nitric oxide (NO) production, which leads to a decreased blood flow [54]. Also,
activation of the RhoA/ROCK pathway precipitates a cascade of events characterized by
heightened oxidative stress and elicitation of inflammatory responses, thereby accelerating
the process of neuroinflammation [55]. Studies using middle cerebral artery occlusion
(MCAO) models have shown that inhibiting ROCK results in increased blood flow, leading
to a significant reduction in cerebral infarct size and an improvement in neurologic deficit
scores [56], as well as enhanced learning capacity [57]. Nonselective pharmacological
inhibitors and the lack of understanding regarding downstream targets have limited
research on the RhoA/ROCK pathway in ischemic stroke. While ROCK inhibitors like
Fasudil have shown promise in preclinical and clinical trials [58], concerns remain about
their adverse effects and the need for tissue-specific targeting to dissect the precise role of
ROCK isoforms in ischemic stroke pathophysiology [53]. Figure 2 provides an overview
of the impacts of the RhoA/ROCK pathway in ischemic stroke and outlines its potential
therapeutic implications.
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Figure 2. Overview of Rhoa/ROCK pathway in ischemic stroke (created with BioRender.com
(accessed on 10 March 2024)). GEF, guanine nucleotide exchange factors; GAP, GTPase-activating
proteins.

4.2. mTOR Signaling Pathway

The mammalian target of rapamycin (mTOR) pathway is a key signaling pathway
involved in the regulation of various cellular processes, including cell growth [59], pro-
liferation [60], survival [61], metabolism [62], and autophagy [63,64]. mTOR stands as a
highly conserved serine/threonine protein kinase found within the PI3K (phosphoinositide
3-kinase)-related kinase family (PIKK) [65], a class of intracellular lipid kinases that catalyze
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the phosphorylation of the 3′-hydroxyl group on the inositol ring of phosphatidylinosi-
tides [60].

It has been demonstrated that cerebral ischemia causes a significant activation of
signaling pathways that are associated with autophagy in neurons, glial cells, and brain
microvascular cells [66]. In this context, the classic type I PI3K/Akt–mTOR and AMPK–
mTOR pathways play pivotal roles in regulating autophagy after cerebral ischemia [23].
Phosphoinositide 3-kinase (PI3K) activation leads to the phosphorylation and activation of
Akt, which subsequently activates TORC1, which inhibits autophagy activation in nutrient-
rich environments [67], through Unc-51-like autophagy activating kinase 1 (Ulk-1) [68].
Under ischemic conditions, the activity of this pathway is diminished [69]. Secondly,
the AMPK (5′-AMP-activated protein kinase)–mTOR pathway acts as a metabolic sensor,
modulating cellular energy balance and autophagic activity in response to energy stress [70].
Ischemic stroke triggers energy depletion and metabolic stress [71], leading to AMPK
activation [72]. Activated AMPK inhibits mTORC1 activity, relieving its suppression
of autophagy [73]. Enhanced autophagy, facilitated by AMPK activation, promotes the
clearance of damaged cellular components and may contribute to neuronal survival and
recovery in ischemic stroke [74,75], attenuates neuroinflammation by suppressing the
activation of inflammasomes and modulating the phenotypic alteration of microglia [76],
as well as promotes blood-brain barrier (BBB) preservation [77].

Nevertheless, the evidence regarding the dual role of autophagy following ischemic
stroke is inconclusive. Some studies suggest that heightened autophagic activity exacer-
bates brain injury in ischemic conditions [78], leading to increased oxidative stress [79] and
apoptosis [80].

Several pharmacological agents that activate AMPK have been studied extensively.
Pretreatment with metformin has the capacity to regulate mitochondrial biogenesis and
pathways associated with apoptotic cell death through the activation of AMPK in a rat
model of global cerebral ischemia, thereby conferring neuroprotection [81]. Furthermore,
Zhao et al. [82] investigated the impact of metformin on neurological function and oxidative
stress in individuals with type 2 diabetes mellitus experiencing acute stroke and found that
patients treated with metformin exhibited a significant decrease in NIHSS scores compared
to those receiving insulin administration. This suggests that metformin has the potential to
ameliorate neurological deficits and enhance cognitive function in acute ischemic stroke
patients with type 2 diabetes, likely by reducing oxidative stress levels, as evidenced
by decreased levels of MAD and increased activity of SOD and GSH-Px [82]. Although
numerous studies underscore the advantageous effects of metformin in the context of
ischemic stroke, including the stimulation of neurogenesis [83,84] and angiogenesis [85–87],
reduction of infarct volume [88,89], and enhancement of neurological recovery [90,91],
some research indicates that the acute administration of metformin may exert potential
adverse effects [92]; therefore, detailed investigations of its biodistribution, optimal timing
for administration, and targeted mechanisms are imperative to advance its application as a
neurotherapeutic agent [93].

Sinomenine (Sino) is an alkaloid derived from Sinomenium acutum, which exhibits
anti-inflammatory effects and has been traditionally employed in China to treat neuralgia
and rheumatic diseases [94]. Numerous studies have endeavored to elucidate the potential
therapeutic application of Sino in ischemic stroke treatment. Qiu et al. [95] illustrated
that Sino confers neuroprotection in ischemic stroke by suppressing NLRP3 inflamma-
somes through the AMPK pathway, both in vivo using a mouse model of middle cerebral
artery occlusion (MCAO) and in vitro using an oxygen–glucose deprivation (OGD)-treated
astrocytes/microglia model [95]. In a separate investigation, treatment with Sino signifi-
cantly reduced cerebral infarction and neuronal apoptosis, lowered levels of inflammatory
cytokines, and ameliorated neurological deficits in MCAO mice, possibly by inhibiting
neuroinflammation through the CRYAB/STAT3 pathway [96]. Sino effectively mitigated
cerebral damage and inflammation, while reinstating the equilibrium in cerebral oxida-
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tive stress, potentially via the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling
pathway [97].

Resveratrol (3,5,4′-trihydroxystilbene) is a natural compound classified as a stilbenoid,
belonging to a group of polyphenolic compounds found in the skin of grapes, red wine,
berries, and other nutrients [98]. Its neuroprotective effects have been validated in preclini-
cal models of MCAO [99,100]. Pretreatment with resveratrol has improved oxidative stress
markers and reduced the activities of antioxidant enzymes and Na+/K+–ATPase [101].
A different study proposed that the Smoothened (Smo) receptor could be a therapeutic
target of resveratrol in order to help decrease microglial activity during the initial stage of
a stroke [102]. Several studies investigated the role of resveratrol in the AMPK pathway.
The results suggest that resveratrol offers neuroprotection via blocking phosphodiesterase
(PDEs) and controlling the cAMP/AMPK/SIRT1 pathway, leading to decreased ATP en-
ergy usage in ischemic conditions [103]. Another study demonstrated that the protective
effect of resveratrol partially relies on the activation of the AMPK/autophagy pathway,
which was hindered by Compound C [104], possibly by activating JAK2/STAT3, thus
upregulating the PI3K/AKT/mTOR pathway [105]. Despite the abundance of research in
preclinical models demonstrating the neuroprotective effects of resveratrol, there are still
constraints regarding the ideal dosage, treatment timing, and the selection of young and
healthy animals [106]. Fodor et al. [107] studied the effect of resveratrol supplementation
(100 and 200 mg/day, 12 months) in a group of patients who experienced stroke in the past
12 months and evidenced that they had overall better control of blood pressure, glycaemia,
and lipid profile [107]. Also, patients who receive delayed r-tPA treatment show better
treatment outcomes when resveratrol is given alongside compared to those who receive a
placebo, as shown by improved NIHSS ratings [108].

N-methyl-D-aspartic acid (NMDA) is a water-soluble synthetic compound derived
from amino acids that is commonly believed to enhance survival in the central nervous
system [109]. Stimulation of synaptic NMDAR promotes the PI3K/Akt kinase pathway,
leading to CREB (cAMP-response element binding protein)-dependent gene expression and
repression of pro-death genes, ultimately promoting pro-survival effects [110]. In preclinical
MCAO model studies, NMDAR antagonists shielded neurons from ischemic demise [111];
however, these findings have not successfully translated into clinical applications for
acute stroke treatment [112]. In light of the limited clinical success observed with NMDA
receptor antagonists, attention in stroke neuroprotection has shifted towards identifying
descending intracellular signaling pathways activated by NMDARs [111]. In a study
involving macaques, PSD-95 (postsynaptic density-95 protein) inhibitors, specifically Tat-
NR2B9c, were utilized. This peptide consists of the nine carboxy-terminal amino acids of
the N-methyl-D-aspartate receptor (NMDAR) NR2B subunit fused to the 11-mer HIV-1 Tat
protein transduction domain. Its purpose was to uncouple postsynaptic density protein
PSD-95 from neurotoxic signaling pathways, and it demonstrated that the treated group
developed reduced infarct volumes [113]. A randomized, double-blind, controlled study
across 14 hospitals in Canada and the USA used Tat-NR2B9c for individuals with either a
ruptured or unruptured intracranial aneurysm suitable for endovascular repair. Although
there was no discrepancy observed between the groups in terms of lesion volume detected
by diffusion-weighted MRI, patients in the Tat-NR2B9c group experienced fewer ischemic
infarcts compared to those in the placebo group [114].

Therapeutic hypothermia (TH) involves the transient reduction of body tempera-
ture following acute cerebral ischemia to mitigate neuronal damage and enhance tissue
resilience to restricted perfusion [115]. The inhibition of pAMPK due to hypothermia
diminishes infarct volume, cerebral edema, and cerebral metabolic rate following middle
cerebral artery occlusion (MCAO) in mice, with this protective effect further amplified by
Compound C administration [116]. Several preclinical stroke models have demonstrated
the protective effects of hypothermia, including reduced post-stroke inflammation [117],
enhanced angiogenesis [118], decreased brain infarction and neurological deficits, lower
levels of glycolytic enzymes [119], and reduced production of reactive oxygen species
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(ROS) [120]. However, conflicting findings suggest that this effect may be limited in aged
animal models [121]. Another concern lies in establishing optimal perfusion conditions
and ensuring procedural safety. In a rat model of middle cerebral artery occlusion (MCAO)
and reperfusion, intra-arterial hypothermia induced with cold saline solution at 4 ◦C, via
2/3 RICA (0.50 mL/min) for 20 min, was found to be safe and feasible [122]. In clinical
trials, conflicting results have been reported [123], likely due to small sample sizes, the
time window, and varied protocols. For instance, the ICTuS-2 trial, despite being halted
with only 120 enrolled patients, confirmed therapeutic hypothermia to be safe and feasi-
ble in acute ischemic stroke patients treated with rt-PA, albeit with a higher incidence of
pneumonia mentioned [124]. The findings from another clinical trial indicate that there
was no difference in the primary outcome between the groups, highlighting the need for
improvement in the feasibility of the cooling procedure [125]. A subsequent follow-up
of the study revealed elevated levels of Metalloproteinase-3 (MMP-3), fatty acid-binding
protein (FABP), and interleukin-8 (IL-8) associated with hypothermia [126]. However, a
more recent study found that combining mild hypothermia with remote ischemic precondi-
tioning (RIPC) had a positive effect on brain protection, significantly reducing oxidative
stress and associated inflammatory responses in 58 acute ischemic stroke patients [127]. The
impact of the mTOR pathway on ischemic stroke and its potential therapeutic significance
are depicted in Figure 3.

Figure 3. Overview of mTOR signaling pathway in ischemic stroke (created with BioRender.com
(accessed on 10 March 2024)).

4.3. Secretome

Mesenchymal stromal cells (MSCs) are adult stem cells known for their self-renewal
capacity and can be sourced from various tissues [128]. Despite their potential, MSC use poses
challenges like ectopic tissue formation, host rejection, and pro-tumoral activities [129,130],
yet they remain a focus in regenerative medicine due to their promise for tissue repair [131].

Recent attention has been drawn to MSCs as “trophic factories” because of their ability
to secrete a plethora of bioactive molecules in response to their surroundings, collectively
termed the MSC secretome [132]. Notably, MSC paracrine activities are gaining prominence,
especially as their secretome has been observed to penetrate the blood–brain barrier, with
only a fraction of intravenously administered MSCs reaching the brain [133–136], suggesting
that their beneficial effects are predominantly mediated through paracrine signaling.

BioRender.com


Curr. Issues Mol. Biol. 2024, 46 3491

The MSC secretome comprises a wide range of molecules crucial for various biological
processes [136], such as axonal growth [137], proliferation [138], apoptosis [139], and
angiogenesis [140], as well as the release of genetic material like microRNAs (miRNAs) [141].
Stem cell secretome [142], along with small extracellular vesicles (sEVs) derived from MSCs
have emerged as promising therapeutic agents [143].

Studies investigating MSC-derived extracellular vesicles (MSC-EVs) in ischemic stroke
treatment have reported positive outcomes, including reductions in stroke volume [144,145],
alleviation of neuroinflammation [145,146], and improvements in cognitive and motor func-
tion [147]. Enhanced neurogenesis and angiogenesis have also been observed in both adult
and aged rat models [148]. Xin et al. [149] have demonstrated that exosomes originating
from MSCs have the potential to transfer microRNA (miRNA)-133b to neuronal cells, lead-
ing to enhanced neurite outgrowth and improved functional recovery post-stroke [149].
Another potential mechanism underlying the neuroprotective effect of lymphocytes co-
cultured with HCB-SCs (human cord blood-derived multipotent stem cells) in an MCAO
rat model targets pyroptosis by promoting Tregs differentiation and suppressing NLRP3 in-
flammasome activation, ultimately reducing neuron apoptosis [150]. Moreover, numerous
studies have elucidated the modulation of autophagy via the mTOR pathway. This includes
both the inhibition of autophagy through pathways such as PI3K/Akt/mTOR [151,152] and
PTEN/Akt/mTOR [153] as well as the inhibition of p53/Bnip3-mediated autophagy [154].
Conversely, autophagy can also be enhanced through mechanisms such as the attenu-
ation of pyroptosis mediated by the NLRP3 inflammasome [155], or via pathways like
BDNF/mTOR, PI3K/Akt/mTOR, and Notch2/mTOR, which are implicated in the regula-
tion process of MSCs promoting autophagy [156].

While there are currently no findings from clinical trials evaluating MSC secretome
administration in stroke treatment, Dahbour et al. [157] explored the safety and efficacy
of intrathecal administration of autologous bone marrow-derived MSCs (BM-MSCs) com-
bined with their conditioned medium (CM) [157]. They observed a correlation between
reduced brain lesions and increased levels of factors such as IL-6, IL-8, and VEGF in the
CM. Despite minor adverse effects, the protocol was deemed safe, feasible, and poten-
tially effective in stabilizing and reversing disease symptoms. Figure 4 illustrates the
ramifications of the secretome in ischemic stroke, presenting its potential therapeutic ap-
plications. Table 1 provides a summarization of the therapies targeting the associated
signaling pathways discussed.
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Table 1. Therapies targeting the associated signaling pathways implicated in stroke pathophysiology.

Therapy Targeting Pathway Model Species Results

RhoA/ROCK Fasudil ROCK inhibition MCAO Mice ↓ infarct size
↑ neurological deficit [56]

Fasudil ROCK inhibition Hemorrhage/
reinfusion Mice ↑ learning capacity [57]

Fasudil ROCK inhibition Ischemic stroke Humans ↑ neurological status
↑ clinical outcome [58]

mTOR

Metformin AMPK activation Global cerebral
ischemia Rats ↑ neuroprotection [81]

Metformin ↓ oxidative stress Ischemic stroke
and diabetes Humans ↓ NIHSS [82]

Sinomenine suppresses NLRP3
inflammasomes MCAO Mice ↑ neuroprotection [95]

Sinomenine CRYAB/STAT3
pathway MCAO Mice

↓ cerebral infarction
↓ neuronal apoptosis
↑ neurological deficits

[96]

Sinomenine Nrf2 pathway MCAO Mice ↓ inflammation [97]

Resveratrol cAMP/AMPK/SIRT1
pathway MCAO Rats ↑ neuroprotection [103]

Resveratrol PI3K/AKT/mTOR
pathway MCAO Rats ↓ neurological damage

↓ infarct volume [105]

Resveratrol Ischemic stroke Humans
Regulates blood

pressure, glycemia and
lipid profile

[107]

Resveratrol MMP-2, MMP-9 Ischemic stroke Humans ↓ NIHSS [108]

Tat-NR2B9c NI Macaques ↓ infarct volume
↑ NHPSS [113]

Tat-NR2B9c NI Intracranial
aneurysm Humans fewer ischemic infarcts [114]

Hypothermia pAMPK inhibition MCAO Mice ↓ infarct volume [116]

Hypothermia NI Ischemic stroke Humans ↑ incidence of
pneumonia [124]

Hypothermia NI Ischemic stroke Humans No difference
between groups [125]

Hypothermia MMP-3, FABP, IL-8 Ischemic stroke Humans ↑ MMP-3, FABP, IL-8 [126]

Hypothermia +
RIPC NLRP3, MDA, SOD Ischemic stroke Humans

↓ oxidative stress
↓ inflammation

↓ NIHSS
[127]

Secretome

BMSC-Exos NLRP3 MCAO Rats
↓ infarct volume

↑ behavioral/cognitive
deficit

[145]

HCB-SCs suppresses NLRP3
inflammasomes MCAO Rats ↓ neuronal apoptosis [150]

RIPC—remote ischemic preconditioning; BMSC-Exos—bone marrow mesenchymal stem cell-derived exosomes;
HCB-SCs—human cord blood-derived multipotent stem cells.

5. Discussion

The RhoA/ROCK pathway emerges as a pivotal player in ischemic stroke, orchestrat-
ing diverse cellular responses that contribute to both injury and repair processes. Activation
of RhoA triggers downstream signaling cascades mediated by ROCK, culminating in cy-
toskeletal rearrangements, cell contraction, and inflammation [158,159]. Despite its central
role, targeting this pathway presents a double-edged sword, with both neuroprotective
and detrimental effects observed.

On one hand, inhibition of ROCK has shown promise in preclinical models, demon-
strating reductions in infarct size, improved neurological outcomes, and enhanced neu-
rovascular remodeling [160,161]. These beneficial effects are attributed to ROCK inhibition-
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mediated vasodilation [162], suppression of inflammatory responses, and promotion of
neuronal survival [162,163]. However, the translation of ROCK inhibitors into clinical prac-
tice faces hurdles, including off-target effects, variable efficacy, and challenges in achieving
tissue-specific targeting [53].

The mTOR signaling pathway emerges as a central regulator of cellular homeostasis,
exerting profound effects on cell growth, metabolism, and autophagy [164,165]. In the
context of ischemic stroke, dysregulation of mTOR signaling contributes to neuronal injury,
neuroinflammation, and impaired tissue repair.

Studies have demonstrated the dual role of mTOR in ischemic stroke pathophysiology,
with both neuroprotective and neurotoxic effects observed depending on the context and
timing of its activation. Activation of mTOR under physiological conditions promotes
cell survival and neurogenesis [166], whereas dysregulated mTOR signaling in ischemic
conditions exacerbates oxidative stress, inflammation, and neuronal death [167].

Targeting mTOR signaling for ischemic stroke treatment poses therapeutic challenges
due to its intricate regulatory network and pleiotropic effects. While pharmacological
modulation of mTOR holds promise for attenuating neuronal damage and promoting
recovery [106], concerns regarding off-target effects, immunosuppression, and long-term
safety necessitate cautious consideration [168].

Moreover, the interplay between mTOR and other signaling pathways, such as AMPK,
autophagy, and neuroinflammation, adds complexity to therapeutic interventions. Strate-
gies aimed at fine-tuning mTOR activity, restoring autophagic flux, and mitigating neu-
roinflammatory responses offer avenues for enhancing stroke outcomes while minimizing
adverse effects.

The emergence of secretome-based therapies represents a paradigm shift in ischemic
stroke treatment, harnessing the regenerative potential of mesenchymal stromal cells
(MSCs) and their bioactive secreted factors. The MSC secretome encompasses a diverse
array of cytokines, growth factors, and extracellular vesicles that exert neuroprotective,
anti-inflammatory, and pro-regenerative effects [169].

Preclinical studies have demonstrated the efficacy of MSC secretome in attenuating
neuronal damage, promoting tissue repair, and improving functional outcomes in ischemic
stroke models [146,149]. Importantly, the paracrine actions of MSCs offer advantages over
cell-based therapies, circumventing issues related to immune rejection, tumorigenicity, and
logistical challenges associated with cell delivery [170].

Despite the promising preclinical data, the translation of secretome-based therapies
into clinical practice faces several hurdles. Standardization of isolation and characterization
protocols, optimization of dosing regimens, and validation of therapeutic efficacy in clinical
trials are essential steps toward clinical implementation. Furthermore, efforts to establish
regulatory frameworks, address manufacturing challenges, and ensure scalability are im-
perative for realizing the full therapeutic potential of MSC secretome in stroke management.
Future research directions might involve elucidating the isoform-specific roles of ROCK
and mTOR, exploring combinatorial approaches with other therapeutic modalities, and
leveraging advanced drug delivery strategies to enhance specificity and efficacy.

Additionally, comorbidities represent a defining characteristic of stroke, exerting a
dual impact by augmenting both the frequency of stroke occurrences and exacerbating
resultant clinical outcomes [171]. These concurrent medical conditions, often present in
individuals afflicted by stroke, contribute significantly to the complexity of the condi-
tion [172]. On the other hand, individuals maintaining a healthy lifestyle, characterized by
abstaining from smoking, engaging in daily exercise, moderate alcohol consumption, and
maintaining a moderate weight in their mid-forties, experienced a notably reduced risk of
developing stroke [173] and neurodegenerative diseases compared to those with high-risk
lifestyles [174,175]. In stroke research, prioritizing the inclusion of aged and comorbid
animal models is paramount [176]. These models more faithfully replicate the clinical
complexity observed in stroke patients, offering invaluable insights into the disease’s multi-
faceted nature, some studies underscore the varying efficacy of treatments in the aged brain,
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further emphasizing the importance of utilizing such models in stroke research [177–180].
These models more accurately reflect the clinical scenario seen in stroke patients, providing
valuable insights into the efficacy and safety of potential therapeutic interventions.

Future directions should focus on refining experimental approaches, validating thera-
peutic targets, and translating preclinical findings into clinically effective interventions to
address the significant burden of stroke worldwide.

6. Conclusions

In conclusion, our review underscores the critical roles of the RhoA/ROCK and mTOR
signaling pathways in ischemic stroke pathophysiology, alongside the emerging potential of
secretome-based therapies. These pathways and therapeutic approaches exhibit a delicate
balance between beneficial and adverse effects, reflecting the complexity of ischemic stroke
treatment. While the inhibition of ROCK and modulation of mTOR signaling present
promising preclinical outcomes, their translation into clinical practice is hampered by
challenges such as off-target effects and the need for precise targeting. Similarly, secretome-
based therapies offer a novel, regenerative strategy for stroke treatment, yet face hurdles in
standardization, dosing, and clinical validation.
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