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Abstract: Alzheimer’s Disease (AD) presents a complex neuropathological landscape characterized
by hallmark amyloid plaques and neurofibrillary tangles, leading to progressive cognitive decline.
Despite extensive research, the molecular intricacies contributing to AD pathogenesis are inade-
quately understood. While single-cell omics technology holds great promise for application in AD,
particularly in deciphering the understanding of different cell types and analyzing rare cell types and
transcriptomic expression changes, it is unable to provide spatial distribution information, which
is crucial for understanding the pathological processes of AD. In contrast, spatial multi-omics re-
search emerges as a promising and comprehensive approach to analyzing tissue cells, potentially
better suited for addressing these issues in AD. This article focuses on the latest advancements
in spatial multi-omics technology and compares various techniques. Additionally, we provide an
overview of current spatial omics-based research results in AD. These technologies play a crucial
role in facilitating new discoveries and advancing translational AD research in the future. Despite
challenges such as balancing resolution, increasing throughput, and data analysis, the application of
spatial multi-omics holds immense potential in revolutionizing our understanding of human disease
processes and identifying new biomarkers and therapeutic targets, thereby potentially contributing
to the advancement of AD research.
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1. Introduction

Alzheimer’s Disease (AD) is characterized by its distinct pathological hallmarks in
the brain, notably amyloid plaques and neurofibrillary tangles, which contribute to the
progressive neurodegeneration observed in patients [1]. These pathological features are
closely associated with the clinical manifestations of AD, including memory impairment,
cognitive decline, and behavioral changes, making them central to the disease’s diagnosis
and study [2]. At the molecular level, the amyloid cascade hypothesis has been pivotal
in understanding AD’s pathogenesis, suggesting that the accumulation of beta-amyloid
peptides initiates a series of events leading to synaptic dysfunction and neuronal death [3].
Despite significant advancements in elucidating AD’s molecular mechanisms, current
treatments remain largely symptomatic, focusing on acetylcholinesterase inhibitors and
NMDA receptor antagonists, with recent approvals of disease-modifying therapies sparking
debate regarding their efficacy and accessibility [4]. The development of biomarker-based
diagnostic methods, including cerebrospinal fluid analysis and amyloid PET imaging, has
improved diagnostic accuracy, yet their application is hindered by high costs and invasive
procedures [5]. The ongoing challenge in AD research and care underscores the need for
a multifaceted approach that addresses the disease’s complexity and translates scientific
insights into effective interventions [6].
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The advancement of high-throughput “omics” sciences has fundamentally trans-
formed our understanding of biological systems, unraveling the intricate mechanisms
underlying disease pathogenesis and highlighting novel therapeutic targets [7]. Further-
more, the emergence of single-cell analysis techniques enables a more comprehensive
understanding of the alterations in different cell types during the pathological process of
AD, including neurons, astrocytes, microglia, and others, and their interactions during
disease progression. Single-cell technologies can identify and analyze rare cell types and
transcriptomic expression changes, providing novel insights into the investigation of early
diagnosis and prognosis assessment of AD.

However, despite the significant potential of single-cell omics technology, there are
challenges in addressing the spatial heterogeneity of AD. Firstly, AD is characterized by
protein aggregation within specific brain regions, making it difficult for single-cell anal-
ysis to provide spatial distribution information about protein aggregation. Secondly, the
pathogenesis of AD is influenced by intercellular interactions and the cellular environment,
which single-cell analysis often fails to capture. In contrast, spatial omics solutions may
be more suitable for addressing these issues in AD. Spatial omics techniques can provide
spatial distribution information of cell types within tissues, allowing us to intuitively under-
stand the relative positions and interactions of different cell types during the pathological
process of AD.

Spatial multi-omics, integrating spatially resolved technologies such as spatial tran-
scriptomics, proteomics, metabolomics and epigenomics, offers a comprehensive view of
the molecular dynamics within tissues, elucidating the cellular heterogeneity and complex
interactions within the microenvironment [8]. Building upon foundational omics technolo-
gies, recent advancements in spatial omics have notably enhanced the throughput and
resolution. Some technologies now enable single-cell analysis, streamlining workflows
to reduce operational times, and expanding the scope of analysis to encompass larger
tissue areas and more diverse sample types. High-throughput methods now facilitate the
analysis of thousands of genes (or whole transcriptome) across myriad single cells within
a tissue section, providing a detailed cellular atlas of complex tissues in health and dis-
ease [9]. Innovations in imaging and sequencing technologies have driven the development
of higher-resolution spatial omics, allowing for the dissection of cellular heterogeneity
and the elucidation of microenvironmental influences at an unprecedented scale [10,11].
These advancements have significantly reduced the time required for data acquisition
and analysis, enabling more efficient exploration of biological and pathological processes.
Moreover, the expansion of the analysis area within spatial omics platforms has opened
new avenues for comprehensive tissue mapping and the study of disease progression,
particularly in complex disorders like Alzheimer’s Disease, where regional specificity is
key to understanding pathology.

In conclusion, the advent of spatial omics technologies marks a pivotal advancement
in biomedical research, providing unparalleled insights into the molecular composition of
biological tissues with precise spatial resolution. This review encompasses the technological
developments in proteomics, transcriptomics, epigenomics, and metabolomics in spatial
omics, while also summarizing some applications of spatial omics in Alzheimer’s Disease
research, paving new pathways for research into AD. Spatial omics is instrumental in
mapping the spatial dynamics among biomarkers, cellular identities, and pathological
features in AD, thereby facilitating early diagnosis and the advent of tailored therapeutic
approaches. This review will delve into emerging spatial omics technologies and their
application in AD research (see Table 1).
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Table 1. Comparative overview of spatial omics technology.

Platform Spatial
Resolution

Molecular
Class Throughput Image Area

Molecular Identity
Confirmation

Method
References

CyCIF 1 µm Protein <100 Slide Area Fluorescence
Imaging [12]

DESI IMS 50 µm Metabolite,
Lipid, Protein / 50 µm × 50 µm MS [13]

Immuno-
SABER 100 µm Protein <50 1 mm × 1 mm Fluorescence

Imaging [14]

LCM-MS 10–50 µm Metabolite,
Lipid, Protein <250 Slide Area MS [15]

MALDI IMS 15 µm Metabolite,
Lipid, Protein / Slide Area MS [16]

MIBI-TOF
multiplex
ion-beam

260 nm Metabolite,
Lipid, Protein <50 Slide Area MS [17]

microLESA 110 µm Protein >2000 Slide Area MS [18]

MP-IHC 10 µm Protein >100 Proteins 10 µm × 10 µm Fluorescence
Imaging [19]

Nano-DESI
MSI 10 µm Metabolite,

Lipid, Protein / Slide Area MS [20]

NanoPOTS 100 µm Protein >2000 Proteins Slide Area MS [21]

DBiT-seq 10 µm RNA, Protein
<50 Proteins,

Whole
Transcriptome

1 mm × 1 mm Sequencing [22]

CosMX SMI 50 nm RNA, Protein <200 Proteins,
<1000 RNA

range
16–375 mm2

Fluorescence
Imaging [23]

GeoMX DSP 50 µm RNA, Protein <2000 35.3 mm × 14.1
mm Sequencing [24]

LCM-seq 10–50 µm RNA <15000 Slide Area Sequencing [25]

MERFISH 0.5 µm RNA <1000 40 µm × 40 µm Fluorescence
Imaging [11]

Slide-seq 10 µm RNA Whole
Transcriptome Slide Area Sequencing [26]

Stereo-seq 0.5 µm RNA Whole
Transcriptome 13.2 cm × 13.2 cm Sequencing [27]

Visium 100 µm RNA Whole
Transcriptome 6.5 mm × 6.5 mm Sequencing [28]

Xennium 50 nm RNA <500 12 mm × 24 mm Fluorescence
Imaging [29]

ATAC–RNA-
seq 20 µm RNA,

Epigenetic
Whole

Transcriptome
100 × 100
Barcodes

Fluorescence
Imaging [30]

Epigenomic
MERFISH 1 µm Epigenetic and

Protein <200 Slide Area Fluorescence
Imaging [31]

2. Spatial Omics Methods
2.1. Space Proteomics Techniques

Protein imaging is indispensable in understanding cell functions, disease research,
therapeutic target identification, and other areas of scientific inquiry. Techniques such as
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Immunofluorescence, Live-cell Imaging, Western Blotting, Gel Electrophoresis, and X-ray
Crystallography, along with advanced methods like Mass Spectrometry, Immunohisto-
chemistry (IHC) and Proximity Ligation Assay (PLA), offer diverse insights into protein
structure, function, and location. Each method has its strengths and can be used alone or
synergistically in biological research. Despite their utility, many traditional methods have
limitations in balancing high-throughput techniques with in situ imaging or identifying a
broad range of proteins. Spatial proteomics technologies address these challenges. They
are generally suitable for both fresh-frozen and formalin-fixed paraffin-embedded (FFPE)
samples and fall into two main categories, cyclic fluorescent approaches and Mass Spec-
trometry Imaging (MSI). Cyclic fluorescent techniques, while offering high resolution at
the single-cell or subcellular level, have limited multiplexing capabilities (typically around
50~100 proteins). In contrast, MSI can process a wide variety of sample types and generate
extensive data sets. It is capable of detecting multiple molecules simultaneously, including
proteins, lipids, drugs, and their metabolites. However, the complexity of data process-
ing and the spatial resolution limits, dictated by the instrumentation’s capabilities, are
significant considerations in MSI [32].

2.1.1. Cyclic Fluorescent Imaging

The cyclic immunofluorescence approach was first described by Gerdes et al. [33].
Cyclic fluorescent methodologies facilitate protein visualization through antibody binding,
using either fluorophores or DNA barcodes for the tagging process. These highly multi-
plexed imaging techniques adopt diverse detection strategies to circumvent the spectral
constraints inherent in traditional fluorescence microscopy. This advancement significantly
enhances our capability to concurrently analyze up to 100 proteins in both FFPE and fresh-
frozen tissue samples. One of the strategies of these fluorescent cyclic approaches involves
a repetitive process of staining, imaging, and then either bleaching or antibody removal,
such as MP-IHC and t-CycIF. MP-IHC is a method for multiplexed immunohistochemistry
that uses commercially available reagents and conventional epifluorescence. It increases
throughput by labeling up to ten antibodies consecutively every cycle, with no restriction
on the number of cycles [19]. CycIF is likewise based on a technology for visualizing
proteins in cells or tissues using highly multiplexed immunofluorescence imaging. A
fluorescent substance attaches to a certain protein, the fluorescence signal is deactivated,
and then another molecule binds to a different protein in a cyclical process. This procedure
is carried out numerous times to find various proteins, and the photos are then processed to
show the cellular architecture. t-CycIF employs readily accessible chemicals, standard slide
scanners and microscopes, manual or automated slide processing, and straightforward
techniques. As a result of its adaptability, cyclic fluorescent methodologies can be utilized
in most research or clinical laboratories using existing equipment, offering a significant
advantage in terms of accessibility and practicality [12]. Nevertheless, these methodologies,
irrespective of their manual or automated application, are impeded by critical limitations.
These include the verification of antibody sample loss and epitope destruction.

Another group of fluorescent cyclic approaches relies on DNA barcodes. These meth-
ods utilize single-stranded locked nucleic acids (ssLNAs), single-stranded DNA (ssDNA),
or DNA-based antibodies or probes. This approach significantly accelerates the process,
as all antibodies can be bound in a single step. Immuno-SABER uses DNA-barcoded
antibodies and orthogonal DNA concatemers produced by primer exchange reactions
(PERs) to accomplish signal amplification. It provides customizable signal amplification
without enzymatic processes and is scalable for concurrently amplifying and viewing
many targets [14]. In PRISM using ssDNA-conjugated antibodies or peptides, markers
are barcoded with single-stranded nucleic acid oligonucleotides (docking strands), which
are rationally designed to optimize orthogonality between complementary fluorescently
labeled ssLNA or DNA imaging probes used for confocal or super-resolution imaging [34].
Following marker and imaging probe validation, multiplexed imaging is performed using
sequential labeling and washing out of individual imaging probes (or dehybridization
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of fluorophore), with wash-steps in between used to clear the sample of imaging probes
or fluorophore removal. These signal amplification methods enhance throughput by al-
lowing simultaneous application of multiple primary antibodies, reducing both sample
preparation and image acquisition times.

2.1.2. Mass Spectrometry Imaging

Imaging Mass Spectrometry (IMS, also known as Mass Spectrometry Imaging (MSI))
is a sophisticated analytical method that combines Mass Spectrometry’s power with spatial
information. In an IMS experiment, a probe—which might be a laser, an ion beam, or
a liquid junction—is rastered over a surface to desorb or extract biomolecules, such as
proteins, lipids, metabolites, and medications—which are then immediately evaluated
by Mass Spectrometry (MS). IMS allows for the examination of a sample using Mass
Spectrometry while maintaining its spatial context. This is accomplished by building a two-
dimensional molecular map by methodically collecting mass spectra at discrete positions
over the sample’s surface. IMS’s adaptability encompasses a variety of strategies, including
Matrix-Assisted Laser Desorption/Ionization (MALDI), Secondary Ion Mass Spectrometry
(SIMS), and Desorption Electrospray Ionization (DESI), among others. MALDI-IMS has
gained popularity due to its compatibility with a diverse variety of analytes and sample
types, including biological tissues, thin slices, and whole-body samples [35].

IMS’s adaptability is highlighted through various strategies such as MALDI, SIMS,
and DESI. MALDI-IMS is particularly popular due to its compatibility with a wide range
of analytes and sample types, including biological tissues and whole-body samples. The
technique facilitates in situ molecular mapping without specialized reagents, using a chem-
ical matrix to enhance sensitivity for desired analytes. This matrix, crucial for absorbing
photons from the MALDI laser, is applied to thinly sectioned tissue samples, enabling
rasterized mass spectra production for precise spatial analysis, achieving resolutions down
to 20 µm [35].

DESI, introduced in 2004 [36], focuses on enhancing the ionization process’s sprayer
mechanism. These advancements, such as the strategic positioning of the solvent capil-
lary within the gas capillary or nozzle, have improved control and reproducibility. This
evolution in DESI technology has facilitated high-resolution imaging on tissue samples
and compatibility with fast-scanning mass spectrometers, thereby streamlining data collec-
tion and bolstering its utility in swift and reliable clinical diagnoses [13]. Building upon
these developments, Nano-DESI emerges as an ambient pressure ionization technique
that employs minimal solvent for precise desorption and ionization. Its high sensitivity
and the elimination of sample preparation requirements enable ambient imaging with
resolutions surpassing 12 µm [37]. Further, the integration of Nano-DESI with Ion Mobility
(IM) separation represents a progressive step, enhancing the spatial analysis of intricate
biological samples by removing interferences and ensuring accurate measurements, thus
increasing molecular specificity [20]. Multiplexed Ion Beam Imaging (MIBI) utilizes Sec-
ondary Ion Mass Spectrometry to visualize metal-isotope labeled antibodies, enabling
simultaneous analysis of samples stained with up to 100 antibodies. Compatible with
formalin-fixed, paraffin-embedded tissue sections, MIBI offers sensitivity and resolution
on par with high-magnification light microscopy. Its application in tissue analysis facili-
tates detailed classification and insights, underscoring its utility in clinical research [38,39].
Post-MIBI’s introduction, the development of multiplexed ion beam imaging by time of
flight (MIBI-TOF) technology has notably enhanced channel multiplexing and reduced
data acquisition times. This technology enables automated imaging with resolutions up to
260 nm, covering extensive fields for in-depth tissue analysis [40].

In the realm of spatial omics, the application of sample surface treatment techniques
before Mass Spectrometry analysis emerges as an effective strategy for the effective se-
lection of target regions. Among these, Laser Capture Microdissection (LCM) stands out
as a method for procuring specific subpopulations of tissue cells under microscopic vi-
sualization. This technology enables the selective isolation of particular cells or tissues
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from heterogeneous samples, which is particularly valuable in fields like pathology, where
analyzing specific cell populations within a diverse tissue matrix is crucial. The cells sepa-
rated by LCM can subsequently be subjected to a range of molecular analyses, including
DNA, RNA, or protein assays. The integration of LCM with Mass Spectrometry, forming
LCM-MS, enhances both the accuracy and spatial resolution of these analyses [15].

Concurrently, NanoPOTS and microLESA emerge as innovative technologies that com-
plement these processes. NanoPOTS, with its robotic nanopipetting, microfabricated glass
nanowell chips, and efficient one-pot processing, enables sample preparation in volumes
as small as 200 nL. This minimizes sample loss due to adsorption and maximizes protein
concentration for digestion. In combination with nanoLC-MS/MS, NanoPOTS facilitates
the identification of nearly 700 proteins from individual cells [41]. Furthermore, when ap-
plied alongside LCM, NanoPOTS allows for targeted protein profiling from specific tissue
regions, even from a limited number of cells (as few as 10). However, its wider application
in high-resolution proteome imaging is currently restrained by manual processing and
the lack of sophisticated analysis tools [21,42]. microLESA has made significant strides
in proteome profiling. This method involves depositing minuscule enzyme droplets, ap-
proximately 250 pL in size, onto tissue surfaces for tryptic digestion. Critical experimental
parameters, including tissue thickness, trypsin concentration, and enzyme incubation time,
have been meticulously evaluated and optimized to enhance the efficacy of proteomics
analysis [18].

2.2. Spatial Transcriptomic Techniques

Spatial transcriptomic tools can be categorized into two main types, sequencing-based
and in situ imaging-based modalities. Sequencing methods involve tagging transcripts
with an oligonucleotide address that indicates their spatial location. This is most commonly
achieved by placing tissue slices on a barcoded substrate, such as Visium and Stereo-seq,
among others. On the other hand, in situ imaging methods typically employ variations of
fluorescence in situ hybridization (FISH), examples of which include Xenium and MERFISH.
Ideally, spatial transcriptome data should offer genome-wide expression measurements that
are both spatially resolved and precise at the single-cell level. However, due to technical
constraints, most spatial transcriptomics assays must compromise either spatial resolution
or gene coverage. For instance, in situ capture and sequencing-based techniques can capture
any mRNA molecules without prior knowledge of their sequences, but they generally do
not provide single-cell level spatial resolution [9]. In contrast, in situ sequencing and
FISH-based mRNA measurement methods can achieve cellular or subcellular resolution.
Yet, these assays typically have a limited throughput, detecting only a specific range
of genes (usually between 30 to 500) and necessitate prior knowledge for the design of
probes [11,43,44].

In the field of spatial transcriptomics, a subset of technology, the initial step involves
positioning numerous primers, each marked with a distinct barcode, on a microscopic glass
slide, thereby forming a microarray. These spots, identifiable by their unique barcodes
and precise locations, enable the determination of the original tissue location of each RNA
sequence. Subsequently, a tissue section is placed atop this microarray. This setup facilitates
the interaction of transcripts from the tissue with the fixed cDNA synthesis primers during
a reverse transcription (RT) reaction. The synthesized cDNA library is then sequenced, and
the obtained data are correlated with the spatially organized spots. Following this, the data
are integrated with a high-resolution histological image of the tissue section. The detail of
the resolution is contingent upon the spot’s dimensions. For instance, Slide-seq employs
DNA-barcoded beads measuring 10 µm [26], whereas Visium features a spot size of 55 µm.
Although achieving sub-histological resolution is feasible, the potential loss of information
between spots might overlook critical data from rare cells [45].

However, Stereo-seq, which combines DNA nanoball (DNB)-patterned arrays with
in situ RNA capture, overcomes these constraints. The standard DNB chips in Stereo-seq
feature spots about 220 nm in diameter, with a center-to-center distance of either 500 or
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715 nm, thus providing up to 400 spots for tissue RNA capture per 100 µm2. This technique
offers a significant advancement by enabling single-cell resolution, increased sensitivity,
and a broader field of view, covering an effective area of 13.2 cm × 13.2 cm [27].

Additionally, there are several techniques that utilize microfluidic deterministic barcod-
ing strategies, including DBiT-seq [22], spatial-ATAC-seq [46], and spatial-Cut & Tag [47].
DBiT-seq, which stands for Deterministic Barcoding in Tissue for spatial omics sequencing,
is particularly notable for its capacity to co-map mRNAs and proteins on a formaldehyde-
fixed tissue slide using Next-Generation Sequencing (NGS). This method employs parallel
microfluidic channels to transfer DNA barcodes onto a tissue slide. The crossflow of two
barcode sets, A1~50 and B1~50, followed by in situ ligation, results in a two-dimensional
mosaic of tissue pixels, each with a unique composite AB barcode. This innovative approach
was applied to mouse embryos, unveiling significant tissue types in early organogenesis,
as well as detailed structures such as the microvasculature in the brain and pigmented
epithelium in the eye field. Remarkably, the gene expression profiles captured in 10 µm
pixels align with clusters of single-cell transcriptomes, enabling swift identification of cell
types and their spatial distributions [22].

FISH tags mRNA molecules with hybridization probes. These probes are detected
combinatorically over multiple rounds, involving staining with fluorescent reporters, imag-
ing, and de-staining. This technique embodies the high spatial resolution and sensitivity
of FISH, providing single-cell resolution data. Different spatial transcriptomics platforms
utilize varied protocols, probe designs, signal amplification strategies, and computational
processing methods, potentially leading to differences in sensitivity and downstream
results [48].

After the preparation of tissue sections, Xenium’s padlock probes, which consist of
two arms, must both stably hybridize to their target for stability. If only one arm hybridizes,
the probe becomes unstable and is washed off during the post-hybridization process. These
probes also contain a gene-specific barcode sequence, generating a unique optical signature
for each transcript. Stable hybridization of both probe arms with a perfect match initiates
proximal probe ligation, followed by rolling circle amplification. The amplified products
undergo successive rounds of fluorescent probe hybridization, imaging, and removal,
creating an optical signature specific to each gene. This process allows for the construction
of a spatial transcript map across the entire tissue section [49].

The design of Spatial Molecular Imager (SMI) probes involves two key components,
in situ hybridization (ISH) probes and fluorescent reporters. ISH probes, consisting of a
target-binding domain (35~50 nt DNA) and a readout domain (60~80 nt DNA), hybridize
with specific RNA targets in tissue samples. Each readout domain accommodates four
unique fluorescent reporters, enabling the detection of multiple RNA sequences. In the
assay, FFPE tissue samples undergo cyclic readouts using sets of these fluorescent reporters
in an SMI instrument. This process captures high-resolution Z-stacked images for each
cycle, where fluorophores are sequentially hybridized, imaged, and then removed before
the next cycle. The analysis workflow includes 3D image processing to identify reporter
spots, decoding of RNA transcripts, cell segmentation using DAPI and antibodies, and
assigning RNA transcripts to individual cells [50].

MERFISH, a highly multiplexed in situ hybridization imaging method, significantly
increases the capacity for simultaneous imaging of multiple RNA species in single cells.
It achieves this through combinatorial labeling and sequential imaging with error-robust
encoding schemes. RNA transcripts are targeted and labeled using a preselected gene
panel, assigning each transcript a unique binary barcode that is error-robust, thus ensuring
reliable transcript identification, even among hundreds of genes. The method involves
hybridizing a sample with encoding probes that imprint barcodes onto each RNA species.
These barcodes are then detected through sequential rounds of multichannel imaging,
using subsets of fluorescently labeled readout probes that hybridize with the barcode
region of the encoding probes. Fluorescent spots are computationally decoded into binary
barcodes, with the presence of a spot indicating 1′′ and its absence 0′′. These barcodes,
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along with their intracellular positions, are combined with cell nucleus and boundary
staining, enabling single-cell resolution gene expression measurement [11].

Some spatial omics techniques involve imaging the tissue to be tested, followed by
cutting out the region of interest (ROI), such as with LCM [25] and UV photolysis [24]
technology. These methods are then combined with sequencing technologies to yield
the corresponding omics data. This approach is akin to more targeted sequencing of
bulk groups.

Digital Spatial Profiling (DSP) is a highly multiplexed method for spatial profiling of
proteins or RNAs, suitable for FFPE samples. This approach utilizes affinity reagents such as
antibodies or RNA probes, which are covalently linked to a DNA indexing oligonucleotide
through a UV-cleavable linker (PC-oligo). These reagents are employed to stain tissue
sections, and focused UV light is used to release the indexing oligonucleotides from any
ROI. Subsequently, these oligonucleotides are collected and digitally counted or quantified
via NGS. This technique enables multiplex digital spatial profiling of proteins and RNA in
fixed tissue. While the official recommendations suggest a range covering 1 to ~5000 cells,
practical applications typically favor a middle range, and it does not achieve single-cell
level analysis [24].

SMI represents a system designed for the measurement of RNAs and proteins within
intact biological samples, achieving subcellular resolution through multiple cycles of
nucleic acid hybridization employing fluorescent molecular barcodes. The chemistry of
SMI is reliant on the integration of in situ hybridization (ISH) probes, or alternatively
antibodies, paired with fluorescent readout probes. SMI has demonstrated detection of up
to 980-plex RNA and up to 108-plex proteins. For RNA profiling, these 980 panels facilitate
the elucidation of pivotal cellular states, encompassing immune cell states, apoptosis,
autophagy, stress responses, and damage responses, as well as delineating intricate cell–cell
interactions and hormone activity [50].

Overview of Post-Experimental Analysis in Spatial Transcriptomics

The rapidly increasing volume of spatially resolved transcriptomics (SRT) data poses
challenges in terms of inconsistent downloading protocols and processing steps. Tra-
ditionally, accessing these data from academic publications can be cumbersome due to
unfriendly user interfaces, large raw sequencing data files, time-consuming processing
steps, and frequent issues with data link maintenance, which may hinder access and
compromise reproducibility. To address these issues and improve data accessibility for
bioinformatics researchers, several databases and web servers have been developed, includ-
ing cellxgene (https://cellxgene.cziscience.com/, accessed on 3 May 2024), SpatialDB [51],
STOmicsDB [52], SODB [53], and SOAR [54].

Additionally, spatial transcriptomics requires innovative approaches for data analysis.
Computational workflows vary depending on the technology used to produce the data, but
there is a significant overlap in how different modalities are processed. The goal of these
workflows is to correlate various signals—whether from fluorescent intensities, barcodes,
the sequences of reverse-transcribed RNA, or the m/z values of ions—with specific spatial
locations within the tissue. Technologies that achieve cellular resolution can assign these
signals to individual cells through a process known as cell segmentation.

Cell segmentation involves delineating cell boundaries and other structures such as
the nucleus. Although this task might seem straightforward to the human eye, automating
it has proven challenging, especially in environments like solid tumors or with cells display-
ing complex shapes like neurons. Deep-learning-based segmentation algorithms, such as
Cellpose 2.0, Mesmer, and Segment Anything, have outperformed traditional methods like
watershed, although they remain highly sensitive to variations in cell diameter and shape.

In the context of AD, the neuronal environment is intricate and dynamic, where
identifying molecules and understanding cellular communications could deepen our neu-
robiological understanding of AD and potentially reveal new therapeutic opportunities.
Similarly, spatial transcriptomics (ST) analysis aims to connect and integrate gene expres-

https://cellxgene.cziscience.com/
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sion data with specific cellular or transcript locations. This technology enables the precise
identification and localization of cell types. Commercial ST technologies like 10x Genomics
Visium and NanoString GeoMX, which typically lack single-cell resolution, use methods
such as enrichment analysis [55] and deconvolution [56] to estimate cell-type compositions,
enhancing the quantitative assessment of cellular distribution. Techniques such as mul-
tiplexed FISH combined with unsupervised clustering and annotation, similar to those
used in scRNA-seq, allow for unbiased cell type identification, even at single-cell resolu-
tion [10,57]. Furthermore, newer computational approaches have emerged to reconstruct
spatial information from scRNA-seq data, optimizing spatial correlations and providing
both probabilistic and deterministic alignments for enhanced mapping and analysis [58,59].

The pathogenesis of AD extends beyond neurons alone. Increasing evidence suggests
that interactions among multiple cell types within the brain play a crucial role in promoting
the development of AD [60]. A key objective of ST analysis is to investigate how cells
interact with their surrounding tissue environment. In spatial transcriptomics, innovative
computational methods are employed to analyze cell–cell interactions and gene expression.
Techniques such as the two-way comparison by Giotto [55] and similar approaches in
CellPhone DB v3.0 [61] leverage spatial information to reduce false positives in ligand–
receptor predictions. Cell2location [62] is used to handle data without single-cell resolution
by inferring cell-type locations for gene expression comparison. Other methods include
convolutional neural networks, optimal transport, and multioutput regression to assess
the impact of neighboring cell types. Furthermore, advanced algorithms like NCEM [63],
CLARIFY [64], SpatialDM [65], and COMMOT [66] integrate receptor–ligand analysis with
spatial data to deepen our understanding of cellular processes, although their comparative
effectiveness remains to be evaluated.

2.3. Spatial Epigenomic Techniques

Spatiotemporal control of gene expression, pivotal for cell and tissue development and
function, is intricately governed by the regulatory information encoded in the epigenome.
This regulation, including vital histone and DNA modifications, facilitates differential gene
activation or repression, leading to the formation of diverse cell types during develop-
ment [67]. Traditional sequencing-based approaches, now extended to single-cell level,
have made strides in profiling these epigenetic modifications and chromatin accessibil-
ity [68]. However, these methods, requiring cell dissociation, often overlook the spatial
context crucial for understanding epigenomic influence in tissue-specific development. For
instance, during embryonic brain development, spatial patterns of morphogenic gradients
and transcription factors crucially guide the differentiation of neural progenitors [69,70].

Epigenomic MERFISH addresses this gap by capturing specific epigenetic modifi-
cations on chromatin in situ. It involves tagging DNA with T7 promoters near these
modification sites, followed by in situ transcription to generate RNAs, and finally, detection
of these RNAs via MERFISH. This technique allows for transcriptomic-scale RNA imaging
and high-resolution profiling of epigenetic modifications, including those marking active
promoters, enhancers, and silent chromatin regions in individual cells. Importantly, it
can image histone modifications on genomic loci as short as a few hundred bases, of-
fering a resolution of less than 1 kb. This high spatial resolution enables researchers to
determine sub-nuclear localizations of genomic loci and their spatial relationship with
nuclear structures, a critical aspect of spatially resolved epigenomic profiling in complex
tissues [31].

In addition, ATAC–RNA-seq provides a diverse perspective. This technique starts
with fixing a frozen tissue section with formaldehyde, followed by treatment with a Tn5
transposase complex preloaded with a DNA adaptor for integration into accessible ge-
nomic DNA sites. After incubation with a biotinylated DNA adaptor binding to mRNA,
spatial barcodes are introduced via a microfluidic chip, creating a two-dimensional grid of
uniquely barcoded tissue pixels. Following reverse crosslinking, barcoded DNA, including
cDNA and gDNA, is extracted and sequenced. Spatial CUT&Tag–RNA-seq, a variant of
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this method, involves targeting specific histone modifications with antibodies and a protein
A-tethered Tn5-DNA complex for CUT&Tag, mirroring the steps of ATAC–RNA-seq and
culminating in the spatial co-profiling of histone modification occupancy and the tran-
scriptome [30]. However, the spatial epigenome has not been reported in revealing the
pathology and progression of AD.

3. Applications of Spatial Omics in AD

Spatial omics presents unique advantages over techniques such as proteomics, single-
cell sequencing, and bulk sequencing. Through spatial omics, we can concurrently acquire
spatial information regarding protein/gene/epigenetic expression at both tissue and cel-
lular levels, elucidating interactions between cells and tissue structures. Consequently,
this provides a more comprehensive understanding of tissue functionality and complexity.
Furthermore, spatial omics not only facilitates the identification of cell types and subtypes
but also enables the examination of spatial distribution among cells, interactions among
neighboring cells, and cellular positioning within tissues, thereby offering invaluable in-
sights for in-depth exploration of biological processes. In comparison, while single-cell
sequencing furnishes gene expression data for individual cells, it lacks spatial relationships
between them. Similarly, bulk sequencing furnishes average expression data for entire
tissues but fails to discern differences between cell types and regions. The following section
encapsulates the pivotal findings from recent studies, accentuating the contributions of var-
ious spatial omics technologies towards advancing the understanding of AD. Furthermore,
a summary of spatial omics technology applications in AD is presented in Table 2.

Table 2. Summary of the applications of spatial omics technologies in AD.

Author/s, Year Sample Platform Findings References

Muñoz-Castro C
et al., 2022

Human temporal
association cortex CyCIF

CyCIF technology enables comprehensive
morphological characterization of astrocytes and

microglia in the context of their spatial relationships
with plaques and tangles in Alzheimer’s Disease
brains, revealing three distinct glial phenotypes.

[71]

Muñoz-Castro C
et al, 2024

Human
temporal lobe CyCIF

CyCIF technology allows the labeling of up to 16
antigens on the same tissue section, revealing the

characterization of astrocytic and microglial
responses in Alzheimer’s Disease pathology.

[72]

Lazarian, Artur
et al., 2022

APP/PS1 mice
coronal-cut
brain slices

DESI IMS

DESI Imaging Mass Spectrometry (IMS) can be used
to compare lipid species in wild-type

(WT) and AD mouse brains across different ages,
revealing regional dysregulation, particularly in

the hypothalamus.

[73]

Yueguang Lv et al.,
2024

APP/PS1
mice brains DESI IMS

Segmented temperature-controlled DESI (STC-DESI)
enables the identification of molecular changes

associated with individual Aβ aggregates, revealing
potential diagnostic and therapeutic targets such as

carnosine and 5-caffeoylquinic acid (5-CQA) in
AD pathology.

[74]

Takeyama E et al.,
2019

SAMP8 mice
Brains DESI IMS

DESI-IMS can be used to observe the effects of
supplementation with DHA-rich green nut oil (GNO)
or docosahexaenoic acid (DHA) supplementation on

DHA distribution in the brain, providing insights
into potential therapeutic strategies for

dementia prevention.

[75]
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Table 2. Cont.

Author/s, Year Sample Platform Findings References

Hashimoto M et al.,
2012

Human
hippocampal
cryosections

LCM-MS

LCM-MS technology can be used to reveal alterations
in the proteome of specific neuronal populations,
highlighting differences that cannot be detected

through bulk analysis methods like Western blotting.

[76]

Bishay J, et al., 2022 Tgf344-AD rat
brains LCM-MS

LCM-MS technology can be used to analyze isolated
cortical parenchymal plaques, arteriolar, and venular
amyloids, revealing the presence of Aβ and proteins

associated with AD in all samples.

[77]

Bishay, Jossana
et al., 2020

Tgf344-AD rat
brains LCM-MS

LCM-MS technology can be used to identify
amyloid-beta (Aβ) in cortical plaques, CAA, and
venular amyloid samples, shedding light on the

interplay between these vascular pathologies and AD
progression.

[78]

Lars Tjernberg et al.,
2011

Human
hippocampal
cryosections

LCM-MS

LCM-MS technology can be used to analyze
alterations in pyramidal neurons from human brains,

identify and quantify 150 proteins with altered
expression in AD.

[79]

Kaya I et al., 2017 Tgarcswe mice
brains MALDI IMS

The MALDI-IMS paradigm can be used in negative-
and positive-ion-mode lipid analysis and subsequent

protein ion imaging on the same tissue section,
allowing comprehensive, high-resolution molecular

analysis of histological features at cellular length
scales with high chemical specificity.

[80]

Kakuda N, et al.,
2017

Human occipital
cortex MALDI IMS

MALDI-IMS technology enables the visualization of
distinct depositions of truncated and/or modified

Aβ species, particularly Aβ1–41, in a
spacio-temporal specific manner.

[81]

Hong JH et al., 2016 5xFAD mice brains MALDI IMS
MALDI-IM technology enables the analysis and
visualization of lipid profiles in different brain

regions affected by AD pathology.
[82]

Kaya I et al., 2018 Tgarcswe mice
brains MALDI IMS

MALDI Imaging Mass Spectrometry (IMS) analyzes
and investigates the molecular information

associated with individual amyloid aggregates,
revealing alterations in lipid species.

[83]

Phongpreecha T
et al., 2021

Human brains from
individuals with
ADNC and LBD;

PS/APP and
C57Bl6 WT mice

brains

MIBI-TOF

MIBI-TOF technology enables the measurement of
multiple antibody probes in single-synapse events

and provides comprehensive synaptic
molecular characterization.

[84]

Vijayaragavan K
et al., 2022 Human brains MIBI-TOF

MIBI-TOF technology enables simultaneous
quantitative imaging of multiple proteins in archival
human hippocampal tissues, providing insights into

neurodegenerative disorders and serving as a
methodology for spatial proteomic analysis.

[85]

Moon DW et al.,
2020

APP-C105 and
5xFAD Tg mice
hippo-campal

Multiplex
ion-beam

Multiplex ion-beam technology enables simultaneous
imaging of multiple proteins at <300 nm spatial
resolution without ion beam damage, revealing
insights into protein cluster proximity and its
relationship with aging and AD progression.

[86]
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Table 2. Cont.

Author/s, Year Sample Platform Findings References

Vijayaragavan K
et al., 2022

Human
Brain

Multiplex
ion-beam

multiplex ion-beam technology, enables
simultaneous imaging of 36 proteins in human
hippocampal tissues across various stages of

Alzheimer’s Disease (AD) neuropathologic change,
unveiling unique insights into proteopathies and

cellular interactions in neurodegenerative disorders.

[85]

Murray HC et al.,
2022

Human olfactory
bulbs MP-IHC

Multiplexed fluorescence-based
immunohistochemistry (MP-IHC) allows

high-content analysis of up to 100 markers on single
tissue sections, with application demonstrated in

characterizing human olfactory bulb anatomy and
identifying differentially expressed biomarkers in

Alzheimer’s Disease.

[19]

Ramsden CE et al.,
2023

Human ventral
entorhinal cortex

(erc), prosubiculum
(pros)-CA1border

region, and
temporal neocortex

MP-IHC

MP-IHC allows the characterization of apoer2
expression and the accumulation of pathway

components in various regions affected by
Alzheimer’s Disease.

[87]

Ramsden CE et al.,
2022

Human coronal
medial temporal

lobe
MP-IHC

MP-IHC technology involves characterizing the
expression of apoer2 and apoe in sporadic

Alzheimer’s Disease. This study proposes a
hypothesis based on lipid peroxidation and the

disruption of the apoe/Reelin-apoer2-Dab1
signaling cascade.

[88]

Alyssa Rosenbloom
et al., 2023

Adult mouse brain,
mouse embryo, and
AD-positive human

brain

CosMx
SMI

The CosMx SMI technology provides a spatial
multi-omics platform capable of detecting over 68

proteins at subcellular resolution and capturing the
complexity of neuronal and glial cellular activity

within their full spatial context.

[89]

Gowoon Son et al.,
2024

Human
hypothalamus GeoMX DSP

GeoMX DSP technology reveals that the
suprachiasmatic nucleus (SCN) is vulnerable to

AD-tau pathology and show immune dysregulation
but is protected against ß-amyloid (Aß)

accumulation, which may contribute to circadian
rhythm disturbances in AD.

[90]

Walker, J.M et al.,
2023

The entorhinal
cortex, CA1 and

CA2 hippocampal
subregions

GeoMX DSP

GeoMX DSP technology compares protein expression
differences in hippocampal subregions between

Alzheimer’s Disease (AD) and primary age-related
tauopathy (PART), identifying higher levels of

synaptic markers in PART and higher levels of p-tau
epitopes in AD.

[91]

Walker, J.M et al.,
2020

Human
hippocampus GeoMX DSP

GeoMX DSP technology enables the analysis of
protein expression in resilient individuals with

Alzheimer’s Disease neuropathologic changes but no
cognitive impairment, revealing patterns suggestive
of reduced energetic and oxidative stress, increased

synaptophysin (SYP) expression and the
maintenance of neuronal synapses and connections

compared to demented individuals.

[92]
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Son, G et al., 2022

Human
suprachiasmatic
nucleus (SCN),

supraoptic nucleus
(SON), and

periventricular
nucleus (PV) in the

anterior
hypothalamus of

brains

GeoMX DSP

GeoMX DSP technology lies in its ability to spatially
assess tauopathy and tau-driven protein alterations
in the anterior hypothalamic nuclei, especially the

suprachiasmatic nucleus (SCN), uncovering elevated
p-tau expression in Alzheimer’s Disease (AD)

patients compared to controls, which may impact
sleep regulation in AD.

[93]

Jose
Davila-Velderrain

et al., 2021

Human
hippocampus and
entorhinal cortex

LCM-seq

LCM-seq technology involves conducting a detailed
single-cell transcriptomic analysis of the human
hippocampus and entorhinal cortex, uncovering

cell-type specific transcriptional changes throughout
the progression of Alzheimer’s Disease.

[94]

Gabitto MI, et al.,
2023

Human superior
and middle

temporal gyrus
(MTG)

MERFISH

MERFISH technology involves utilizing single-cell
and spatial genomics tools to investigate the impact
of Alzheimer’s Disease progression on cell types in

the middle temporal gyrus, revealing temporal
changes in neuronal subtypes and glial states, with a

subset of donors exhibiting severe cellular and
molecular phenotypes correlated with

cognitive decline.

[95]

Johnston K, et al.,
2023

Trem2R47H and
5xFAD mice

hippocampus and
subiculum

MERFISH

MERFISH technology involves investigating
cell-type-specific spatial transcriptomic changes

induced by the Trem2R47H mutation in mouse brain
sections, revealing consistent upregulation of

Bdnf and Ntrk2 across cortical excitatory neuron
types and spatially localized reductions in

neuronal subpopulations.

[96]

Cable DM, Murray
E et al., 2022 Mice hippocampus Slide-seq

Slide-seq technology involves developing C-SIDE, a
framework that models gene expression across cell
types, enabling statistical inference for identifying
differential expression in various contexts such as

pathology, anatomical regions, cell-to-cell
interactions, and cellular microenvironment, and it
can specifically identify plaque-dependent immune

activity in Alzheimer’s Disease and cellular
interactions between tumor and immune cells.

[97]

Guang-Wei Zhang
et al., 2023

5xFAD mouse
Brains Sstereo-seq

Stereo-seq technology enables us to spatially profile
whole-genome transcriptomics in the 5xfad mouse
model, establishing a methodology for analyzing
specific neuronal transcriptomic changes spatially

correlated with amyloid pathology at
single-cell resolution.

[98]
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Shuo Chen, Yuzhou
Chang et al., 2022

Human
brains Visium

Visium identifies unique marker genes for cortical
layers and white matter, layer-specific differentially

expressed genes (degs) in AD, and illustrates
significant differences in specific cell types among

cortical layers and white matter regions.

[28]

Sang Ho Kwon
et al., 2023 Human brains Visium

Visium technology enables us to assess spatial gene
expression changes in AD brains relative to Aβ and
hyperphosphorylated tau (ptau) pathology, revealing

transcriptomic signatures associated with Aβ

proximity in late-stage AD.

[99]

Hongyoon Choi
et al., 2023 5xFAD mice brains Visium

Visium technology reveals regional changes at the
molecular level, including early alterations in the
white matter (WM) involving glial cell activation

before the accumulation of amyloid plaques in the
gray matter (GM), and identifying distinct spatial
patterns of disease-associated microglia (dams).

[100]

Alon Millet, Jose
Henrique Ledo

et al., 2024

5xFAD mice brain
cortex and

hippocampus;
human brain of

age-matched
Alzheimer’s

Disease
APOE3/APOE3

carriers and
APOE4/APOE4

carriers

Xenium

Xenium technology enables us to identify a reactive
microglial population termed terminally

inflammatory microglia (tims) characterized by
inflammatory signals and cell-intrinsic stress

markers, whose frequency increased with age and
APOE4 burden, and was detectable in human AD

patients’ brains.

[101]

3.1. Application of Spatial Proteomics in the Study of AD

Spatial proteomics is crucial for elucidating the pathology of AD. Amyloid β (Aβ)
deposition, an early and invariable feature of AD, consists of peptides generated from
amyloid precursor proteins (APPs) by β- and γ-secretases. Despite its significance, the
distribution of individual Aβ peptides in the brains of aged individuals, those with AD, and
cerebral amyloid angiopathy (CAA) is not fully characterized. To address this gap, Matrix-
Assisted Laser Desorption/Ionization–Imaging Mass Spectrometry (MALDI-IMS) has been
employed, revealing that Aβ1–42 and Aβ1–43 are selectively deposited in senile plaques,
while full-length Aβ peptides such as Aβ1–36 to Aβ1–41 are found in leptomeningeal
blood vessels. Moreover, this approach has enabled the visualization of distinct depositions
of N-terminal truncated Aβ40 and Aβ42 species, underscoring the significance of even
minor variations in peptide structure [81]. In parallel, the investigation of synaptic pro-
teins provides further insights. Through 13-channel imaging of cultured rat hippocampal
neurons using ssLNA imaging probes and non-PRISM fluorescent markers, the complex
network of synaptic and cytoskeletal proteins central to synapse formation and plasticity
has been characterized. This includes key proteins like actin, Tuj-1, MAP2, synapsin-I,
and VGLUT1, illustrating the diverse aspects of brain development and neuronal circuit
function [34]. Additionally, the precise delineation of the anterior olfactory nucleus (AON)
in neurodegenerative studies is critical due to its specific accumulation of pathological
aggregates such as α-synuclein, tau, β-amyloid, huntingtin, and TAR DNA-binding protein
43 (TDP43) [102–106]. MP-IHC using a pixel-bin approach facilitates the assessment of
different tissue structures, including blood vessels, white matter, and olfactory bulb layers.
This technique, which utilizes markers not confined to nuclear or cytoplasmic distributions,
is instrumental in identifying unique neurochemical signatures for each bulb layer, crucial
for the reliable and consistent delineation needed in neurodegenerative research [107].
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3.2. Application of Spatial Metabolomics in the Study of AD

Spatial metabolomics in AD offers a nuanced understanding of brain lipid dynamics,
crucial for cellular signaling and neuronal function [108]. Studies have shown a decrease
in various fatty acids such as LA, OA, EPA, AA, DHA, and DPA in the brains of humans
and AD animal models. This change in metabolism of free fatty acids (FFAs) is significant
in understanding the most common form of dementia [109,110]. Advanced techniques
like DESI and MALDI-MS imaging have detected significant changes in lipid metabolites,
such as phosphatidylethanolamines, phosphatidylcholines, and glycerophospholipids, in
early-stage AD mouse models [111]. These techniques have also been instrumental in
observing the distribution of specific lipids like DHA in dementia mouse models [75]
and studying the enzymatic activity of biomarkers like BChE in AD patients [112]. Lipid
molecules, including lysophospholipids such as LPC and LPG, accumulate in Aβ plaques,
affecting cell membrane functions like ion transportation [113] and signal reception [113].
Metabolites like AA [114], critical for synaptic signaling, are also found in Aβ plaques.
The altered expression of various metabolites, including lysophospholipids, spermine, and
malic acid, is closely linked to AD development [115]. The role of lipid molecules in cell
membrane composition and neurotransmitter signaling in neurodegenerative diseases
like AD is now evident [116]. Lipids are involved in amyloidogenesis by regulating APP,
BACE1, and γ-secretase complex components [117]. Sulfatide (ST) is a sphingolipid with
an important role in the central nervous system as a major component of the myelin
sheath. Techniques like MALDI-IMS have been used to assess differences in lipid species in
different stages of AD, revealing depletion of sulfatide lipid species from early stages of the
disease [16]. Furthermore, transgenic Alzheimer’s Disease mice models have shown brain
region-specific differences in Aβ peptide aggregation, with significant accumulation of Aβ

species in plaques, highlighting the complex interplay of lipids in AD pathology [118].

3.3. Application of Spatial Transcriptomics in the Study of AD

Spatial transcriptomics is enhancing our understanding of AD by revealing tran-
scriptional alterations in the brain’s affected regions. Chen and colleagues illustrate the
application of spatial transcriptomics [9] and in situ sequencing [119] technologies. In
an AD mouse model, this study investigates the transcriptional changes in tissue do-
mains within a 100 µm diameter around amyloid plaques using spatial transcriptomics.
Early alterations were observed in a gene co-expression network enriched with myelin
and oligodendrocyte genes (OLIGs)In the later phase of the disease, a multicellular gene
co-expression network involving 57 plaque-induced genes (PIGs) — related to the comple-
ment system, oxidative stress, lysosomes, and inflammation — became prominent.. Similar
alterations in human brain samples partially strengthen these observations, suggesting
that genome-wide spatial transcriptomics analysis can untangle the dysregulated cellular
network near AD’s pathogenic hallmarks and other brain diseases [120]. Another study
utilized the 10× Genomics Visium platform to enhance the resolution to 55 µm. In con-
junction with co-immunofluorescence staining for AD-associated pathological markers,
this approach enabled a detailed delineation of gene expression within the human middle
temporal gyrus (MTG), known for its early vulnerability in AD. By annotating cortical
layers and white matter (WM) in both AD and control MTG samples, the team identified
specific marker genes for five cortical layers and the WM. They discovered layer-specific
differentially expressed genes (DEGs) in human AD patients compared to the controls,
including previously identified markers like RAR-related orphan receptor B (RORB), Purk-
inje cell protein 4 (PCP4), Myelin basic protein (MBP), and novel marker genes such as
secreted protein acidic and rich in cysteine (SPARC), Calbindin 2 (CALB2), DIRAS Family
GTPase 2 (DIRAS2) and Keratin 17 (KRT17) [28]. Moreover, the early signs of AD, such
as poor short-term memory and olfactory dysfunction, were explored through spatial
transcriptomics in the hippocampal and olfactory bulb (OFB) regions of 3 × AD, 3 × PB,
and control mice. The study found global deregulation in genes like Ubc, Pkm, Cox6c, and
Glo1, affecting cellular metabolism and energy production. Notably, the upregulation of
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Gabra2 in the hippocampus and Gabra5 in the OFBs in AD strains highlighted their role
in GABAergic synaptic balance, with Bok identified as a differentially expressed gene in
both mouse and human AD brains, implicating mitochondrial function and apoptosis. This
research emphasizes the significance of these genes in AD pathology and their potential as
biomarkers for early AD detection [121].

4. Conclusions and Challenges

Over the past decade, the rapid advancements in NGS technologies have propelled
significant progress in the field of multi-omics, extending some omics analyses down to the
single-cell level. However, sequencing-based methods that require cell dissociation can lead
to a loss of crucial spatial information, as the original spatial context of cells is compromised,
which is particularly vital in omics studies. This loss is especially pertinent in AD research,
where cell-type-specific changes, including neurons, astrocytes, microglia, and their spatial
distribution and interaction patterns within the brain, are crucial for understanding disease
development. The characteristic pathological features of AD, such as Aβ plaques and
tau neurofibrillary tangles, exhibit distinct spatial distribution patterns across different
brain regions. These features are associated with damage to specific neural pathways that
span multiple areas of the brain. Additionally, the progression of AD is closely linked to
changes in the brain’s microenvironment, including inflammatory responses, compromised
integrity of the blood–brain barrier, alterations in intercellular communication, and changes
in metabolic pathways and biochemical processes that may be confined to specific regions
or cell groups within the brain.

This article provides an overview of the current spatial omics technologies and their
advancements, as well as their existing applications in AD research, highlighting the
significance of spatial omics in detecting AD pathological features among other aspects.
Despite significant advancements, several challenges and issues remain.

Spatial multi-omics encounters several challenges. Firstly, standardized sample prepa-
ration is crucial for successful experiments and high data quality. Tissue handling requires
adherence to standardized protocols for tissue sampling, fixation, freezing, and tissue
sectioning. Particularly, brain tissue exhibits intricate anatomical structures and diverse
cell types, necessitating more cautious handling compared to other tissue types due to its
softness and vulnerability.

For antibody-based multiplex imaging methods, the specificity of antibody panels
is associated with increased costs. In cases requiring custom antibodies or antibody com-
binations, their validation may be time-consuming, and antibody specificity may often
be ambiguous. Moreover, this imaging method depends on the number and coding of
fluorescent channels, making it crucial to enhance throughput and shorten formal exper-
imentation time. Additionally, techniques for sample surface treatment and selection of
regions of interest (ROIs), such as sampling of amyloid plaques and surrounding areas
separately, can provide spatial positioning at a lower precision. However, in sequencing
analysis, this is akin to a small bulk sample, making it difficult to achieve single-cell resolu-
tion. Furthermore, certain high-throughput spatial techniques do not achieve single-cell
resolution, and single-cell assays, despite their precision, are limited by throughput and
the need for fixed detection panels, making custom probe design prohibitively expensive
(refer to Table 3 for a comparative analysis of other technologies in spatial omics).

Lastly, for subsequent analysis of spatial omics data, the sheer volume of generated
data is immense, requiring robust data storage strategies that may be inaccessible to many
academic laboratories. Moreover, in the subsequent analysis phase, most researchers rely on
specialized bioinformatics departments for collaborative research. These issues necessitate
more user-friendly and convenient data storage and analysis methods.
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Table 3. Comparative analysis of spatial omics technologies.

Items Proteomics in Bodily
Fluids (CSF, Blood) Spatial Proteomics Bulk

Transcriptome
Single-Cell

Transcriptome
Spatial

Transcriptome

Analytic object CSF, blood Tissue Tissue Cell Tissue

Region Not applicable Identified directly Not applicable Presumed by the
algorithm Identified directly

Advantage Wide applicabilityLow
sample size

Spatial resolution
Direct

visualization
The price is low Cell resolution Spatial resolution

Limitation Lack of spatial
information

Sample
volumesLong
duration and

limited throughput

Precision is low
Lack of spatial

information
Resolution is low

Lack of spatial
information

The resolution and
hroughput are

lower than
single-cell

transcriptome in
most cases

5. Future Direction

Spatial omics techniques offer both opportunities and challenges for a deeper un-
derstanding of Alzheimer’s Disease (AD) pathology and progression. Firstly, with the
continuous development and refinement of technology, we anticipate the emergence of
higher-resolution, faster, and more accurate imaging techniques, such as spatial single-cell
resolution multi-omics technologies. This advancement will enable a more detailed in-
vestigation of the spatiotemporal characteristics of AD-related neuronal damage, protein
aggregation, and pathological changes. Anticipated progress includes increased through-
put, reduced costs, integration of more modalities per detection, and improved sensitivity
and specificity.

Furthermore, emerging artificial intelligence (AI) methods hold the potential to pro-
pose new avenues for the application of spatial omics in understanding the therapeutic
effects and mechanisms of action of AD treatments. AI models include machine learning
(ML)-based [122], deep learning-based, and network-based algorithms [123]. Compared to
traditional biological experiments, AI-based models have demonstrated faster and more
effective outcomes by leveraging large-scale biomedical data. Specifically, through spatially
tracking drug distribution and effects in brain tissue, we can more effectively assess the
efficacy and side effects of drugs and provide more reliable experimental data for drug
development. On one hand, this can be achieved through AI-driven drug screening, predic-
tion of drug mechanisms of action, and drug repurposing technologies. On the other hand,
through the development of AI algorithms for enhancing the analysis and interpretation of
spatial omics data. Therefore, AI-based computational methods can provide robust support
from multiple perspectives for AD drug target research and drug development.
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