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Abstract: Venous thromboembolism (VTE) is a challenging clinical obstacle in oncological settings,
marked by elevated incidence rates and resulting morbidity and mortality. In the context of cancer-
associated thrombosis (CAT), endothelial dysfunction (ED) plays a crucial role in promoting a pro-
thrombotic environment as endothelial cells lose their ability to regulate blood flow and coagulation.
Moreover, emerging research suggests that this disorder may not only contribute to CAT but also
impact tumorigenesis itself. Indeed, a dysfunctional endothelium may promote resistance to therapy
and favour tumour progression and dissemination. While extensive research has elucidated the
multifaceted mechanisms of ED pathogenesis, the genetic component remains a focal point of
investigation. This comprehensive narrative review thus delves into the genetic landscape of ED
and its potential ramifications on cancer progression. A thorough examination of genetic variants,
specifically polymorphisms, within key genes involved in ED pathogenesis, namely eNOS, EDN1,
ACE, AGT, F2, SELP, SELE, VWF, ICAM1, and VCAM1, was conducted. Overall, these polymorphisms
seem to play a context-dependent role, exerting both oncogenic and tumour suppressor effects
depending on the tumour and other environmental factors. In-depth studies are needed to uncover
the mechanisms connecting these DNA variations to the pathogenesis of malignant diseases.
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1. Introduction

Venous thromboembolism (VTE), also referred to as venous thrombosis, is a prevalent
and intricate cardiovascular condition. The disease has two main manifestations: when
the thrombus first forms in a deep vein—deep vein thrombosis (DVT)—followed by its
migration into the bloodstream and subsequent lodging in the lungs—pulmonary embolism
(PE) [1]. In Europe, VTE affects around one to two individuals per 1000 annually [2].
Although the incidence rate in the United States of America (USA) is greatly similar, it
varies significantly from a global perspective, indicating a potential regional influence on
the occurrence of thrombotic events. Indeed, VTE has been associated with multiple risk
determinants, comprising acute (e.g., surgery) and subacute (e.g., oral contraceptive use)
triggers; basal/genetic (e.g., genetic polymorphisms, such as Factor V Leiden (F5 rs6025)
and Prothrombin G20210A (F2 rs1799963)) and acquired (e.g., autoimmune diseases) risk
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factors [2,3]. One acquired risk factor of VTE that warrants prominent consideration
is cancer. With an estimated annual incidence of VTE at 0.5% among cancer patients,
compared to 0.1% in the general population, these statistics underscore the markedly
heightened vulnerability to venous thrombogenesis among individuals with malignant
diseases [4]. In recent years, the link between cancer physiopathology and VTE has
attained increasing attention, leading to the emergence of the concept of cancer-associated
thrombosis (CAT). This constitutes a bidirectional relationship, wherein both cancer and
VTE serve as mutual risk factors for each other, as well as exert a significant impact on
each other’s mortality rates [5]. Compared to VTE in the general population, CAT seems
to be a distinct and more complex disorder. Mechanistically, tumour cells produce pro-
coagulant, anti-fibrinolytic and pro-inflammatory substances, which trigger pro-thrombotic
and pro-inflammatory cascades leading to venous thrombogenesis [4].

The pathogenesis of VTE, both in the general population and among cancer subjects,
can be explained by the Virchow Triad, which integrates three promoting factors: stasis
of blood flow, blood hypercoagulability, and endothelial dysfunction (ED) (Figure 1) [4,6].
ED refers to an alteration in the normal function of the endothelial cells (ECs) lining the
interior of blood vessels. The first step of this disorder is endothelial stimulation (type I
activation) followed by delayed endothelial activation (type II activation), both reversible
upon cessation of the stimulus. In advanced stages, ED also encompasses EC apoptosis
and necrosis, which leads to endothelial detachment, giving rise to circulating endothelial
cells (CECs) [7]. Apart from contributing to VTE, ED is a critical factor in the pathogenesis
of other cardiovascular and metabolic diseases, including atherosclerosis, hypertension,
coronary artery disease, chronic heart failure, peripheral artery disease, diabetes, and
chronic renal failure [8–10]. Importantly, a relevant bridge to cancer is also formed as the
pro-inflammatory state of ED promotes tumour growth and progression. Additionally,
the inhibition of vasodilation (characteristic of ED) supports cell proliferation and anti-
apoptotic responses, reinforcing its association with cancer [11,12].
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and anti-platelet aggregation processes, restricting coagulation to only vascular sites 
where needed, thus preventing disseminated thrombotic complications (Figure 2) [20]. 
They do so by continuously expressing and/or releasing components that block platelet 
activity (prostacyclin (prostaglandin I2 (PGI2), nitric oxide (NO) and ectonucleoside 
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Like VTE, ED presentation can also be influenced by genetic polymorphisms, which are
DNA variations present in greater than 1% of a given population. These variations include
single-nucleotide polymorphisms (SNPs), copy number variations (CNVs), insertions and
deletions (Indels), and tandem repeats [13,14]. Starting with SNPs, they represent genetic
alterations characterised by single nucleotide substitutions [15]. CNVs arise from the
deletion or duplication of DNA segments, ranging from kilobases to megabases, leading to
a varied number of copies of a specific DNA sequence on homologous chromosomes [16].
In contrast, indels are small insertions or deletions of nucleotides in the DNA sequence [17].
Regarding tandem repeats, these genetic variations comprise repetitive DNA sequences
spanning one or more nucleotides within both coding and non-coding regions. Their
classification depends on the length of the repeated sequence. Namely, simple sequence
repeats (SSRs), also known as short tandem repeats (STRs), consist of short repeating units
(two to six nucleotides). SSRs represent a subset of a variable number of tandem repeats
(VNTRs), characterised by their varying lengths [18]. Overall, genetic polymorphisms
have the potential to modulate gene expression, disrupt gene function and alter protein-
coding sequences, thereby affecting protein levels and/or activity. Consequently, these
DNA variations can modulate the susceptibility to several disorders, including ED and its
manifestations (e.g., VTE) [14].

Considering the roles of ED in cancer-related thrombogenesis and tumorigenesis,
it is important to explore how genetic determinants implicated in this disorder could
aid in the identification of at-risk populations and pinpoint potential therapeutic targets
for a more personalised treatment in Oncology [14]. Given the implications for clinical
application, this thorough narrative review seeks to delve into the influence of genetic
variations linked to ED on tumorigenesis and cancer patient’s prognosis. The review
concentrates on examining polymorphisms in pivotal ED-related genes such as endothelial
nitric oxide synthase (eNOS), endothelin 1 (EDN1), angiotensin I converting enzyme (ACE),
angiotensinogen (AGT), coagulation factor 2 (F2), selectin P (SELP), selectin E (SELE), von
Willebrand factor (VWF), intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion
molecule 1 (VCAM1). A thoughtful research was conducted by reviewing the PubMed
database’s occurrences until 6th March 2024 using different combinations of keywords:
“SNP”, “SNPs”, “polymorphism”, “polymorphisms”, “cancer”, “eNOS”, Endothelin-1”,
“ET-1”, “Angiotensin II”, “AGT”, “ACE” and “Angiotensin Converting Enzyme”, “F2”,
“Prothrombin”, “SELP”, “P-selectin”, “SELE”, “E-selectin”, “E-selectin”, “Von Willebrand
factor”, “VWF”, “CD54”, “ICAM1”, “ICAM-1”, “VCAM1”, “VCAM-1” and “CD106”. Only
studies with significant associations were selected. Additionally, matching publications
were cross-referenced and screened for pertinent bibliographic references. Studies were
excluded if the polymorphisms lacked functional relevance and/or the associations were
observed solely considering specific therapeutic interventions. A total of 826 articles
underwent review, resulting in the selection of 149 papers that met the inclusion and
exclusion criteria.

2. Vascular Homeostasis

Gatekeeping the integrity of ECs is crucial for human well-being and illness manage-
ment as these cells are responsible for vascular tone regulation, haemostasis and throm-
bosis control, cellular adhesion, smooth muscle cell proliferation, and vascular inflam-
mation [6,19]. Under physiological conditions, ECs mediate multiple anti-coagulant and
anti-platelet aggregation processes, restricting coagulation to only vascular sites where
needed, thus preventing disseminated thrombotic complications (Figure 2) [20]. They do
so by continuously expressing and/or releasing components that block platelet activity
(prostacyclin (prostaglandin I2 (PGI2), nitric oxide (NO) and ectonucleoside triphosphate
diphosphohydrolase-1 (E-NTPDase1)), inhibit coagulation progression (antithrombin III
(ATIII)), thrombomodulin (TM) and tissue factor pathway inhibitor 1 (TFPI1)) and promote
fibrinolysis (urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen
activator (tPA)) [21–24]. In opposition, when the vascular endothelium is disrupted, ECs
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shift to an adhesive, pro-inflammatory and pro-clotting phenotype [21]. The initial response
to vascular damage is vasoconstriction, which slows the blood flow to prevent excessive
blood loss. This mechanism is the basis for blood coagulation [25]. Parallelly, induced
by pro-inflammatory cytokines, ECs express cell-surface adhesion molecules essential for
the recruitment and attachment of immune cells against possible pathogens [26]. Once an
immune barrier is established and haemostasis is restored, a process of vascular repair is
initiated [27]. However, under pathological conditions (such as hyperhomocysteinaemia,
hyperglycaemia, hypercholesterolaemia and accumulation of NO inhibitors), the endothe-
lium loses its natural properties, shifting towards reduced vasodilation, inflammation and
thrombosis, which overall defines ED [28]. Essentially, a dysfunctional endothelium arises
when there is an imbalance between endothelium-derived relaxation (EDRFs) and con-
striction (EDCFs) factors. The former includes NO, prostacyclin and endothelium-derived
hyperpolarizing factor (EDHF), while endothelin (ET-1), angiotensin II (Ang II), thrombin
and thromboxane A2 (TXA2) represent EDCFs [6]. It is worth noting that prostacyclin,
EDHF and TXA2 fall outside the scope of this review.
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Figure 2. Molecular profile of a healthy endothelium characterized by anti-thrombotic mechanisms (left);
Molecular profile of endothelial dysfunction with the display of adhesive, pro-inflammatory, and pro-
clotting properties (right). Abbreviations: ATIII, antithrombin III; ET-1, Endothelin-1; E-NTPDase1,
ectonucleoside triphosphate diphosphohydrolase-1; ICAM-1, intercellular adhesion molecule-1; NO,
nitric oxide; PGI2, prostaglandin I2; TFPI1, tissue factor pathway inhibitor 1; TM, thrombomodulin;
tPA, tissue-type plasminogen activator; u-PA, urokinase-type plasminogen activator; VCAM-1,
vascular cell adhesion molecule-1; vWF, von Willebrand factor. Figure created with Biorender.com
(accessed on 13 April 2024).

Nitric Oxide (NO)

The most well-defined EDRF is NO, which is the protector of the vascular wall, with
anti-inflammatory and antioxidant properties [6,10,29,30]. In addition to being a potent
vasodilator gatekeeping endothelial health, NO is also a concentration-dependent cell
proliferation and apoptosis modulator, as low relative concentrations appear to promote
cell proliferation and anti-apoptotic responses and vice-versa [12,31,32]. Furthermore,
as previously mentioned, it possesses platelet inhibitor properties [21]. Consequently,
a decrease in NO bioavailability usually occurs in tandem with a pro-thrombotic and
pro-inflammatory cascade and a less flexible endothelial state [6,28,30].

Deficiencies of NO can be caused by alterations in nitric oxide synthase 3 (NOS3),
also known as eNOS [33]. The linkage between NO, ED and cancer is reinforced by the
cell proliferation and anti-apoptotic pathways activated when this vasodilator is reduced,
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which enables tumour spread, angiogenesis and metastasis [34]. According to the literature,
there is a total of 168 genetic polymorphisms located within or close to NOS3, of which
three have emerged as particularly noteworthy due to their shared impact on reducing NO
levels and their established associations with cancer: rs2070744, rs1799983, and rs869109213
(Table 1) [33].

Regarding rs2070744 (T>C), this intronic variant consists of the substitution of thymine
(T) to cytosine (C) at codon -786 in the 5′-flanking region of NOS3. This alternation leads
to diminishing gene promoter activity, with consequent serum NO reduction, enabling
proliferation pathways and inhibiting tumour cell apoptosis [12,35,36]. To date, many
meta-analyses associated rs2070744 with the risk of overall cancer, particularly among
individuals of Caucasian descent. Further clustering by cancer type links the C allele
(the minor and also ancestral allele) to a higher risk of breast (BC), prostate (PCa), and
bladder (BLCA) cancers [33,36–41]. In a study regarding oral squamous cell carcinoma
(OSCC), individuals with the TC genotype faced an increased likelihood of progressing to
an advanced clinical stage (III/IV) compared to those with the TT genotype [42]. Similarly,
BC patients carrying the C allele exhibited a significantly higher risk of disease recurrence
or mortality compared to those with the TT genotype [12]. Carriers of the C allele are also
more prone to colorectal cancer (CRC) [43]. Likewise, the CC genotype was associated
with a five-fold increased risk for gastric cancer (GC) development [34]. On the other hand,
regarding PCa in the Turkish population, the C allele was found to be less prevalent among
patients compared to healthy controls, suggesting a protective effect of this allele [44,45].
Moreover, the C allele among uterine cervical cancer (UCC) patients was associated with
a reduced risk of advancing to later disease stages, invasion of the parametrium, and
metastasis to pelvic lymph nodes [46].

Another important polymorphism of NOS3 is rs1799983 (G>T). This missense SNP
leads to a glutamate-to-aspartate (Glu-to-Asp) substitution at position 298 in exon 7 [36,47].
This variant is linked to a substantial reduction in eNOS enzyme activity. Notably, this SNP
exhibited associations with PCa, BLCA, and BC [33,36,38–40,45]. Concerning BC develop-
ment, the effect of the T allele (minor allele) depends on the menopause status, exerting a
protective effect on postmenopausal women [48]. Contrariwise, the presence of this allele
was associated with an increased susceptibility to CRC [43]. Different populational studies
have suggested a negative effect of the T allele concerning CRC, BLCA and endometrial
carcinoma (EMCA) [47,49,50]. Furthermore, two investigations have identified noteworthy
associations between this SNP and lung cancer (LC) and urothelial cell carcinoma (UC),
respectively. The first one demonstrated a link to EGFR-mutated lung adenocarcinomas,
particularly with exon 19 in-frame deletions, suggesting this SNP as a potential predictor
of tumour invasiveness and responsiveness to therapy [51]. The second study denoted
a propensity for increased tumour size development among UC patients carrying the
rs1799983 T allele [52].

The variant rs869109213 (4a/b) is a VNTR polymorphism (27 bp) in the intron 4 of
NOS3 consisting of two alleles: 4a (with four repeats) and 4b (with five repeats). This DNA
variation is linked to modified eNOS activity, affecting the baseline production of plasma
NO. Specifically, the 4a allele carries present lower NO levels compared to those with the
4b/4b genotype [53]. Similarly to rs2070744, rs869109213 is associated with overall cancer
risk in Caucasians, particularly PCa [33,37,38,40]. The 4a allele is linked to a higher risk
of CRC in an early-onset (under 60 years old) [54]. Moreover, the heterozygous genotype
(4a/4b) was found to be more common in BC patients when compared with a control
group [55]. In the context of LC, a noteworthy association was also identified, however,
linking the 4b allele to a higher risk for disease development [56]. In another study, the
rs869109213 4a/4b genotype in combination with the rs2070744 CC genotype, as well as the
C/G/4b haplotype for rs2070744/rs1799983/rs869109213 exhibited a 21-fold and 11-fold
escalation in the risk of developing OSCC, respectively [57].
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Table 1. Epidemiological studies on the role of NOS3 polymorphisms on cancer susceptibility and
progression.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Choi et al. (2006)
[12] South Korea/Unclear 1039 BC patients

995 non-cancer controls Cohort study rs2070744
rs1799983

Lu et al. (2006)
[41]

USA/non-Hispanic
Caucasian

421 BC patients
423 non-cancer controls Case–control study

rs2070744
rs1799983

rs869109213

Yeh et al. (2009)
[54] Taiwan/Taiwanese 727 CRC patients

736 healthy controls Case–control study
rs2070744
rs1799983

rs869109213

Oztürk et al. (2011)
[47] Turkey/Turkish

89 EMCA patients
60 total hysterectomy

controls
Case–control study rs1799983

rs869109213

Arıkan et al. (2012)
[49] Turkey/Turkish 84 CRC patients

99 healthy controls Case–control study rs1799983

Jang et al. (2013)
[43] South Korea/Korean 528 CRC patients

509 healthy controls Case–control study rs2070744 rs1799983
rs869109213

Ramírez-Patiño
et al. (2013)

[55]
Mexico/Mexican 429 BC patients

281 healthy women Case–control study rs869109213

Wu et al. (2014)
[36] Mixed

4169 cancer cases and
4185 controls (rs2070744)

7775 cancer cases and
7817 controls (rs1799983)

3430 cancer cases and
3842 controls (rs869109213)

Meta-analysis rs2070744 rs1799983
rs869109213

Zhang et al. (2014)
[37] Mixed

4220 cancer cases and
4016 controls (rs2070744)

8359 cancer cases and 9575
controls (rs1799983)

2873 cancer cases and
3338 controls (rs869109213)

Meta-analysis
rs2070744
rs1799983

rs869109213

Gao et al. (2015)
[33]

Mixed
(meta-analysis)

Han Chinese (case–control)

873 BC patients
1034 healthy women

(case–control)

Meta-analysis
Case–control study

rs2070744 rs1799983
rs869109213

Krishnaveni et al.
(2015)
[34]

India/South Indian 150 GC patients
150 healthy controls Case–control study rs2070744

Polat et al. (2015)
[50] Turkey/Turkish 75 BLCA patients

143 healthy controls Case–control study rs2070744 rs1799983
rs869109213

Diler et al. (2016)
[45] Turkey/Turkish 84 PCa patients

116 healthy controls Case–control study rs2070744 rs1799983
rs869109213

Polat et al. (2016)
[39] Turkey/Turkish 50 PCa patients

50 healthy controls Case–control study rs2070744 rs1799983
rs869109213

Chen et al. (2018)
[48] Taiwan/Taiwanese

139 premenopausal and
144 postmenopausal BC

patients
100 premenopausal and

100 postmenopausal
healthy women

Case–control study rs2070744 rs1799983
rs869109213

Huang et al. (2018)
[51] Taiwan/Taiwanese 277 LC patients Cohort study rs2070744 rs1799983

Su et al. (2018)
[42] Taiwan/Taiwanese 1044 OSCC patients

1200 healthy controls Case–control study rs2070744 rs1799983

Hung et al. (2019)
[46] Taiwan/Taiwanese

117 UCC patients
95 patients with cervical

precancerous lesions
330 healthy controls

Case–control study rs2070744 rs1799983
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Table 1. Cont.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Nan et al. (2019)
[38] Mixed 41 case–control studies Meta-analysis rs2070744 rs1799983

rs869109213
Tsay et al. (2019)

[52] Taiwan/Taiwanese 431 UC patients
862 healthy controls Case–control study rs2070744

rs1799983

Abedinzadeh et al.
(2020)
[40]

Mixed

4464 cancer cases and
4347 controls (rs1799983)

589 cancer cases and
789 controls (rs869109213)

588 cancer cases and
692 controls (rs2070744)

Meta-analysis
rs2070744
rs1799983

rs869109213

Carkic et al. (2020)
[57] Serbia/Serbian 50 OSCC patients

110 healthy controls Case–control study rs2070744 rs1799983
rs869109213

Koçer et al. (2020)
[56] Turkey/Turkish 107 LC patients

100 healthy controls Case–control study rs1799983
rs869109213

Balci et al. (2023)
[44] Turkey/Unclear

48 PCa patients
42 biopsy individuals

27 healthy controls
Case–control study rs2070744

Abbreviations: BC, breast cancer; BLCA; bladder cancer; CRC, colorectal cancer; EMCA, endometrial carcinoma;
GC, gastric cancer; LC, lung cancer; PCa, prostate cancer; OSCC, oral squamous cell carcinoma; UC, urothelial cell
carcinoma; UCC, uterine cervical cancer; USA, United States of America.

3. Consequences of ED

As previously mentioned, ET-1, Ang II, and thrombin constitute EDCFs. Impaired
vasodilation from ED implies the release and action of these vasoconstrictors inhibiting the
anti-inflammatory and anti-coagulant attributes of healthy ECs [6]. Various genetic varia-
tions have been documented to influence the expression and/or activity of these molecules
during ED. Consequently, investigating the role of these polymorphisms holds promise
for elucidating the molecular mechanisms underlying ED and may offer novel therapeutic
targets for managing ED and controlling cancer growth and progression (Table 2).

3.1. Endothelin-1 (ET-1)

ET-1, a potent vasoconstrictor peptide, is crucial in regulating vascular tone and
endothelial function. Genetic variations within the ET-1 gene (EDN1) have been suggested
to modulate the protein expression and/or activity, impacting vascular homeostasis and
predisposing individuals to ED-related pathologies [58,59].

The association between EDN1 and cancer has been documented with three distinct
SNPs: rs5370 (C>A), a missense variation encoding an aspargine (N) instead of a lysine
(K) [60]; rs1800541 (T>G), an alteration located at the gene promotor; and rs2070699 (G>T),
an intronic variation [59]. Concerning rs5370, the presence of the A allele (forward strand)
was associated with papillary thyroid cancer in individuals over 40 years, notably in
men [61]. In contrast, the minor alleles of rs1800541 and rs2070699 seem to confer protec-
tion regarding osteosarcoma prognosis. Likewise, the rs1800541 G allele was associated
with a reduced risk for pulmonary metastasis and chemoresistance. For the latter condition,
the rs2070699 T allele was also related to a decreased risk [58,62]. Concordantly, a haplo-
type with a greater risk for hormone-refractory PCa was established with the ancestral
alleles—rs1800541 T and rs2070699 G [63].

3.2. Angiotensin II (Ang II)

Ang II plays a pivotal role in vascular homeostasis. It is synthesized from angiotensino-
gen, encoded by the AGT gene, and further processed by the angiotensin-converting en-
zyme (ACE), encoded by a gene with the same name [64–68]. Variations in these genes may
influence Ang II levels, impacting endothelial function.
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An indel (I/D) polymorphism in ACE intron 16 is extensively documented in the
literature. Current evidence indicates that the D allele carriers have increased ACE expres-
sion and activity [64,69]. Furthermore, this indel is referred to as influencing the risk of
cancer [70–72]. Regarding GC, the DD genotype was associated with a higher risk of gastric
tumorigenesis, lymph node metastasis and advanced clinical stages [64,69,73–75]. However,
according to a 2015 meta-analysis, these associations are only observed in population-based
studies, as the I allele seems to confer an increased risk to GC in hospital-based studies [76].
The ACE Indel is also referred to as contributing to the PCa risk in Latino and Asian
ethnic groups [77,78]. Moreover, DD carriers also present more advanced stages of the
disease and early-age diagnostics [79–83]. The same genotype seems to be related to an
increased risk of oral precancerous lesions in betel quid chewers and OSCC and lymph
node metastasis in men [84,85]. In disagreement, the II genotype was also associated
with a three-fold risk of OSCC development [86–88]. The I allele could also be linked
to the occurrence of EMCA (particularly in normotensive women under 63 years old),
endometriosis and leiomyomas [67,89]. Regarding CRC, this indel is considered to have a
gender-dependent effect. While D male carriers present larger tumours than those with the
II genotype, females carrying the DD genotype have higher survival rates when compared
to I carriers [90]. Another study showed an increased risk of early relapse and higher TNM
stage for I allele carriers [91]. Contrariwise, the D allele correlates with poor differentiation
and lymph node metastasis [92,93]. Regarding LC development, the I allele has a negative
effect, particularly when combined with smoking habits in the older population [94–96].
In opposition, DD carriers have an increased susceptibility to squamous cell carcinoma
development and smoking-related cancer death [97,98]. On the other hand, compared to
the other genotypes, heterozygous individuals are suggested to have a raised non-small cell
lung cancer (NSCLC) predisposition [99]. Moreover, the ID genotype seems to be related to
adrenal incidentalomas compared to the controls [100]. Additionally, II and DD genotypes
confer susceptibility to pancreatic cancer (PC) and chronic pancreatitis, respectively [101].
Regarding BC, the I allele carriers show a decreased risk [66,102–105]. Those with the I
allele have a greater expression of HER2 [106], while DD genotype carriers present a better
disease-free survival rate [106,107]. On the contrary, the DD genotype seems to be concomi-
tant with worse prognostic factors in premenopausal women and decreased cancer-free
survival in postmenopausal women [108–111]. Regarding hepatocellular carcinoma (HCC)
progress, two different studies demonstrated conflicting results, showing decreased and
increased risk for DD carriers, respectively [112,113]. Additionally, the ID genotype is also
suggested to exert a protective role against BC [114]. The D allele presence is associated
with an increased risk of uterine leiomyoma [115]; gall bladder carcinoma (GBC) [116],
and glioma [117], while the homozygous D genotype is associated with increased suscep-
tibility to glioma development and low overall survival [118,119]; renal cell carcinoma
(RCC) [120]; BLCA [121]; basal cell carcinoma (BCC) [122–124]; poor leukaemia survival
rates [125]; lymph nodes metastasis in laryngeal cancer (LaC) [126]; pituitary adenomas de-
velopment and progression [127]; and EMCA [128]. Regarding cancer patients’ prognosis,
while a direct impact is not described, the ACE ID genotype was associated with higher
haemoglobin levels and overall lower fat mass and muscle strength in patients at advanced
stages compared to the II genotype [129].

The ACE rs4291 (T>A) is an alteration in the promoter region referred to confer
susceptibility to cancer in the Asian and Caucasian ethnic groups and specifically to BC
in Latino populations [68,103]. This SNP seems to be in linkage disequilibrium (LD)
with the ACE indel among women. Those with the low-activity alleles (A and I of each
polymorphism, respectively) showed decreased BC risk [66]. Moreover, women present
a greater risk of BC when carrying the ACE rs4291 T allele and rs4343 (G>A) G allele
concurrently [130].

The D allele carriers aged between 36 to 54 years old are reported to present a greater
risk of BC, whereas a reduced risk was associated with the II/AG and II/CC of ACE
indel/AGT rs699 (A>G) and ACE indel/AGT rs4762 (G>A) haplotypes, respectively [131].
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The AGT rs699 and rs4762 are two missense variants. The first one implicates a
replacement of methionine by threonine in exon 2, whereas rs4762 represents a substitution
of threonine with methionine at position 174 in the amino acid sequence [130]. Furthermore,
nodal spread in intestinal-type GC correlates with the combined expression of this Indel
and angiotensin II receptor type I (AT1R) [132]. Also, regarding Helicobacter pylori (HP)
status, negative individuals seem to present a decreased risk of GC [133], whereas, in the
HP-positive group with atrophy, the ID genotype seems to confer an increased risk [134].

The G allele of AGT rs699 was suggested to be associated with an increased risk of
BCC [135], BLCA [136] and CRC [137]. However, in a 2023 study of the same population,
the heterozygous genotype was significantly more frequent in the BCC patient group
than in the controls [122]. The AA genotype was associated with decreased disease-free
survival of BC [138]. Furthermore, the rs699 in the AGT gene showed reduced prevalence
in Australian EMCA women [65]. Moreover, several AGT SNPs, namely rs7539020 (C>T),
rs3889728 (C>G), rs3789662 (A>G), rs1326889 (C>T), and rs2493137 (T>C), are suggested
to modulate renal cell cancer susceptibility among hypertensive or overweight individu-
als [139]. Regarding CRC, a greater prevalence of the AG/AG haplotype for rs699/rs5051
(C>T) was found in men [140].

3.3. Thrombin

Thrombin, a serine protease originating from prothrombin (its inactive precursor,
encoded by coagulation factor 2 (F2)), is a key player in haemostasis, coordinating platelet ag-
gregation and blood coagulation. Its impact extends to diverse cellular functions, including
chemotaxis, proliferation, extracellular matrix remodelling, and cytokine release. Just as
Factor V Leiden, F2 rs1799963 (G>A) is well-established as a risk factor for VTE [141,142].
This SNP is located at nucleotide position 20210 within the promoter region. The A allele
leads to elevated levels of prothrombin, consequently increasing thrombin generation
and favouring thrombogenesis [3,143]. Female carriers of the F2 rs1799963 A allele with
gynaecological malignancies are suggested to show advanced cancer stages at the time of
surgery [144]. The rs1799963 AG genotype was also associated with a five-fold increased
risk for HCC in subjects with hepacivirus [145]. Regarding CRC, whereas an increased
susceptibility was correlated with the AA genotype, the AG genotype presented 30% less
predisposition for its development [146,147].

Table 2. Epidemiological studies on the role of polymorphisms in vasoconstrictors-encoding genes
on cancer susceptibility and progression.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Hajek et al. (2003)
[125]

Czech Republic/
Unclear 25 leukaemia patients Cohort study ACE indel

Koh et al. (2003)
[66] Singapore/Singaporean 189 BC patients

671 healthy controls
Nested case–control

study
ACE indel

ACE rs4291

Tormene et al. (2003)
[144] Italy/Unclear

52 women operated for
gynaecological malignancy

198 women operated for
gynaecological non-malignant

disease

Case–control study F2 rs1799963

Freitas-Silva et al.
(2004)
[67]

Portugal/Portuguese 70 EMCA patients
101 healthy controls Case–control study ACE indel

Medeiros et al. (2004)
[80] Portugal/Portuguese 170 PCa patients

30 healthy controls Case–control study ACE indel

Chung et al. (2005)
[84] Taiwan/Taiwanese

61 OPL betel quid chewers
61 asymptomatic betel quid

chewers
Case–control study ACE indel
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Table 2. Cont.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Ebert et al. (2005)
[73] Germany/Caucasian 88 GC patients

145 healthy controls Case–control study ACE indel

González-Zuloeta
Ladd et al. (2005)

[111]
Netherland/Unclear

4878 female postmenopausal total
participants

114 BC patients
Cohort study ACE indel

Goto et al. (2005)
[134] Japan/Japanese 454 GC patients

202 healthy controls Case–control study ACE indel

Röcken et al. (2005)
[75] Germany/Unclear 113 GC patients

189 healthy controls Case–control study ACE indel

Arima et al. (2006)
[98] Japan/Japanese

937 total participants
176 subjects died of malignant

neoplasm
Cohort study ACE indel

Yaren et al. (2006)
[109] Turkey/Turkish 44 BC patients

46 healthy premenopausal women Case–control study ACE indel

Carl-McGrath et al.
(2007)
[69]

Germany/Unclear 45 GC patients Cohort study ACE indel

González-Zuloeta
Ladd et (2007)

[138]
Netherlands/Unclear 203 BC cases

3323 controls Case–control study AGT rs699

Hsieh et al. (2007)
[89] Taiwan/Taiwanese

120 UL patients
125 endometriosis patients

128 healthy controls
Case–control study ACE indel

Röcken et al. (2007)
[132] Germany/Unclear 100 GC patients Cohort study ACE indel

Röcken et al. (2007)
[90] Germany/Unclear 141 CRC patients

189 healthy controls Case–control study ACE indel

Vairaktaris et al.
(2007)
[86]

Greece/Greek and
German

60 OSCC patients
153 healthy controls Case–control study ACE indel

Yaren et al. (2007)
[108] Turkey/Turkish 57 BC patients

52 healthy controls Case–control study ACE indel

Yigit et al.
(2007)
[83]

Turkey/Turkish 48 PCa patients
51 healthy controls Case–control study ACE indel

van der Knaap et al.
(2008)
[110]

Netherland/Unclear 7679 participants * Cohort study ACE indel

Alves Corrêa et al.
(2009)
[114]

Brazil/Brazilian 101 BC patients
307 healthy controls Case–control study ACE indel

Harman et al. (2009)
[100] Turkey/Turkish 50 adrenal mass patients

30 healthy controls Case–control study ACE indel
NOS3 rs1799983

Loh et al. (2009)
[71]

Mixed/Asian and
Caucasian 203 case–control studies Meta-analysis ACE indel

Vairaktaris et al.
(2009)
[88]

Mixed/Greek and
German

162 OSCC patients
168 healthy controls Case–control study ACE indel

Vasků et al. (2009)
[140]

Czech
Republic/Czech

102 CRC patients
101 healthy controls Case–control study AGT rs699

AGT rs5051
Vigano et al. (2009)

[129] Canada/Unclear 72 GC and NSCLC advanced
cancer patients Cohort study ACE indel

Andreotti et al. (2010)
[139] Mixed 1035 RCC patients

777 controls Case–control study

AGT rs7539020
AGT rs3889728
AGT rs3789662
AGT rs1326889
AGT rs2493137
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Table 2. Cont.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Nacak et al. (2010)
[95] Turkey/Turkish 25 LC patients

165 healthy controls Case–control study ACE indel

Namazi et al. (2010)
[106] Iran/Iranian 70 BC patients

70 healthy controls Case–control study ACE indel

Srivastava et al.
(2010)
[116]

India/North Indian 233 GBC patients
260 non-cancer controls Case–control study ACE indel

Liu et al. (2011)
[92] China/Chinese 241 CRC patients

299 non-cancer controls Case–control study ACE indel

Lukic et al. (2011)
[101] Serbia/Unclear

45 PC patients
55 chronic pancreatitis patients

128 healthy controls
Case–control study ACE indel

De Martino et al.
(2011)
[120]

Austria/Unclear 10 RCC patients
173 healthy controls Case–control study ACE indel

Mendizábal-Ruiz
et al.

(2011)
[104]

Mexico/Mexican 65 BC patients
40 benign breast disease patients Case–control study ACE indel

AGT rs699

Vossen et al. (2011)
[147] Germany/German 1801 CRC patients

1853 healthy controls Case–control study F2 rs1799963

Dević Pavlić et al.
(2012)
[97]

Croatia/Croatian 308 LC patients
353 healthy controls Case–control study ACE indel

Correa-Noronha et al.
(2012)
[128]

Brazil/Brazilian
74 EMCA patients and

228 controls
83 EOC patients and 297 controls

Case–control study ACE indel

Huhn et al. (2012)
[137]

Mixed/Czech and
German

1025 Czech cancer cases and
787 Czech controls

1798 German cancer cases and
1810 German controls

Case–control study AGT rs699

Liu et al. (2012)
[85] Taiwan/Taiwanese

205 male oral cancer patients
88 Oral precancerous lesions

patients
120 healthy controls

Case–control study ACE indel

Wang et al. (2012)
[79] China/Han Chinese 189 PCa patients

290 non-cancer controls Case–control study ACE indel

Altas et al. (2013)
[127] Turkey/Unclear 21 hypophyseal adenoma patients

20 healthy controls Case–control study ACE indel

Fishchuk et al. (2013)
[131] Ukraine/Ukrainian 131 BC patients

102 healthy women Case–control study
ACE indel
AGT rs699

AGT rs4762
Namazi et al.

(2013)
[107]

Iran/Iranian 110 BC patients Prospective study ACE indel

Vylliotis et al.
(2013)
[87]

Mixed/Greek and
German

160 OSCC patients
168 healthy controls Case–control study

ACE indel
F2 rs1799963
AGT rs699

Yapijakis et al. (2013)
[123] Greece/Greek 92 BCC patients

103 healthy controls Case–control study ACE indel

Yuan et al.
(2013)
[112]

China/Chinese 293 HCC patients
384 healthy controls Case–control study ACE indel

NOS3 rs869109213



Curr. Issues Mol. Biol. 2024, 46 4856

Table 2. Cont.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Zang et al.
(2013)
[62]

China/Han Chinese

260 pulmonary metastatic stage III
osteosarcoma patients

260 matched pulmonary
metastatic stage IIB osteosarcoma

patients

Case–control study
EDN1 rs1800541
EDN1 rs2070699

EDN1 rs5370

Phukan et al. (2014)
[94]

India/Northeast
Indian

151 LC patients
151 controls Case–control study ACE indel

Xie et al. (2014)
[82] Mixed 7025 cancer cases

34,911 controls Meta-analysis ACE indel

Zhang et al. (2014)
[70] Mixed 5007 cancer cases

8173 controls Meta-analysis ACE indel

Zhou et al. (2014)
[58] China/Han Chinese

350 Paediatric osteosarcoma
patients with <90% tumour

necrosis
350 matched osteosarcoma

patients with ≥90% tumour
necrosis

Case–control study
EDN1 rs1800541
EDN1 rs2070699

EDN1 rs5370

Ding et al. (2015)
[130] China/Han Chinese 606 BC patients

633 healthy controls Case–control study ACE rs4291
ACE rs4343

Gan et al. (2015)
[133]

Mixed/Asian and
Caucasian

1480 GC cases
3773 non-cancer controls Meta-analysis ACE indel

Lian et al. (2015)
[119] China/Chinese 800 glioma patients

800 healthy controls Case–control study ACE indel

Pabalan et al. (2015)
[74] Mixed 1459 cancer cases

2581 controls Meta-analysis ACE indel

Wei et al. (2015)
[64] Mixed 1392 cancer cases

2951 controls Meta-analysis ACE indel

Yang et al. (2015)
[76]

Mixed/Asian and
White

2903 GC cases
10,833 controls Meta-analysis ACE indel

Zha et al. (2015)
[113] China/Dai Chinese 210 HCC patients

206 healthy controls Case–control study ACE indel

Hanafy et al. (2016)
[145] Egypt/Egyptian 280 HCV-infected patients

100 healthy controls Case–control study F2 rs1799963

Pringle et al. (2016)
[65] Australia/Mixed

184 type 1 endometrioid cancer
women

153 healthy controls
Case–control study AGT rs699

ACE rs4291

Ali et al. (2017)
[121] Pakistan/Pakistani 200 BLCA patients

200 healthy controls Case–control study ACE indel

Baghad et al. (2017)
[146]

Morocco/Moroccan 76 CRC patients
182 healthy controls Case–control study F2 rs1799963

Marques et al. (2017)
[91]

Brazil/Admixed
Brazilian

140 CRC patients
140 non-cancer controls Case–control study ACE indel

Xu et al.
(2017)
[63]

China/Han Chinese

234 PCa patients with HRPC
within six years after androgen

deprivation therapy
234 matched PCa patients without

HRPC within six years after
androgen deprivation therapy

Case–control study
EDN1 rs1800541
EDN1 rs2070699

EDN1 rs5370

Zheng et al. (2017)
[93] China/Chinese 146 CRC patients

106 healthy controls Case–control study ACE indel

Moghimi et al. (2018)
[102] Mixed 2846 BC cases

9299 controls Meta-analysis ACE indel

Pandith et al. (2018)
[118] India/Indian 12 glioma patients

141 non-cancer controls Case–control study ACE indel

Peddireddy et al.
(2018)
[99]

India/South Indian 246 NSCLC patients
250 healthy controls Case–control study ACE indel

NOS3 rs869109213
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Table 2. Cont.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Singh et al. (2018)
[105] India/North Indian 161 BC patients

152 healthy women Case–control study ACE indel

Wang et al. (2018)
[77] Mixed 1098 PCa cases

12,960 controls Meta-analysis ACE indel

Aydin et al. (2019)
[61] Turkey/Unclear 113 PTC patients

185 healthy controls Case–control study EDN1 rs1800541
EDN1 rs5370

Benenemissi et al.
(2019)
[117]

Algeria/Algerian 36 glioma patients
195 healthy controls Case–control study ACE indel

Keshavarzi et al.
(2019)
[115]

Iran/Iranian 202 UL patients
211 healthy controls Case–control study ACE indel

Papaggelopoulos
et al.

(2019)
[135]

Greece/Greek 190 BCC patients
99 healthy controls Case–control study AGT rs699

Xiao et al.
(2019)
[68]

Mixed 8 case–control studies Meta-analysis ACE rs4291

Banerjee et al. (2021)
[96] India/North Indian 154 LC patients

205 healthy controls Case–control study ACE indel

Dastgheib et al. (2021)
[103] Mixed 35 case–control studies Meta-analysis ACE indel

ACE rs4291
Koronellos et al.

(2021)
[124]

Greece/Greek 104 BCC patients
111 healthy controls Case–control study ACE indel

Samara et al. (2021)
[136] Greece/Caucasian 73 BLCA patients

73 healthy controls Case–control study AGT rs699

Du et al.
(2022)
[81]

Mixed 817 PCa patients
917 controls Meta-analysis ACE indel

Said et al.
(2022)
[78]

Tunisia/Tunisian 124 PCa patients
143 healthy controls Case–control study ACE indel

Kumbul et al. (2023)
[126] Turkey/Unclear 44 LaC patients

61 healthy controls Case–control study ACE indel

Yapijakis et al. (2023)
[122] Greece/Greek 100 BCC patients

103 healthy controls Case–control study AGT rs699
ACE indel

* Cancer specification not available. Abbreviations: BC, breast cancer; BCC, basal cell carcinoma; BLCA, bladder
cancer; CRC, colorectal cancer; EMCA, endometrial cancer; EOC, epithelial ovarian cancer; GBC, gall bladder
cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HRPC, hormone-refractory
prostate cancer; LaC, laryngeal cancer; LC, lung cancer; NSCLC, non-small cell lung cancer; OSCC, oral squamous
cell carcinoma; OPL, oral precancerous lesions; PC, pancreatic cancer; PCa, prostate cancer; PTC, papillary thyroid
cancer; RCC, Renal Cell Carcinoma; UL, uterine leiomyoma.

4. Adhesion Molecules

The ability of ECs to induce vasodilation mediated by NO is the most common way to
measure endothelial function using the flow-mediated vasodilation (FMD) test. However,
this ultrasound imaging-based test has poor reproducibility due to operational and patient
cardiac function variability [6,8,148]. In this context, the use of ED-circulating biomarkers
may present a more reliable alternative [7,26].

In addition to endothelial permeability, decreased NO bioavailability induces the
expression of important adhesion molecules, namely P-selectin, E-selectin, vWF, ICAM-1
and VCAM-1, which facilitate cell-to-cell interaction, promoting the migration and adhesion
of leucocytes [149]. These molecules are indicative of the pro-thrombotic environment that
precedes the development of cardiovascular conditions, with the extent of ED serving as a
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valuable prognostic indicator [7,8,26]. These well-characterized markers can be measured
in circulation with readily available commercial immunoassays, exceeding at least four
indicative criteria of an ideal marker/test [149]. Specifically, they demonstrate ease of
use, cost-effectiveness, operator independence, and superior reproducibility. Nevertheless,
as not all markers exhibit high sensitivity, combining various methodologies, such as
microparticles and CECs, would be advocated [150].

Given the implications of ED in cancer pathways, exploring genetic polymorphisms
within genes encoding for adhesion molecules takes on paramount significance (Table 3).

4.1. P-Selectin

P-selectin is a product of SELP, and a member of the selectin protein family found
on the outer membrane of activated ECs. The crucial function of P-selectin in facilitat-
ing leukocyte recruitment to the site of inflammation has been proposed as a driver of
tumour aggressiveness and a contributing factor to the onset of cancer cachexia [151]. Two
SELP SNPs are highlighted in this context: the intergenic variant rs3917647 (G>A) and
the missense SNP rs6136 (T>G). Regarding the former, the GG and AA genotypes were
linked to high and low P-selectin plasma levels, respectively. The unfavourable nature of
the rs3917647 GG genotype in patients with head and neck cancer (HNC) suggests this
alternation as a protective factor against cancer malnutrition and potential cachexia [151].
Likewise, the rs6136 T allele was linked to increased expression of SELP mRNA, while the
G allele was associated with reduced serum P-selectin levels. The evidence pinpoints the
rs6136 T allele as a protective factor for cancer cachexia in HNC patients, as well [151,152].
These findings were concordant in locally advanced and metastatic PC [153].

4.2. E-Selectin

E-selectin, encoded by SELE, is another significant member of the selectin family.
This protein plays a fundamental role in promoting tumour angiogenesis and cancer
progression, facilitating interactions between cancer cells and endothelial monolayers,
especially during the metastatic process, underlining its importance in early metastasis
stages [154]. Concordantly, some tumours, particularly BC and CRC, were found to express
E-selectin ligands [155,156].

Four SNPs of SELE are described in the literature. Starting with rs5361 (T>G), this
missense polymorphism causes the exchange of an uncharged serine with a positively
charged arginine within the epidermal growth factor domain. This alteration possesses
the capability to alter ligand affinity [156]. The ancestral T allele was demonstrated to be a
protective factor against BC [157,158]. The negative impact of the SNP G allele is confirmed
among GC patients, with the allele being associated with disease development and poor
prognosis [159,160]. The same allele was also associated with an increased risk of PC and
ovarian cancer (OC) and a worsened prognosis for BC patients [161–163]. Likewise, this
allele was also linked to an elevated risk of relapse, metastasis and mortality among CRC
patients [154–156]. A meta-analysis suggested rs5361 as an overall cancer risk factor among
Caucasian and Asian ethnic groups [164]. In the same fashion as rs5361, rs5362 (A>G),
rs5367 (A>G), and rs5368 (G>A) variant alleles were demonstrated to be associated with an
increased risk of BC. Among them, only rs5368 causes a change in the amino acid sequence
from histidine to tyrosine [154].

4.3. Von Willebrand Factor (vWF)

Besides P-selectin, vWF emerges as one of the molecules meeting the criteria for robust
biomarkers of ED [148]. Only one VWF polymorphism is identified to influence cancer
pathways, namely the intronic SNP rs73049469 (C>A). The variant A allele is linked to
lower VWF expression at the transcription levels, and it is shown to be associated with
worse overall survival among NSCLC patients [165,166].
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4.4. ICAM-1

This cell adhesion molecule, a member of the Ig-superfamily, serves as a crucial factor
in the recruitment, activation, and facilitation of leukocyte functions at inflammatory sites.
As a result of proteolytic cleavage, its soluble form becomes notably elevated in both
inflammatory and malignant conditions [167,168]. Six polymorphisms within ICAM1 have
been associated with tumorigenic roles: rs5498 (A>G), rs1799969 (G>A), rs281437(C>T),
rs1437 (A>G), rs923366 (C>T) and rs3093030 (C>T).

The rs5498 polymorphism represents a missense variant within exon 6, giving rise to
an amino acid substitution from glutamine (E) to lysine (K). This shift affects the splicing of
ICAM1 mRNA, leading to a higher concentration of the soluble protein [168–170]. Beyond
its well-established association with atherosclerosis, this SNP has garnered attention for
its diverse implications in various cancer types. However, its effects remain the subject of
debate, as it can either confer risk or protection depending on the tumour [171]. Namely, the
homozygous minor allele (G allele) genotype was associated with an increased risk of cancer
in the Asian ethnic group but decreased risk in Europeans [172,173]. The G allele was also
related to an increased risk of OSCC but diminished for CRC and melanoma [168,173,174].
Furthermore, this allele seems to increase the susceptibility to CRC, especially for older
individuals [175–178]. When in homozygosity, the presence of the lysine correlates with
well-differentiated CRC [179]. The G variant allele is also suggested to be a protective
factor for cervical adenocarcinoma [169]. In GC, the AA genotype was associated with an
augmented risk and a higher likelihood of metastasis compared to the G allele [168,180].
Likewise, the A allele showed an association with advanced stages and poorer survival
rates among NSCLC patients [181]. In opposition, the G allele was related to the risk of
OC (especially for those with first-degree hereditary tumours or precocious menarche),
UC development and invasive stages, HCC in smokers, PCa development, precancerous
lesions in uterine cervical carcinogenesis and gliomas development [182–187].

The rs1799969 SNP results in an exchange of a glycine for an arginine in exon 4, at
codon 241, with the ability to alter the functional activity of ICAM-1 and consequently grant
the capacity to recruit and activate immune cells. The variant A allele was shown to be asso-
ciated with higher cancer risk [172,188]. The presence of the A allele was linked to gliomas
and CRC and the GA genotype to BC [168,177]. The A/G haplotype for rs1799969/rs5498
is associated with an increased risk of BC, while it is suggested to exert a protective effect
on primary brain tumours [167,168].

The variant T alleles of rs281437 and rs923366 ICAM1 SNPs, two 3′ UTR variants,
were associated with increased and reduced risk of primary HCC, respectively [189].
Nonetheless, the CC genotype of rs281437 seems to be related to a higher risk of BC
development when compared to the other genotypes [190]. As for rs1437, a 3′ UTR located
SNP, the variant G allele was linked to OC augmented risk [191].

Although the functional consequence of rs3093030 is unknown, a protective effect
of the variant T allele was found for UCC and primary HCC [169,189]. In contrast, in a
different population, women seem to be more susceptible to invasive uterine cervical car-
cinogenesis when the variant allele is in homozygosity. The C/G, T/A and T/G haplotypes
of rs3093030/rs5498 were shown to increase the risk of precancerous lesions and invasive
UCC [186]. For UCC, a reduced risk C/T/G haplotype of rs281432(G>C)/rs3093030/rs5498
was discovered [169].

4.5. VCAM-1

Similarly to ICAM-1, VCAM-1 acts in the immune-endothelial communication system,
contributing to inflammatory and immune processes and cancer metastasis [192]. Numer-
ous VCAM1 polymorphisms have been linked to cancer. The intronic variation rs3176861
(C>T) currently has an unknown functional consequence. Nevertheless, the presence of
the T allele relates to a substantial decrease in the odds of developing lymphedema after
BC surgery [193]. The polymorphism rs1041163 (T>C) is an intergenic variant located
within exon 9. The SNP C allele was deemed a protective factor for non-Hodgkin lym-



Curr. Issues Mol. Biol. 2024, 46 4860

phoma (NHL) [194]. In opposition, for the synonymous variant rs3176879 (G>A), the
variant allele seems to confer susceptibility to recurrent BLCA in patients submitted to
immunotherapy [195,196].

Table 3. Epidemiological studies on the role of ED-related adhesion molecules gene polymorphisms
on cancer susceptibility and progression.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Chen et al. (2006)
[185]

USA/African-
American

286 PCa patients
391 healthy controls Case–control study ICAM1 rs5498

Theodoropoulos et al.
(2006)
[177]

Greece/Greek 222 CRC patients
200 healthy controls Case–control study ICAM1 rs5498

ICAM1 rs1799969

Alessandro et al.
(2007)
[156]

Italy/Caucasian 172 CRC patients
80 healthy controls Case–control study SELE rs5361

Arandi et al. (2008)
[167]

Iran/southern
Iranian

276 BC patients and
235 healthy controls
264 BC patients and
200 healthy controls

Case–control study ICAM1 rs1799969
ICAM1 rs5498

Burim et al. (2009)
[187] Brazil/Unclear 158 astrocytoma patients and

162 controls Case–control study ICAM1 rs5498
ICAM1 rs1799969

Wang et al. (2009)
[179] China/Chinese 87 CRC patients

102 non-CRC controls Case–control study ICAM1 rs5498
ICAM1 rs1799969

Wang et al. (2009)
[194] Jamaica/Jamaican 395 NHL patients

309 non-NHL controls Case–control study VCAM1 rs1041163

Panoussopoulos et al.
(2010)
[161]

Greece/Unclear 80 PC patients
160 healthy controls Case–control study SELE rs5361

Naidu et al. (2011)
[157] Malaysia/Malaysian 387 BC patients

252 healthy controls Case–control study SELE rs5361

Tan et al. (2012)
[152]

Scotland and
Canada/Unclear

775 cancer patients
101 validation cohort patients Cohort study SELP rs6136

ICAM1 rs281432
Thanopoulou et al.

(2012)
[181]

Greece/Unclear 203 NSCLC patients
175 healthy controls Case–control study ICAM1 rs5498

Tian et al. (2012)
[180] China/Chinese 332 GC patients

380 healthy controls Case–control study ICAM1 rs5498

Xia et al. (2012)
[159] China/Chinese 311 GC patients

425 controls Case–control study SELE rs5361

Kontogianni et al.
(2013)
[163]

Greece/Unclear 261 BC patients
480 healthy controls Case–control study SELE rs5361

Liarmakopoulos et al.
(2013)
[160]

Greece/Greek 88 GC patients
480 healthy controls Case–control study SELE rs5361

Lin et al. (2013)
[174] Taiwan/Unclear 595 OSCC patients

561 healthy controls Case–control study ICAM1 rs5498

Miaskowski et al.
(2013)
[193]

Mixed

155 BC patients with
lymphedema

387 BC patients without
lymphedema

Case–control study VCAM1 rs3176861

Yilmaz et al. (2013)
[168] Turkey/Turkish

92 primary brain tumour
patients

92 healthy controls
Case–control study ICAM1 rs5498

ICAM1 rs1799969

Avan et al. (2014)
[153] Italy/Unclear 303 locally advanced or

metastatic PC Cohort study SELP rs6136

Cai et al. (2014)
[182]

China/Northern Han
Chinese

408 OC patients
520 healthy controls Case–control study ICAM1 rs5498
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Table 3. Cont.

First Author (Year) Country/Ethnic
Background

Population
Characteristics Study Design Studied

Polymorphisms

Cheng et al. (2014)
[164]

Mixed/Asian and
Caucasian

1675 cancer patients
2285 controls Meta-analysis SELE rs5361

Wang et al. (2014)
[183] Taiwan/Taiwanese 279 UC patients

279 healthy controls Case–control study ICAM1 rs5498

Andrew et al. (2015)
[196] USA/Caucasian 783 UC patients Cohort study VCAM1 rs3176879

Cheng et al. (2015)
[172] Mixed 4844 cancer patients

5618 healthy controls Meta-analysis ICAM1 rs5498
ICAM1 rs1799969

Tang et al.
(2015)
[173]

Mixed

5528 cancer patients and
6173 controls for rs5498
3138 cancer cases and

3699 controls for rs3093030

Meta-analysis ICAM1 rs5498
ICAM1 rs3093030

Chen et al.
(2016)
[184]

Taiwan/Taiwanese 305 HCC patients
613 healthy controls Case–control study ICAM1 rs5498

Ghazy et al. (2016)
[191] Egypt/Unclear 60 mixed-type OC patients

20 healthy controls Case–control study ICAM1 rs1437

Golnarnik et al. (2016)
[158]

Iran/Northern
Iranian

100 BC patients
120 healthy controls Case–control study SELE rs5361

Lu et al.
(2016)
[162]

China/Chinese 687 OC patients
687 healthy controls Case–control study SELE rs5361

Novikov et al. (2016)
[178] Russia/unclear

49 CRC patients
30 BC patients

33 controls
Case–control study ICAM1 rs5498

Sun et al.
(2016)
[186]

Taiwan/Taiwanese

91 UCC patients
63 patients with precancerous

lesions
290 healthy controls

Case–control study
ICAM1 rs5498

ICAM1 rs3093030
ICAM1 rs281432

Zhang et al. (2016)
[188] Mixed 4608 cancer patients

4913 controls Meta-analysis ICAM1 rs1799969
ICAM1 rs3093030

Liu et al. (2017)
[175] China/Chinese 195 CRC patients

188 healthy controls Case–control study ICAM1 rs5498

Powrózek et al. (2019)
[151] Poland/Unclear 62 HNC patients Cohort study SELP rs3917647

SELP rs6136
Qian et al. (2019)

[166]
Mixed

European/Caucasian 948 NSCLC patients Cohort study VWF rs73049469

Ghazy et al. (2020)
[190] Egypt/Egyptian 40 BC patients

40 healthy controls Case–control study ICAM1 rs281437

Feng et al. (2021)
[169]

China/Northern
Chinese Han

488 UCC patients
684 patients with cervical

precancerous lesions
510 healthy females

Case–control study
ICAM1 rs5498

ICAM1 rs3093030
ICAM1 rs281432

He et al. (2021)
[189] China/Unclear 290 HCC patients

290 healthy controls Case–control study
ICAM1 rs281437
ICAM1 rs923366
ICAM1 rs3093030

Qiu et al. (2021)
[176] Mixed 1003 CRC patients

1303 healthy controls Case–control study ICAM1 rs5498
ICAM1 rs3093030

Zakariya et al. (2022)
[154] Iraq/Iraqi 60 BC patients

40 healthy controls Case–control study
SELE rs5361
SELE rs5368
SELE rs5362

Abbreviations: BC, breast cancer; CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma;
HNC, head and neck cancer; OC, ovarian cancer; OSCC, oral squamous cell carcinoma; PCa, prostate cancer; PC,
pancreatic cancer; NHL, non-Hodgkin lymphoma; NSCLC, non-small cell lung carcinoma; UC, urothelial cell
carcinoma; UCC, uterine cervical cancer.
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5. ED-Related Proteins and Cancer Hallmarks

Overall, despite data inconsistencies, ED-related genetic polymorphisms appear to
impact the tumorigenic process. Literature suggests a complex relationship between ED
and cancer, with the former playing a multifaceted role in the risk and progression of the
latter [11,197,198]. By examining the specific contributions of proteins associated with ED to
different hallmarks of cancer, the molecular mechanisms underlying tumour formation and
dissemination can be further dissected. This knowledge lays the groundwork for validating
the role of ED-related genetic polymorphisms (Table 4) in cancer biology, enriching our
comprehension of the intricate interplay between the two conditions.

From a protein standpoint, as already discussed, NO can exert a dual role in cancer,
modulating cell proliferation and apoptosis in a concentration-dependent manner, with low
concentrations promoting cell proliferation and anti-apoptotic responses and vice versa [12].
Furthermore, NO dysregulation can foster a pro-thrombotic and pro-inflammatory envi-
ronment, which promotes tumour proliferation, limits immune response and facilitates
angiogenesis and metastasis [199]. Impaired vasodilation raises the action of vasoconstric-
tors, such as ET-1, Ang II and thrombin. Besides thrombosis, these molecules play a role in
tumorigenesis by promoting cellular proliferation, angiogenesis, and metastasis. Regarding
ET-1, it triggers sustained proliferative signalling, apoptosis evasion, and migration and
invasion, through its receptor ETA [61,200]. Additionally, it promotes angiogenesis by
fibroblast stimulation, resulting in remodelling and deposition of the extracellular matrix
(ECM) and consequent release of angiogenic factors [200]. Similarly to ET-1, Ang II is a
mitogenic and pro-angiogenic vasoconstrictor that promotes tumour angiogenesis and
inflammation through the upregulation of vascular endothelial growth factor (VEGF) and
prostaglandins [201]. Moreover, upon binding to its receptors, AT1R and AT2R, Ang II acti-
vates signalling pathways of cell proliferation. Interestingly, AT1R (unlike AT2R) exhibits
anti-apoptotic properties [202,203]. Lastly, thrombin can stimulate DNA synthesis and up-
regulate several growth and angiogenesis-related genes by activating the protease-activated
receptor 1 (PAR-1) pathway [204,205]. Furthermore, by promoting the overexpression of
adhesion molecules, these vasoconstrictors may facilitate immune evasion and tumour
invasion and metastasis [206,207]. Indeed, the levels of selectins and CAMs in the serum of
cancer patients correlate with tumour dissemination [208]. Furthermore, vWF, in combina-
tion with thrombin, contributes to the formation of tumour-platelet aggregates, enabling
tumour cell survival and their successful metastasis [198]. In summary, proteins associated
with ED play a pivotal role in cancer initiation and progression, contributing to various
hallmarks of the disease (Figure 3). Thus, polymorphisms within their coding genes may
contribute to alterations in cancer susceptibility and progression in patients carrying these
variants. Understanding the impact of these DNA variations might enhance our compre-
hension of cancer development and open avenues for targeted interventions to disrupt
these pathways and hinder disease development and progression.

Table 4. Characterization of ED-related Genetic Polymorphisms via Ensembl.

Gene Polymorphism Substitution Ancestral
Allele

Global MAF
(MA)

Most Severe
Consequence

NOS3 rs2070744 C>G C 23% (C) Intron variant

rs1799983 T>G/A G 18% (T) Missense variant

rs869109213 VNTR NA NA Intron variant

EDN1 rs5370 G>T G 25% (T) Missense variant

rs1800541 T>G T 28% (G) Regulatory region variant

rs2070699 G>C/T G 36% (T) Intron variant
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Table 4. Cont.

Gene Polymorphism Substitution Ancestral
Allele

Global MAF
(MA)

Most Severe
Consequence

ACE Indel Indel NA NA -

rs4291 T>A/G A 35% (T) Regulatory region variant

rs4343 G>A A 36% (G) Synonymous variant

AGT rs699 A>G G 29% (A) Missense variant

rs4762 G>A G 10% (A) Missense variant

rs1326889 C>T/A T 22% (C) Intron variant

rs281432 C>G G 48% (C) Intron variant

rs2493137 T>C T 48% (T) Intron variant

rs5050 T>C/G G 18% (G) 5 prime UTR variant

rs5051 C>G/A/T T 29%(C) 5 prime UTR variant

rs7539020 C>T C 49%(C) Intron variant

rs3889728 C>G/T C 30%(T) Intron variant

rs3789662 A>G A 34%(G) 3 prime UTR variant

F2 rs1799963 G>A G <1% (A) 3 prime UTR variant

SELP rs3917647 G>A G 46% (A) Intergenic variant

rs6136 T>C/G T 4% (G) Missense variant

SELE rs5361 T>G/A T 5% (G) Missense variant

rs5362 A>G G 5% (G) Non-coding transcript
exon variant

rs5367 A>G A 5% (G) Splice region variant

rs5368 G>A G 15% (A) Missense variant

VWF rs73049469 C>A C 13% (A) Intron variant

ICAM1 rs1437 A>G/T G 37% (G) 3 prime UTR variant

rs5498 A>G A 36% (G) Missense variant

rs1799969 G>A G 6% (A) Missense variant

rs281437 C>G/T C 26% (T) 3 prime UTR variant

rs923366 C>T/A T 35% (T) 3 prime UTR variant

rs3093030 C>T C 32% (T) Non-coding transcript
exon variant

VCAM1 rs3176861 C>T C 20% (T) Intron variant

rs3176879 G>A A 13% (G) Synonymous variant

rs1041163 T>C T 18% (C) Intergenic variant

Abbreviations: MA, minor allele; MAF, minor allele frequency; NA, no data available; VNTR, variable number
tandem repeats.
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6. Conclusions

In this comprehensive narrative review, genetic polymorphisms implicated in ED
were evaluated for their impact on cancer susceptibility and progression among distinct
ethnic groups. Briefly, our examination reveals a tendency for BC as a primary focus in
studies concerning multiple ED-related genetic polymorphisms, closely followed by CRC.
Notably, BC has garnered widespread attention across various countries, particularly in
China, where research efforts have been particularly pronounced. China also stands out
for its extensive study of distinct SNPs, a trend also observed in Turkey. Moreover, among
the polymorphisms examined, the ACE indel distinguishes itself as a frequently studied
variant, suggesting its potential relevance in the tumorigenic process. The polymorphisms
under study exhibit a clear tendency to modulate cancer risk. The ACE indel stands out
with over 50 risk associations for cancer, especially for BC, followed by PCa. Across all
cancer models, the D allele commonly emerges associated with risk, while inversely the
I allele is reported to confer protection. Additionally, as many risk associations for CRC
were found for ICAM1 rs5498 as for the ACE indel, despite being much less studied in
the general population. Controversy surrounds this SNP, with the G allele being the
most frequently associated with cancer risk and also the most frequently associated with
protection. Protection against osteosarcoma was solely associated with EDN1 SNPs, while
PCa was mainly studied in relation to NOS3 SNPs. Overall, BC, PCa, and CRC were the
main tumour models in studies concerning ED-related genetic polymorphisms. Most of the
variants seem to have a context-dependent role varying upon specific tumour and patient
characteristics. It should be noted that many of the conducted studies exhibited significant
flaws, such as failing to specify the risk/protection genotype, or not confirming the results
with subsequent validation studies. Hence, future studies with larger sample sizes are
warranted to elucidate these complexities. Since proteins associated with ED contribute to
several hallmarks of cancer, a better understanding of these DNA variations holds promise
for the development of precision medicine approaches to improve cancer patient care and

Biorender.com
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enhance clinical outcomes. Inclusively, as a wide range of molecules play relevant roles in
ED, the implications of other downstream proteins in tumorigenesis should be dissected.
Likewise, given the central role of ED in CAT, the influence of the studied polymorphisms
in CAT pathogenesis needs to be clarified.
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