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Abstract: Background and Objectives: Cranial defects pose significant challenges in low and middle-
income countries (LIMCs), necessitating innovative and cost-effective craniofacial reconstruction
strategies. The purpose of this study was to present the Bosnia and Herzegovina model, showcasing
the potential of a multidisciplinary team and 3D-based technologies, particularly PMMA implants,
to address cranial defects in a resource-limited setting. Materials and Methods: An observational,
non-experimental prospective investigation involved three cases of cranioplasty at the Department
of Neurosurgery, Cantonal Hospital Zenica, Bosnia and Herzegovina, between 2019 and 2023. The
technical process included 3D imaging and modeling with MIMICS software (version 10.01), 3D
printing of the prototype, mold construction and intraoperative modification for precise implant fit-
ting. Results: The Bosnia and Herzegovina model demonstrated successful outcomes in cranioplasty,
with PMMA implants proving cost-effective and efficient in addressing cranial defects. Intraoperative
modification contributed to reduced costs and potential complications, while the multidisciplinary
approach and 3D-based technologies facilitated accurate reconstruction. Conclusions: The Bosnia and
Herzegovina model showcases a cost-effective and efficient approach for craniofacial reconstruction
in LIMICs. Collaborative efforts, 3D-based technologies, and PMMA implants contribute to success-
ful outcomes. Further research is needed to validate sustained benefits and enhance craniofacial
reconstruction strategies in resource-constrained settings.

Keywords: cranioplasty; 3D; print; low-income; middle-income

1. Introduction

Cranioplasty (CP) has a rich historical background, with significant advancements dating
back to 1668 when van Meekeren successfully utilized a canine cranium for bone grafting [1,2].
Over the years, various materials have been explored, including gold plates, autografts,
allografts, and xenografts. Autografts gained prominence with Walther’s introduction in 1821,
followed by successful implementations by Macewen and Burrell [1–3]. However, challenges
persisted with allografts and xenografts due to complications, while metallic substitutes like
aluminum, gold, and platinum posed their limitations. The breakthrough came with the
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introduction of titanium by Simpson in 1965, and subsequently, molded titanium implants
and acrylic materials became favored choices for CP [3–5].

Decompressive craniectomy (DC) often precedes CP surgery and is commonly em-
ployed in cases of traumatic brain injury, intracranial hemorrhage, cerebral infarction, brain
edema, and skull fractures [6–8]. Extensive clinical case studies and systematic reviews
have consistently reported positive outcomes following CP, showcasing the restoration of
cranial symmetry, favorable cosmetic results, and notable improvements in neurophysio-
logical function for numerous patients [9–11]. Presently, 3D printing plays a pivotal role in
generating patient-specific prefabricated cranial implants, resulting in enhanced cosmetic
outcomes [12,13]. Nonetheless, despite the progress in image processing and 3D printing,
the overall clinical procedure remains time-consuming and costly [14].

The aim of this study is to assess the efficacy and practicality of implementing 3D
printing technology as a cost-effective approach to CP in LIMC settings. By evaluating the
feasibility, outcomes, and cost-efficiency of 3D-printed patient-specific cranial implants, this
research aims to contribute valuable insights that can potentially revolutionize CP practices
in resource-limited regions. This study will serve neurosurgeons, medical professionals,
and policymakers working in LIMC settings where access to conventional CP methods
may be limited due to financial constraints. The findings and recommendations from
this research will also be valuable for healthcare organizations, government bodies, and
non-governmental organizations involved in improving neurosurgical care and promoting
equitable access to advanced medical technologies in resource-constrained areas.

2. Materials and Methods

This study was conducted as an observational, non-experimental prospective investi-
gation. It involved three cases of CP performed at the Department of Neurosurgery, Canton
Hospital Zenica, Bosnia and Herzegovina, between 2019 and 2023. These three cases rep-
resent the first experience with CP in Bosnia and Herzegovina, carried out under limited
resources and conditions. The patient treatment process included a multidisciplinary team
comprising three neurosurgeons and an engineer. The technical preparation of the implant
was executed by the engineer, with continuous consultation with the neurosurgeons.

2.1. Patient Evaluation

Prior to the surgical procedure, patients underwent a comprehensive neurological
assessment conducted by a neurosurgeon, followed by an evaluative Computed Tomogra-
phy scan (CT; Somatom Definition AS system from Siemens, Erlangen, Germany). Defect
measurements were taken in two diameters: maximal axial and maximal sagittal (mm).
Subsequently, the defect area was calculated and classified according to Poukens et al. [15].
This classification is contingent upon three variables: defect size, midline crossing, and
orbital rim involvement. The grades are delineated as follows: Grade I for defects not
crossing the midline and measuring smaller than 5 cm2 without orbital involvement, Grade
II for defects not crossing the midline and measuring larger than 5 cm2 but smaller or equal
to 100 cm2 without orbital involvement, Grade III for defects not crossing the midline and
measuring larger than 100 cm2 without orbital involvement, Grade IV for defects smaller
than 5 cm2 with orbital involvement, Grade V for defects larger than 5 cm2 but smaller or
equal to 100 cm2 with orbital involvement, and Grade VI for defects larger than 100 cm2

with orbital involvement. In addition to classification, an Aesthetic Satisfaction Scoring
Scale (ANA) was employed for aesthetic evaluation [16].

2.2. Technical Procedure

The resulting CT scan files were exported in the Digital Imaging and Communications
in Medicine (DICOM) format. Subsequently, the DICOM data were imported into MIMICS
software (version 10.01, Materialise’s Interactive Medical Image Control System, Materialise
NV, Leuven, Belgium), a specialized tool for interacting with DICOM files. In this study,
MIMICS was utilized for image visualization and segmentation, enabling the creation of
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three-dimensional (3D) renderings of the relevant anatomical structures (Figure 1). By
employing cutting and mirroring techniques on the model derived from the unaffected side
of the skull, a 3D representation of the missing part of the skull was constructed, effectively
closing the defect on the opposite side (Figure 2a,b). The digital 3D model of the absent
cranial portion was then exported in STL (Standard Triangle Language) format, suitable for
3D printing purposes (Figure 3a,b).
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The 3D prototype of the cranial prosthesis was printed using Polylactic Acid (PLA)
plastic on an Ultimaker 2+ 3D printer from Ultimaker, located in Utrecht, The Netherlands
(Figure 3a). The 3D-modeling technique was based on Fused Filament Fabrication (FFF)
(Video S1). Since the printed implant model was not directly applicable for medical
purposes, a negative mold was created using dental plaster (Figure 3b). Dental plaster
was chosen due to its sterilization capabilities. This negative mold was then utilized
intraoperatively to fabricate an implant that precisely matched the geometry of the cranial
defect. The intraoperative prosthesis was made from Polymethyl Methacrylate (PMMA),
ensuring the desired fit and functionality during the surgical procedure.

2.3. Surgical Procedure

The surgical procedure commenced with an incision on the scalp at the affected site,
followed by exploration of the cranial region harboring the defect. Prior to the incision, the
operative site underwent disinfection using a cationic detergent, followed by the application
of an iodine-based solution. Subsequently, the implant modeling process, which utilized
a two-component polymethyl methacrylate (PMMA) mixture, necessitated an extended
duration of the surgical intervention. Manual techniques were employed to intricately
adapt the PMMA mixture to the cranial defect, ensuring its comprehensive closure.

2.4. Follow-Up Assesment

After the surgical treatment, patients were kept under observation in the neurosurgery
department at the Canton Hospital Zenica, under the care of the neurosurgical team. The
follow-up included wound inspection, neurological examination, and imaging, depending
on the available modality, along with aesthetic evaluation. Following discharge, scheduled
follow-up appointments were planned with the neurosurgeon at one month, three months
post-surgery, and subsequently every six months. Aesthetic Satisfaction Scoring Scale
(ANA) was utilized for aesthetic evaluation, with assessments conducted preoperatively,
after one month, and after three months [16].

3. Results
3.1. Case Presentations

In the first case, a 24-year-old male patient sustained a traumatic brain injury (TBI)
following a fall from a height of 4–5 m. One year before the CP surgery, the patient
underwent surgery for epidural empyema at the same medical facility, but pathogen
isolation was not achieved. The cranial defect involved the frontal, parietal, and temporal
bones. The time interval between the injury and CP was 12 months, and the surgical
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procedure lasted 140 min (Table 1). Additionally, Figure 4a depicts the defect in the frontal
aspect, while Figure 4b shows the defect in the lateral aspect.

Table 1. Baseline characteristics of patients.

Case 1 2 3

Age 19 24 49

Years Male Male Female

Cause SDH, TBI caused by falling
from a height of 7 m

TBI caused by falling from
the roof of a house from a

height of 4–5 m

Cranial decompression due
to surgery of

ACM aneurysm

Anamnestic data

Treated surgically 3 years
b.c. in another facility

due to previously
explained injury

Treated surgically two
years ago in our facility,

epidural empyema without
isolating the pathogen a

year ago

Treated three years b.c. in
another facility (and state)

due to MCA aneurysm,
present hemiparesis of the
left side, as well as paresis

of the right oculomotor and
facial nerve

Defect size 119.8 mm × 52.8 mm
(63.3 cm2)

121.0 mm × 89.5 mm
(108.3 cm2)

102.2 mm × 68.1 mm
(69.6 cm2)

Side Left Right Left

Localisation Frontal, parietal and
temporal bone included

Frontal, parietal and
temporal bone included

Frontal and temporal
bone included

Poukens et al. [15]
classification II III II

Time to CP (months) 36 12 36

Operation time 120 140 145

Hospitalisation days 5 11 31

Comorbidities None None Status after MCA occlusion

Outcome Functional and
aesthetic improvement

Functional and
aesthetic improvement

Functional and
aesthetic improvement

b.c.—before CP.

Medicina 2023, 59, x FOR PEER REVIEW 6 of 16 
 

 

years earlier. The cranial defect involved the frontal, parietal, and temporal bones. The 
duration between injury and CP was 36 months, and the surgical operation lasted 120 min 
(Figure 5). 

  
(a) (b) 

Figure 4. First case with (a) frontal and (b) lateral aspect preoperative images. 

  
(a) (b) 

Figure 5. Second case with (a) frontal and (b) lateral aspect preoperative images. 

The third case involves a 49-year-old female patient who underwent DC surgery due 
to a Middle Cerebral Artery (MCA) aneurysm, resulting in left-sided hemiparesis and pa-
resis of the right oculomotor and facial nerve. Three years before the CP procedure, the 
patient had previously undergone treatment at a different medical facility in another state. 
The cranial defect involved the frontal and temporal bones. The time interval between the 
injury and CP was 36 months, and the surgical operation lasted 145 min. 

According to the classification system proposed by Poukens et al. [15] case 1 and 3 
were categorized as grade II, while case 2 was graded III. This classification signifies that 
the defects observed are greater than 5 cm2 but are equal to or smaller than 100 cm2 in size. 
The table includes the respective defect sizes in millimeters for each case, which are 119.8 
mm × 52.8 mm for Case 1 (63.3 cm2), 121.0 mm × 89.5 mm for Case 2 (108.3 cm2), and 102.2 
mm × 68.1 mm for Case 3 (69.6 cm2) (Table 1). 

Figure 4. First case with (a) frontal and (b) lateral aspect preoperative images.

The second case describes a 19-year-old male patient who experienced a traumatic brain
injury (TBI) from a fall at a height of 7 m. Prior to the CP surgery, the patient had undergone a
previous operation for the same injury at a different medical facility three years earlier. The
cranial defect involved the frontal, parietal, and temporal bones. The duration between injury
and CP was 36 months, and the surgical operation lasted 120 min (Figure 5).
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The third case involves a 49-year-old female patient who underwent DC surgery due
to a Middle Cerebral Artery (MCA) aneurysm, resulting in left-sided hemiparesis and
paresis of the right oculomotor and facial nerve. Three years before the CP procedure, the
patient had previously undergone treatment at a different medical facility in another state.
The cranial defect involved the frontal and temporal bones. The time interval between the
injury and CP was 36 months, and the surgical operation lasted 145 min.

According to the classification system proposed by Poukens et al. [15] case 1 and 3
were categorized as grade II, while case 2 was graded III. This classification signifies that
the defects observed are greater than 5 cm2 but are equal to or smaller than 100 cm2 in
size. The table includes the respective defect sizes in millimeters for each case, which are
119.8 mm × 52.8 mm for Case 1 (63.3 cm2), 121.0 mm × 89.5 mm for Case 2 (108.3 cm2),
and 102.2 mm × 68.1 mm for Case 3 (69.6 cm2) (Table 1).

3.2. Radioogical Findings

In Figure 6a, a defect affecting the frontal, temporal, and parietal bones of the skull
vault can be observed in case 2. Based on the CT scan, a 3D reconstruction was made,
which is shown in Figure 6b for better visualization and surgical planning. In the case
of Case 1, intracerebral bleeding is visible as a result of TBI, as well as the state after DC
(Figure 7a). As can be seen in Figure 7b, Case 3 has an ischemic zone in the right frontal
and parietal lobes due to MCA occlusion, as well as a large bone defect.
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3.3. Intraoperative Processing

During the intraoperative processing of the implant, the PMMA mass was adapted
using a mold (Figure 8a), and subsequently subjected to grinding and finishing procedures
(Figure 8b) to achieve optimal congruence between the implant and the bone defect. In
Case 2, dry sterilization resulted in the mold fracturing, necessitating the creation of a
new mold based on the 3D prototype, followed by adaptation. Following these steps,
implantation was performed (Figure 9a), and the scalp was closed (Figure 9b).
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3.4. Technological Process and Costs

In Cases 1 and 2, the material costs were USD 99 and USD 90, respectively, while
Case 3 incurred the same material cost as Case 2, totaling USD 90. Remarkably, the
technical processing costs for all three cases were consistent, with a value of USD 395 for
Cases 1 and 2, and USD 400 for Case 3. As a result, the overall expenses, including both
material and processing costs, for Cases 1, 2, and 3 amounted to USD 494, USD 485, and
USD 490, respectively. It is noteworthy that the technical processing costs were voluntarily
undertaken by the author (D.S.) in collaboration with the Faculty of Mechanical Engineering,
University of Zenica (Table 2).

Table 2. Costs of material and technical processing.

Case 1 2 3

Material costs USD 99 USD 90 USD 90
Technical processing costs 1 USD 395 USD 395 USD 400
Total costs material and processing costs USD 494 USD 485 USD 490

1 The technical processing costs represent an approximation of expenses incurred during the technical processing
phase. The technical processing was carried out on a voluntary basis by the author (D.S.) in collaboration with the
Faculty of Mechanical Engineering, University of Zenica.

3.5. Outcome and Aestetic Satisfaction

During the follow-up, all cases showed significant aesthetic progress along with
functional improvements. However, Case 3, due to prior neurological deficits, experienced
unchanged conditions. The first two cases exhibited no visible neurological impairments.
Figure 10a illustrates the aesthetic enhancements achieved in Case 1 after the CP procedure,
while Figure 10b corresponds to Case 2, demonstrating similar aesthetic improvements
following the CP.
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Figure 10. Presentation of Case 1 (a) after the surgical procedure, after the removal of the stapler pins,
after 10 days, and Case 2 (b) postoperatively 6 days before the removal of the stapler pins.

One month post-surgery, the ANA scores for Cases 1 and 2 increased to 8, indicating
improved aesthetic satisfaction. Case 3 also demonstrated improvement, albeit to a lesser
extent, with an ANA score of 6 (Figure 11). At the three-month follow-up, aesthetic
outcomes continued to progress. Both Case 1 and Case 2 achieved higher ANA scores
of 9 and 10, respectively, indicating further enhancement in their aesthetic appearance.
Similarly, Case 3 exhibited continued improvement, attaining an ANA score of 8.
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After the surgical procedure, in all three cases, both functional and aesthetic effects
were achieved. In Figure 10a, Case 1 can be seen after the removal of the stapler pins,
showing evident aesthetic improvement. In Figure 10b, Case 2 can be observed with
aesthetic and functional progress after the cranionoplastic neurosurgical procedure.

4. Discussion

CP is a complex surgical procedure aimed at reconstructing cranial defects [17]. Bosnia
and Herzegovina, being a middle-income country, faces healthcare challenges due to
resource constraints [18–20]. This encompasses limitations in funding, infrastructure, and
access to advanced medical technologies [21,22]. Innovative approaches are imperative for
optimizing healthcare delivery [22–26]. Despite these hurdles, this study demonstrates the
successful implementation of CP within limited resources.

Three cases with positive outcomes in functional and aesthetic contexts were presented
earlier. The first two cases were male, aligning with the incidence of TBI and the 2:1 male-
to-female ratio according to Maegele et al. [27]. According to Aydin et al. [1], TBI is the
most common cause of DC followed by CP. In the third case, the cause was a surgical
procedure involving an aneurysm of the middle cerebral artery that necessitated DC, a
common occurrence according to Zijlstra et al. [28].

The size of the cranial defect varied. The largest defect was observed in Case 2,
measuring 108.3 cm3 (Figure 6), categorizing it as grade III according to Poukens et al. [15].
The size of the cranial defect is of paramount importance as it dictates the complexity of the
surgical procedure. Typically, DC requires removal of a bone flap ranging from 5–100 cm2,
corresponding to Poukens et al.’s [15] grade II. It is less common for this procedure to
necessitate DC exceeding 100 cm3. Moreover, Johnson et al. [29] state that a craniotomy
larger than 125 cm2 poses a risk of flap failure.

The time interval from injury or DC in our cases ranged from 12 to 36 months. The av-
erage duration from DC to CP according to the study by Quah et al. [30] was 23 months. Pro-
longing CP is associated with the development of hydrocephalus as per Morton et al. [31].
Additionally, prolongation carries the risk of infection and prolonged antibiotic use [30],
while timely CP within 3 months of DC reduces neurological complications, especially
in TBI patients [32]. Therefore, timely intervention within 3 months is a key factor in
improving patient outcomes and reducing costs in LIMCs. The length of hospitalization
was notable in Case 3 (31 days) due to accompanying conditions, emphasizing the need to
consider existing comorbidities when initiating a CP procedure.

Ultimately, the use of PMMA, its accessibility [33], safety, and reliability for medical
purposes [34], as well as its ease of manual manipulation [35], constitute crucial consid-
erations in LIMCs. Its applicability in CPs, even in restrictive conditions, represents an
acceptable modality for addressing cranial defects. The effectiveness in limited conditions
was affirmed by a randomized controlled trial by Mansouri et al. [36], where this material
was used as an implant in deep sclerectomy. Furthermore, Ashraf et al. [37] offered signifi-
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cant insights in their Pakistani study regarding the application of 3D-printing-mediated
PMMA in CP, stating that its utilization holds potential clinical, aesthetic, and radiological
benefits in LIMIC conditions.

Overview of Implemented (Bosnian) Model for CP in LIMCs

Preoperative 3D CP involves medical assessment and technical processing (Figure 12).
Medical evaluation includes defect examination, medical history, and health status [13,27].
CT scans are cost-effective and efficient for evaluation [28]. Advanced CT technology
provides clear visualization for precise measurement [31]. Reconstruction enhances preop-
erative understanding [38–40]. Freely available software meets clinical standards [41–44],
ensuring widespread accessibility.
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After medical evaluation, 3D software (e.g., MIMICS, version 10.01) processes CT
data for precise skull reconstruction [45–49]. Cutting and mirroring techniques virtu-
ally close the defect, ensuring an accurate fit for the prosthesis. This phase is crucial for
precise implant customization [14,48]. The 3D CP team comprises neurosurgeons and
engineers [50,51]. Neurosurgeons handle patient assessment, surgery, and treatment de-
cisions. Engineers use specialized software for precise 3D modeling of the cranial defect
and customizing the prosthesis [52,53]. This collaboration enhances the accuracy and effec-
tiveness of the procedure [43,44]. In our approach, an external engineer provided technical
consultation, optimizing 3D CP. Their expertise in imaging and modeling led to tailored
prostheses, reducing costs and increasing accessibility in resource-limited systems [54,55].
Neurosurgeon-led evaluation, alongside preoperative classification, initiates CP. Consid-
ering both functionality and aesthetics is vital. Maricevich et al. [56] emphasize aesthetic
satisfaction’s impact on patient well-being. Enhancing both aspects aids reintegration and
boosts confidence [57,58], enhancing overall quality of life.
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PMMA, hydroxyapatite, and titanium are commonly used materials in medical ap-
plications, each with distinct properties and risks [59]. PMMA and hydroxyapatite are
non-conductive and radiolucent, suitable for imaging. PMMA’s carcinogenicity is debated,
with studies showing no clear cancer-causing effects [60]. PMMA is FDA-approved for
various medical devices [51] and widely used in European countries [33,61–64]. PMMA
offers good mechanical resistance, while hydroxyapatite excels in osteointegration [57–59].
Hydroxyapatite has a higher infection rate [59–61]. Titanium is strong but not suitable
for pediatric use and is the most expensive material [12]. PMMA is cost-effective and
radiolucent, allowing various imaging methods. PMMA’s strength, stability, and cost-
effectiveness make it preferred for manufacturing prostheses. It may cause immunologic
reactions but can be combined with antibiotics to reduce the risk of infection [64–73]. In 3D
CP, PMMA yields favorable cosmetic results with low complications [64–73]. PMMA is the
most cost-effective option for CP in LIMCs [65–74].

After preoperative steps and multidisciplinary collaboration, the surgical intervention
begins (Figure 12). The procedure involves examining the defect, and modifying the
PMMA mass with a sterilized mold [14]. Two approaches for PMMA implantation exist:
preoperative fabrication (costlier and riskier) and intraoperative modification (more suitable
for LIMCs, potentially lengthening surgery) [12,75]. The average surgical duration for the
presented cases was 135 min [76,77]. Following modification, the PMMA implant is placed
over the bone defect and secured with silk sutures [78–80]. Postoperative monitoring
involves ICU care and neurosurgical oversight. CT scans are used if complications are
suspected. Our cases had varying hospital stays, with no complications reported. Follow-
ups are scheduled at one, three, and six months, including neurological and physical
assessments, and aesthetic evaluation with the ANA scale.

5. Conclusions

In conclusion, our Bosnia and Herzegovina model, employing a multidisciplinary
team and advanced 3D-based technologies, offers a cost-effective approach for cranial defect
management in LIMCs. The use of PMMA, with intraoperative modification, enhances
cost-effectiveness and reduces complications. Successful outcomes underscore the value of
collaboration between medical and engineering professionals in LIMCs. Further research
with larger cohorts, long-term follow-ups, and cost-effectiveness analyses for different
implant materials are warranted. Advances in 3D imaging and printing hold promise for
refining craniofacial reconstruction in resource-constrained settings. This model provides
a valuable framework for LIMCs to adopt innovative approaches, ultimately enhancing
outcomes and quality of life for craniofacial reconstruction patients.
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